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Abstract

As the digital design moves te higher levels of
abstraction, high-level test synthesis methodologies attract
many research interests. Many conditional statements in
behavioral descriptions tend to produce testability
problems in synthesized circuits, so it would be better if
they are taken care of in the early stage of the design cycle.
In this paper we present a HLTS methodology based on
BIST. The presented methods transform conditional case
statements in the original design to a functionally
equivalent description that eliminates testability problems
exist in the original design. Experimental results are
provided to show the effectiveness of these methods.

1. Introduction

The rapid increasing of VLSI density creates great
challenge to the design and testing of VLSI circuits. Given
the complexity of contemporary VLSI circuits, it is very
difficult to control or observe signals inside a chip, which
in turns makes circuit testing difficult. Design-for-
testability (DFT) methodologies are thus developed to
improve the quality of VLSI testing and reduce testing
cost. Two well-known and widely used DFT techniques
are scan design and Built-In Self-Test (BIST).

The complexity of circuits also push the digital circuit
design to move toward higher levels of abstraction. CAD
tools that accept and optimize designs in Register-Transfer
Level (RTL) have been used for years. High-level
synthesis, which translates designs specified in the
behavioral domain to the structural domain (RTL), is also
getting popular recently. In order to consider testability
issues in the early stage of a design cycle, high-level test
synthesis is the subject of intense research in recent years.

High-level synthesis for testability (HLTS) tries to
transform a design description to another one with
equivalent functionality and improved testability [1].
Many HLTS techniques have been presented, including

techniques at RT level [2]-[8] and behavioral level [9]-[13].

Behavioral synthesis for testability can be targeted for

ATPG [9] or BIST [10]}-[13]. These techniques try to find
behavioral statements that may cause testability problems
and modify the statements for better testability.
Conditional statements are the ones that are most likely to
cause testability problems. These statements include
conditional loop statement [9] and if-then-else statement
[13].

Conditional case statements are commonly used in
behavioral and RTL descriptions to provide multiple
branch points. This statement may decrease testability if
all branch points are not taken with the same probability.
Under BIST environment, this unequal probability
distribution may adversely impact the testability of
synthesized circuits: branches are applied with different
number of test patterns, and the quality of applied test
patterns may also be degraded.

In this paper we discuss how to improve the testability
of behavioral descriptions with multiple branches. In the
next section we give preliminary information. The
testability problems cause by conditional case statements
are discussed in Sec. 3, and our approach to this problem
is presented in Sec 4. The experimental results are given in
Sec. 5; these results show that our methods effectively
solve the testability problems with insignificant overhead.
Concluding remarks are given in Sec 6.

2. Preliminaries

Built-In Self-Test (BIST) is a widely used DFT
technique [14]. In a circuit with BIST, test patterns are
generated on chip, and output responses are also analyzed
on chip. In order to achieve this goal, the BIST structure
reconfigures part of the functional circuit to be a test
pattern generator (TPG) and some other to be an output
response analyzer (ORA). The rest circuit consists of the
circuit under test (CUT). A TPG is usually made of a
linear feedback shift register (LFSR). Test patterns
generated by the TPG are fed to the CUT, while output
responses of the CUT are collected and analyzed by the
ORA. The most popular ORA design is the multi-input
signature register (MISR), which is also an LFSR. Fig. 1
gives a simple illustration of a general BIST structure.
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Fig. 1. The BIST structure

Three testing methodologies are generally used in
BIST: exhaustive, pseudo-exhaustive, and pseudorandom
testing. This classification is made according to the
applied test patterns. Consider the BIST structure shown in
Fig. 1. In an exhaustive testing, all 2” input vectors are
applied to the CUT, and this approach guarantees that all
non-redundant faults that do not produce sequential
behavior will be detected. The problem is the large amount
of test vectors required.

Exhaustive testing is not practical for larger circuits. In
pseudoexhaustive testing, a group of input lines of the
CUT can be driven by the same test signal as long as they
do not affect the same output. In this way, the number of
test signals may be much smaller than the number of CUT
input lines, which greatly reduces the number of distinct
test patterns required.

If the sequence of test patterns is pseudorandom, it is
called a pseudorandom testing. This technique is usually
applied when the number of exhaustive test patterns is too
large. Fault simulation is conducted to decide the number
of test patterns required for a certain level of fault
coverage. The sequence of pseudorandom test vectors has
many properties like those of random sequences. However,
they are not really random since the sequence of patterns is
deterministic and thus repeatable. A TPG that generates
pseudorandom patterns is called a pseudorandom pattern
generator (PRPG). LFSRs with primitive characteristic
polynomials are most common PRPGs. MISRs can also be
used as pseudorandom pattern generator [15]. For example,
if the ORA in Fig. 1 is an MISR and its outputs are used to
drive another functional circuit, then this MISR acts as a
PRPG for the circuit it drives.

Randomness [16] is derived from the entropy
calculation as defined in information theory. The extreme
values for randomness are zero, which indicates the
variable is really a constant, and one, which indicates the
variable has a uniform probability distribution. In
pseudorandom testing the input of a CUT should have a
randomness as close to one as possible; otherwise, the
quality of testing may be questionable.

3. Testability Problems

The BIST structure discussed above may encounter
some testability problems. For example, consider a simple
ALU structure shown in Fig. 2. The ALU has two inputs
coming from registers R, and R,, and its output is stored in
R,. The function executed by the ALU is controlled by R,,
which contains signals produced by the control circuit.

Fig. 2. A simple ALU.

In order to exhaustively test the ALU, registers R,, R,,
and R, should become a test pattern generator which
generates exhaustive test patterns for the ALU. With
exhaustive testing, all non-redundant stuck-at faults in the
circuit under test (ALU in this example) are guaranteed to
be detected. The only problem is the number of test
patterns is usually prohibitive.
In order to reduce the number of test vectors needed
and thus reduce testing time, either pseudorandom testing
or pseudoexhaustive testing can be used. With these
strategies, the registers may be configured in various ways.
For example, during a BIST session R, and R, may
become (or the contents in them are from) a single TPG,
while register R, is an independent TGP. When
pseudorandom test patterns are applied, fault simulation is
usually conducted first to decide the number of test
patterns needed to achieve a required level of fault
coverage.
Suppose that the number of different functions in the
ALU is N. From the point of view of pseudorandom
testing, the ideal case is N = 2%, where each function
corresponds to exactly one control code. In this case, when
we apply L test patterns to the ALU, each functional unit is
exercised by about L/2* patterns. However, in real circuits
it is more likely that we have N < 2% In this case, a
functional unit may be exercised by more than one control
code, and some control codes may be unused (i.e., they do
not activate any functional unit). This situation brings up
some testability problems that are summarized below..
Suppose that there are unused control codes (the control
codes are stored in register R, in Fig. 2). In this case, some
test cycles will be wasted during BIST sessions since all
patterns will be generated in R, but none of the functional
units are activated for the unused codes.
® Let functional unit FU, be activated by m; different
control codes, where 2* > m, > 1. The number of test
patterns accepted by FU, would be around Lxm, /2*
during a BIST session. Thus if m, # m; for two units
FUj; and FU, the number of test patterns exercised by
the two units will be different.

® Perhaps the most serious problem is that the
randomness of test vectors accepted by a function unit
may be changed in these cases, which will affect the
quality of tests.

The above problems can be illustrated with the
example shown in Fig. 3. Fig. 3(a) is a piece of Verilog
code, and Fig. 3(b) is the block diagram of the circuit
described in Fig. 3(a).
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//Sequential Logic
always @ (posedge CLK)

begin
A = a_input;
B = b_input;
C = c_input;
end

//Combinational Logic
always @(.A or B or C.)

begin
case (A)
4’b0001: OUT= C+B;
4’bl1001: OUT= C-B;
4'bl1l11: OUT= C*B;
default: OUT= C<<2;
endcase
end
(a)
b_input :E
_inpu
¢_input ) ouT
—e
[ o
L a_input
2 —

®)

Fig. 3. (a) A description with case statement, (b) the
corresponding circuit.

In order to implement BIST environment for the circuit,
registers B and C become a single PRPG during testing
time, and register 4 becomes an independent PRPG. Since
both B and C are 6-bit wide, in all there are 2'2 = 4098
different input combinations. In our experiment, we
generate 200 test patterns with PRPG {C, B}, while
register A is also configured as a PRPG. The generated test
patterns are shown in Fig. 4, in which Y-axis shows the
pattern (in decimal) while X-axis is the time. The test
patterns accepted by the adder, subtractor, multiplier, and
shifter are shown in Fig. 4(a), 4(b), 4(c), and 4(d),
respectively.

Among the four functional units, the shifter can be
activated by 13 different control codes, while each of the
other three units can be activated by exactly one control
code. Therefore, with randomly generated control code in
register A, the probability that the shifter is activated is
13/16, while the probability that any one of the other three
units is activated is 1/16. This can be seen from the
number of test patterns generated for the four units shown
in Fig. 4.
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Ideally, the test pattens received by each functional
unit should be uniformly distributed among possible
patterns. Unfortunately, the patterns distributed to a given
unit may not be random any more, which is evident in Fig.
4(b). This loss of randomness will affect the quality of test.
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Fig. 4. Distribution of test patterns exercised by a
functional unit when register 4 is a PRPG:
(a) adder, (b) subtractor, (c) multiplier, (d) shifter.

PRPGs may be replaced with MISRs. MISRs also
generate random patterns, but the patterns are
nondeterministic. In Fig. 5 we show the distribution of test
patterns for the circuit shown in Fig. 3(b) with register 4
configured as an MISR. It can be seen that the same
testability problems persist.
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Fig. 5. Distribution of test patterns exercised by a
functional unit when register 4 is an MISR:
(a) adder, (b) subtractor, (¢) multiplier, (d) shifter.

4. Testability Enhancement

From the discussion given above it is clear that we
have to equalize the probability of selection of any
functional unit in order to improve testability under BIST
environment. In this section we present our approach to
this problem. First we presented two methods that solve
the testability problems when pseudorandom testing is
applied. In the later part of the section we will discuss
some difficulties that will appear when exhaustive testing
is applied and outline possible solutions to this problem.

4.1. Method 1

The most obvious and straightforward way to evenly
distribute test patterns among all functional units is to
include an extra counter. When a circuit operates in test
mode, the counter replaces the control part of the circuit to
generate required control codes. This can be easily done
by modifying the original behavioral or RTL description.
For example, consider the circuit shown in Fig. 3 again.
The modified circuit is shown in Fig. 6, in which Fig. 6(a)
shows how to modify the original Verilog code for
testability enhancement and Fig. 6(b) shows the block
diagram of the new circuit.

always @(B or C) //Feedback path of LFSR
k = C[n-1]~.7"B{0};

always @ (posedge CLK or posedge Reset)
//Sequential Logic

if (Reset)
(C,B,A) = {0,0,0};

else
if (Test Mode)

{C[n-1],C{n-2:0],B[n-1],B{n-2:0]1} =
{k,C[n-1:11,C[0]},B[n-1:11};
//In test mode, B and C are configured as a PRPG

else

{C,B,A} {c_input,b_input,a input};

always @ (posedge CLK or posedge Reset)
//mod-4 counter
if (Reset) mod_4_ state=0;
else
if (mod_4_state==4'b0011) mod 4 state=0;
else -
if (Test_ Mode)
mod_4_state = mod_4_state+l;

always @(.. Test_Mode or mod 4 state or A or B
or C ..) //Cequential Logic
begin
if (Test_Mode)
begin
multi branch = mod_4_state;
{branchl, branch2,branch3} =
{4’b0000,4'b0001,4'b0010};
end
else
begin
multi branch = A;
{branchl, branch2,branch3} =
{4'b0001,4'b1001,4’b1111};
end
case (multi_branch)
branchl:0UT = B+C;
branch2:0UT = B-~C;
branch3:0UT = B*C;
default:0UT B<<1;
endcase

end

(@)
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Fig. 6. Testability Enhancement by Method 1:
(a) Verilog code, (b) block diagram.

In this method, contents of the Mod-4 counter replace
the conditional variable of the case statement during test
mode. As a result, test results of the four functional units
are transferred to the output with equal probability, which
solves the testability problems discussed in Sec. 3.

The approach presented here, however, does suffer
from other testability problem. In Fig. 6(b), the path from
register 4 to MUX, is never exercised in test mode.
Therefore, part of the control circuit in MUX, is not tested,
nor is the data path entering MUX, from register 4. The
untested circuit will eventually affect the final fault
coverage. The method presented below is developed to
deal with this problem.

4.2. Method 2

An alternate approach is to replace register 4 with a
simple synchronous sequential circuit 4". During a test
session, register 4 is configured as a special counter that
generates control code is such a way that test results of all
functional units are allowed to be evenly transmitted to the
output of the multiplexer. In this method, the conditional
variable of the case statement is not replaced by other
variable in test mode. Instead, an extra circuit is used to
generate required states in 4. The modified Verilog code
and the corresponding circuit block diagram is shown in
Fig. 7.

In test mode register 4 repeatedly goes through four
states {0001, 1001, 1111, 0000}. Actually, the last state
can be any 4-bit vector that is not one of {0001, 1001,
1111}, since any one of them corresponds to the ‘default’
condition in the case statement.

This method achieves the same goal as method 1, since
the patterns generated by PRPG {C,B} are applied to all
units, and the results are transmitted to the output with
equal probability.
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always @(B or C)
k = C[n-1]1" ..

//Feedback path of LFSR
~B[0];

always @(posedge CLK or posedge Reset)
//Sequential Logic

if (Reset)

(C,B,A) = {0,0,0}:
else

if (Test Mode)

begin

if (A==4'b0001) A = 4'b1001;
else if (A==4'b1001) A = 4'b1l111;
else if (A==4'bl111) A = 4'b000O0;
// The next state of 1111 can be any
// element not in {0001, 1001, 1111}
else A = 4'b0001;
{C[n-1],C[n-2:0],B[n-1],B[n-2:0]} =
{k,C[{n-1:11,C[0],B[n-1:11};
//In test mode, B and C are configured as a PRPG
end
else
{C,B,A} = {c_input,b_input,a_input};

always @(.AorBor C.) //Combinational Logic

begin
case (A)
4’'p0001:0UT = B+C;
4'p1001:0UT = B-C;
4’pl1111:00T = B*C;

default:0UT = B<<l;

endcase
end
. (@
b_input E

ouTt
e
Registers B and C & l¢—Reset
are configured to a
PRPG in test mode I
Test_ Mode
a_input

(b)
Fig. 7. Testability Enhancement by Method 2:
(a) Verilog code, (b) block diagram.

The advantage if this approach is that it alleviates most
of the testability problems occur in method 1. First of all,
there are no untested data paths in the test circuit (e.g.,
MUX, in Fig 6(b)). With properly selected state sequence,
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all stuck-at faults on signal lines a (which control the
MUX in Fig 7(b)) are detectable. For example, the state
sequence described above ({0001, 1001, 1111, 0000})
satisfies this requirement. Whether the control part of the
MUX is fully tested really depends on the test patterns,
that is, the state sequence generated by 4",

4.3. Exhaustive Testing

In some cases the above methods are also applicable to
exhaustive testing. This happens when the number of
functional units is an odd number. The number of
exhaustive test patterns is always a power of 2. Let the
number of test patterns be 2", and the number of functional
units be p. If p is an odd number, then 2" and p are
mutually prime. As a result, all functional units are
exhaustively tested and all their results are transferred to
the output after px2” test cycles. On the other hand, if p is
an even number, some test results can not be transmitted
for error checking. For example, if p = 4, then in the above
methods each functional unit is only able to transfer 1/4 of
the 2" test results to the output for analysis, no matter how
many more test cycles are applied.

The above problem can be solved with more
complicated test circuits. Due to space limitation, the
detail implementation is not discussed here [17].

5. Experimental Results

In order to show the effectiveness of the proposed
methods, we have conducted some experiments, and the
results are given in this section.

First we will show the distribution of test vectors when
our methods are implemented. We shall consider the
circuit shown in Fig. 3 again in order to compare with the
results shown in Fig. 4 and Fig. 5. Here registers {C,B} are
configured into a single PRPG in the test mode, while
register A is modified with either one of the two methods
presented in Sec. 4 (the results are the same). The
distribution of test patterns is shown in Fig. 8.

From the patterns shown in Fig. 8 it is clear that all
functional units are exercised with the same frequency. In
other words, among the 200 patterns applied to them, each
unit has 50 results transmitted to the output for error
checking. The test patterns exercised by each unit are well
distributed; that is, the randomness of patterns accepted by
a unit is improved compared with the original circuit.

Next we will show the impacts on area and speed due
to the modifications. Based on the Verilog code given in
Fig. 3(a), we synthesize the following three circuits.

1.  Circuit I: Registers {C,B} are configured into a single
PRPG in the test mode, while register A behaves as a
4-bit PRPG during test mode.

2. Circuit 1I: Registers {C,B} become a PRPG in the

test mode, and register A is modified according to

Method 1.

Circuit II: Registers {C,B} become a PRPG in the

test mode, and register 4 is modified according to

Method 2.
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Fig. 8. Distribution of test patterns exercised by a unit
when register 4 is modified for testability enhancement:
(a) adder, (b) subtractor, (c) muitiplier, (d) shifter.

Two sets of circuits are synthesized. In the first set the
width of registers B and C are 8-bit, and the results are
shown in Table I. In the second set the width of B and C
are16-bit, and the results are listed in table I1. 4 is always a
4-bit register. The circuits are synthesized with Design
Compiler from Synopsis with a 0.25pm cell library.

From the results in Tables I and I, it can be seen that
circuits modified with Method 2 produces negligible area
and delay overhead, while area and delay penalty caused
by Method 1 can be significant for smaller circuits. In both
cases, the overhead reduces as the circuit size increases.
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Table 1. Area and Delay of synthesized circuits: 8-but data registers B and C

Circuit Type | Combinational |Noncombinational| Total Area Area Overhead | Data Arrival | Delay Overhead
Area Area (%) Time (%)
1 23029.93 3852.25 26882.18 0.00 5.58 0.00
11 23988.37 4460.50 28448.87 5.85 6.08 8.96
18 23232.67 3852.25 27084.92 0.75 5.56 0.00
Table H. Area and Delay of synthesized circuits: 16-but data registers B and C
Circuit Type | Combinational [Noncombinational|  Total Area | Area Overhead | Data Arrival | Delay Overhead
Area Area (%) Time (%)
1 76564.04 7096.25 83660.29 0.00 10.27 0.00
1 77494.84 7704.50 85199.34 1.84 10.27 0.00
111 76766.77 7096.25 83863.02 0.24 10.27 0.00

6. Concluding Remarks

Conditional case statements may create testability
problems under BIST environment once the circuit is
synthesized. In this paper we discussed how these
statements affect the testability of synthesized circuits, and
presented two methods to transform the original
specification to a more testable design. These methods
effectively improve the testability of synthesized circuits
with very low overhead, and the area and performance
penalty diminish as the circuit grows in size.
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