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Abstract

A new high-speed redundant CORDIC processor is de-
signed and implemented based on the double rotation
method, which turns out to be the two-dimensional (2-
D) Householder CORDIC, a special case of the gen-
eralized Householder CORDIC in the 2-D FEuclidean
vector space. The new processor has the advantages
of regular structure and high throughput rate. The
pipelined structure with radiz-2 signed-digit (SD) re-
dundant arithmetic is adopted to reduce the carry-
propagation delay of the adders while the digit-serial
structure alleviates the burden of the hardware cost
and I/0 requiremeni. Compared to previously pro-
- posed designs, the new CORDIC processor preserves
the constant scaling factor, an important merit of the
original CORDIC, and thus does not require any com-
plicated division or square-root operations for variable
scaling factor calculation. Practical VLSI chip im-
plementation of the fized-point redundant CORDIC
processor using 0.6um standard cell library is given
including detatled numerical error analysis.

1 Introduction

Advances in VLSI technology have stimulated great
interest in developing special-purpose hardware for
applications requiring high computing speed. An
arithmetic unit known as a CORDIC (COordinate
Rotation Dlgital Computer) unit {1], has received
much attention since it enables the efficient imple-
mentation of various types of rotations using simple
hardware components, mainly adders and shifters.
Much research has been directed to the design of
CORDIC-based parallel algorithms and architectures
to perform basic matrix computations such as QR
decomposition, linear system solution, eigenvalue de-
composition and singular value decomposition [2].
Other interested applications of CORDIC proces-
sors include coordinate transformation in computer
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graphics and trigonometric and hyperbolic function
evaluations in the arithmetic unit of microprocessors
[3]. Recently, the CORDIC algorithm is extended to
higher dimensional spaces with applications mainly
in parallel computations of general complex matrices
on processor arrays [4][5].

Recently, Ercegovac and Lang have proposed us-
ing redundant signed-digit (SD) adders [6] with on-
line arithmetic to replace the conventional binary
adders in order to reduce the inherent carry delay
[7]. However, the redundant on-line CORDIC de-
stroys the nice property of the constant scaling fac-
tor in the original CORDIC due to a different sign
selection rule, and hence the multiplication of the
non-constant scaling factor requires special atten-
tion. Several approaches have been proposed to over-
come the non-constant scaling factor problem. For
example, Ercegovac and Lang used additional com-
plicated hardware for the non-constant scaling fac-
tor calculation and correction [7]. Takagi, et al ,
proposed the double rotation method and correct-
ing rotation method to preserve the scaling factor
for CORDIC vector rotation, but they did not ex-
tend to CORDIC angle calculation (8]. Lee and Lang
inserted additional correcting iterations into the orig-
inal CORDIC iterations in order to preserve the con-
stant scaling factor [9]. Dawid and Meyr proposed a
transformed CORDIC algorithm, called differential
CORDIC (DCORDIC), which achieves fast redun-
dant CORDIC implementation on pipelined digit-
parallel structure at the cost of more pre-skew latches
for the input signals [10]. Besides, the DCORDIC al-
gorithm is not suited to digit-serial structure due to
the high initial delay in each iteration.

In this paper, a new redundant on-line CORDIC
processor with constant scaling factor and regular
structure is presented based on the double-rotation
method, which turns out to be the 2-D Householder
CORDIC, a special case of the recently proposed
multi-dimensional CORDIC with rational iterative
scaling factors [4]. The processor not only preserves
the constant scaling factor, but also keeps the nice
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property of regular CORDIC structure, an important
issue in VLSI implementation. Both angle calculation
and vector rotation modes are readily performed in
the redundant CORDIC processor. VLSI implemen-
tation of the processor based on 0.6 pm standard cell
library is presented. In order to derive a practical
guideline for the design of the fixed-point redundant
CORDIC processor, we analyze the numerical errors
of the implementation by considering the round-off
errors, angle approximation errors and scaling factor
decomposition errors in both angle calculation and
vector rotation modes.

2 CORDIC Algorithms

2.1 Original CORDIC

According to the original CORDIC algorithm [1] a
plane rotation with rotation angle § can be decom-
posed into product of n elementary rotations:

n—-1

HR(")"ﬁ 1 ( 1 a,-z-*')
i=0 i=0 Y 1+ 2% —652 ' 1

(1)
The elementary rotation matrix R{o;) represents the
rotation of angle §; = tan~!(27%) at the i-th itera-
tion and o; € {1,—1} determines the direction of the
rotation. An unscaled CORDIC iteration consists in
applying the elementary rotation without performing
the iterative scaling by 1/v/1 + 2=, Thus, by adding
another recurrence for accumulation of the elemen-
tary rotation angles 6;, the i-th unscaled CORDIC
iteration is expressed, with i =0,1,---,n ~1, as

z(i+1) = z(i) + 0:27 y(3)

y(i +1) = y() — 0:27°z(3) ,
z(i + 1) = z(i) + 0:6; with 6; = tan~1(27%)

)

where n, the number of unscaled CORDIC iterations,
determines the resolution of the CORDIC operation.
The above unscaled CORDIC iteration can be real-
ized by shift-and-add operations performed concur-
rently on a CORDIC processor.

The overall scaling factor K = [[iog 1/v1+2-%
is a constant as long as n is predefined and can be de-
composed maultiplicatively into several simple factors
such that the multiplication of a 2-D vector by each
simple factor is also implemented by two concurrent
shift-and-add operations, called a scaling CORDIC
iteration, which can also be realized using hardware
resource available on the same CORDIC processor.

CORDIC algorithm has two function modes: angle
calculation and vector rotation. In the angle calcu-
lation mode, a sequence of n unscaled rotations is
applied to a vector [z y]T to bring it along the first
canonical axis. The control signs {0;,0 < i< n—1}
which encode the rotation angle 8 = tan~!(z/y)

are evaluated according to o; = sign[z(i) - y(i)] so
that the accumulation of the elementary rotation an-
gles Z:':ol oif; = Z?__:'ol oitan"1(27%) approximates
tan~!(y/z), the angle between the initial vector and
the first axis.

In the vector rotation mode, the given rota-
tion angle # is decomposed iteratively into & =
Y oitan~1(2~%), and the control signs o; are used
to rotate vector [z y]T through the same angle. In
many signal processing applications, the control signs
o; are often made available as the result of a prelimi-
nary CORDIC evaluation and thus the angle decom-
position is not necessary.

2.2 2-D Householder CORDIC

Recently a family of generalized multi-dimensional
CORDIC algorithm, called Householder CORDIC al-
gorithm, is presented with applications to several im-
portant digital signal processing operations [4]. For
example, using the 4-D Householder CORDIC, the
computation speed of complex singular value decom-
position is increased by at least five times compared
to the fastest alternative [5]. The i-th elementary
rotation matrix of the m-D Euclidean Householder
CORDIC algorithm can be written as

T
uuj
Rom(si) = Em (Im - 2@;)
where
1
T 0
Em=Im~2§é-;L with et = 1| . |,
16 .
0
1
1 oy,iti _
wi= | = . , i =27
Om-1,ili
In the 2-D vector space where e; = [1 0] and u; =

[1 0:2-%]T, the Householder CORDIC elementary
rotation matrix becomes
) ®

where o; € {1,—1}. This variant of the original 2-
D CORDIC algorithm, called the 2-D Householder
CORDIC, in fact performs double rotations in each
CORDIC iteration. Similar to eqn. (2), an unscaled
2-D Householder CORDIC iteration can be written
as (i=1,2,---,n) :

z(i+1) = [1 - 27%)2(i) + 0:27 1 y(3)
Wi+ 1) = o2 () + [1-2720(0),
z(i+1) = z(i) + 0;6; with 6; = 2tan™1(27")

(4)
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where the i-th elementary rotation angle ¢; for the
2-D Householder CORDIC is 2tan~!(2"") instead of
an~!(27%) as in the original CORDIC, and the iter-
ation index i runs from 1 to n instead of 0 to n — 1.

Note that the iterative scaling factor 1/(1+2~%) in
eqn. (3) is a rational function instead of, 1/v/1+ 2-%,
the square-root of a rational function as in the original
CORDIC. Similar to the original CORDIC, the over-
all scaling factor K = []i, 1/(1+2~%) is a constant
as long as n is predetermined, and can be decom-
posed into products of factors such that the multipli-
cation of a vector component by each factor can be
implemented by the shifters, 3-to-2 carry-save adders
(CSAs) and adders available in the same 2-D House-
holder processor. In fact, an n-D (for any n > 2 )
Householder CORDIC can be easily realized using
redundant arithmetic without changing the overall
scaling factor since the iterative scaling factor is ratio-
nal. The double-rotation 2-D Householder CORDIC
is only a special of case of the more generalized House-

holder CORDIC.

3 Redundant CORDIC

- 3.2 Redundant

3.1 Original Redundant CORDIC

As mentioned before, a complete CORDIC operation
requires n unscaled CORDIC iterations plus s scal-
ing iterations. In order to build a pipelined CORDIC
processor, the iterative CORDIC structure may be
unfolded into (n + s) pipelined stages where each
stage realizes either an unscaled CORDIC iteration
or a scaling iteration. In this pipelined structure,
the costly barrel shifters are now replaced by simple
hardwired interconnections due to the fixed number
of right-shift bits required in each stage. Since the
carry-propagation delay of the adder in each stage de-
cides the throughput rate of the pipelined CORDIC
processor, one may wish to design a carry-free adder
with the carry delay independent of the wordlength.
The signed-digit (SD) adders proposed in [6] has
been employed in a recently proposed redundant on-
line CORDIC (7] where the adders in each stage of
the pipelined CORDIC processor are implemented
by digit-serial SD adders (SDAs) with the inputs
starting from the most significant digits (MSDs). In
this redundant on-line implementation, the right-shift
wiring is replaced by simple delay elements. By sub-
stituting y(i) in eqn. (2) by w(i) = 2y(i), we can
rewrite the unscaled CORDIC iterations for angle cal-
culation as

o4 1) = 2(0) + 2-Su()
Wi+ 1) = 2ul) - oz@]
2(i+1)=z(i) + oi tan—1(2°%)
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if (i) >0
ifw(E) =0, i=0,1,2,---,n
if w(i) < 0

1
o = 0 — 1.
-1
(5)

The sign selection ¢; is based on the estimate (%),
the first several MSDs of w(i), due to the requiremnent
of a fast sign selection rule in the on-line CORDIC.

- It is shown in [7] that to assure convergence, the sign

selection should include 0 in addition to 1, and -1.
Hete, #(0) and y(0) = w(0) are respectively the =
and y components of the initial input vector, one of
them normalized, and z(0) > 0.

Compared to the original CORDIC, the major
change in the redundant CORDIC is that the con-
trol signs o; belong to the set € {—1,0,1} instead
of {1,~1}. The scaling factor of the redundant on-
lme CORDIC thh the above sign selection rule is

_0 7”'_’2-; which is no longer a constant,
dependmg on whether o; is zero or not. Thus, on-line
calculation of the variable scaling factor is needed.
Lee and Lang presented a strategy which restricts the
sign selection range to only {—1,1} but the approach
calls for additional correcting iterations in order to
make the algorithm converge [9].

2-D Householder
CORDIC

As can be seen in eqn. (3), the control sighs o; of
the 2-D Householder CORDIC rotation matrix are
either 1 or -1. If the selection rule includes the se-
lection of zero, as required in the redundant imple-
mentation, and the iterative scaling by (1 + 27%) is
performed in the case of o; = 0, the overall scaling
factor K = []7-, 1/(1 + 2~%) remains constant in-
dependent of the choice of o;. This constant-factor
approach is not applicable to the original CORDIC
because, when o; = 0, the redundant 2-D square-root
CORDIC requires the iterative scaling of V1 +2-2%
which calls for complicated square-root operation.

Assume that the initial vector [z(1)y(1)]T be in
the range of [—x/4,x/4], and z(1),y(1) be normal-
ized so that 1/2 < z(1) < 1. Let w(i) = 2°~1y(i),i =
1,2,---,n. The estimate w(i) = w® (Dw m(z)w( )(z)
is chosen to consist of three dlgxts one mteger digit
w' (1) and two fractional digits w' (z)w ( ). Based
on the 2-D Householder CORDIC in eqn. (4), a new
redundant CORDIC for angle calculation can be ex-
pressed as

Angle Calculation Mode (i =1,2,---,n):
:z(z+ 1) [1 —ﬂ 2= —2i- 2]::(1) + 9— 2:+1 ( )
w(i+1) = 2[1 — 2~ uw(i i) — aiz(i) ’
z(i+1) = z(i) + a;2tan"1(27°71)
(1,1) forw(d) >0
(i, Bi) = { (0,—-1) forw(i)=0 ,
(-1,1) for w(i) <0

(6)
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where o; = 0; € {1,0, —1} and the new sign fj; selects
either the unscaled 2-D Householder CORDIC oper-
ation (when f;=1) or the multiplication by 1+ Q-
(when B; = —1). As observed in 8], special computa-
tion rule for the three most significant integer digits
is required to generate a redundant representation of
w(i) with the MSD located at the first integer digit
position. The inclusion of the first integer digit ' in
the estimation (i) is due to the fact that |w(i)| < 1.
The time spent on sign selection is relatively small
compared to that on other operations.

When i > n/2+1, the z and w recurrences of eqn.
(6) degenerates, within accuracy of n fractional bits,
to a much simpler form

z(i+1) = 2(3)
w(i+ 1) = 2w(i) — oz (i)

since the other terms are negligible. Hence the struc-
ture for the second half pipelined stages is much sim-
pler than that for the first half pipelined stages.
Similar to the derivation for CORDIC angle calcu-
lation, by substituting z(i) by w(i) = 2!~12(i) and
letting w(¢) = .w(l)(i)w(z)(i)w(s)(i), the redundant
2-D Householder CORDIC vector rotation for input
angle in the range of [—7/4, 7/4] can be expressed as

Vector Rotation Mode (i=12,--, n):
2(i+ 1) = [1 - i2~22]2(3) + 2~ 4(3)
yli +1) = —o22(3) + [1 - F252y(3), 7
w(i + 1) = 2w(i) + ;2**! tan~1(27%71)
(ai,8:) = { (0,-1) . for w(i) =0
(1,1) forw(z) <0

where the control sign tuples (ej, 5),1 < i < n, are
selected to force to zero the z component Here, the
first three fractional digits are required in the estima-
tion 1(i). The proof of convergence can be found in
[8]. Asin the CORDIC angle calculation, the genera-
tion of w(i) needs special processing in order to obtain
a redundant representation of w(z) with the MSD in
the first fractional position. Again, when i > n/2+1,
the z and y recurrences of eqn. (7) reduces to

(-1,1) for w(z) >0
(7)

o(i+ 1) = 2(i) + 027y
y(i + 1) = =27 z(3) + y(3).

where the control sign f; disappears.

3.3 Comparison

Several methods for redundant constant-factor
CORDIC implementations have been published re-
cently [8][9]{10]. Tab. 1 compares the speed and area
performance of the pipelined (unfolded) digit-parallel
implementation of these methods if we neglect the

time for the scaling iterations and the output SD con-
version. The addition of two redundant SD numbers
takes about the delay of two full-adders (FAs). Using
the (p, n) coding for the SD numbers, the addition
of three SD numbers can be performed using two 3-
to-2 CSAs (one for the postive bits, the other for the
negative bits) followed by a two-input SDA, and thus
takes the delay of three FAs only. In the comparison,
an FA is assumed to take one cycle (roughly equal to
the delay of two 2-input XOR gates).

In [8], the double-rotation method is applied to
CORDIC vector rotation (VR) only. Our 2-D House-
holder CORDIC extends to the angle calculation
(AC) mode. The sign selection is assumed to take 0.5
cycle. By recognizing the fact of the degenerated form
for the second half iterations, the total delay for the
CORDIC VRis (0.5+1+4+2)xn/2+(0.5+2)xn/2 =
3n cycles. The same result can be obtained for
the CORDIC AC. The major hardware for the first
half stages in the pipelined digit-parallel structure is
(3 x SDA +4 x CSA) x n/2 while the major hardware
for the second half stages is (3 x SDA) x n/2. Thus
the total major hardware is 3n x SDA + 2n x CSA.

In [9], the number of extra correcting iterations de-
pends on the accuracy of the estimation in the sign se-
lection. About 0.25n additional correcting iterations
are required if six fractional digits are used in estima-
tion, and the corresponding sign selection is assumed
to take one cycle in addition to the two cycles for the
SD addition. Thus, a total of (1+2) x 1.25n = 3.75n
cycles are required. The major hardware of the arith-
metic units is (3 x SDA) x 1.25n = 3.75n x SDA.

The DCORDIC in [10] requires an initial delay of
about 7 cycles to calculate the absolute value and the
exact sign of the first steering variable. As shown in
[10], each DCORDIC VR iteration requires 0.5 cy-
cle for sign selection plus 2 cycles for the SD addi-
tion, leading to a total of n + 2.5n = 3.5n cycles. In
AC mode, only three cycles (two cycles for the SD
addition and one cycle for absolute value computa-
tion) are required in each iteration. Thus, it takes
about n+3n = 4n cycles to perform DCORDIC AC.
The total hardware for the arithmetic units in the
DCORDIC is 3n x SDA + n x ABS where ABS de-
notes a unit of absolute value and sign calculation.
Note that since the absolute value and sign calcula-
tion is required in each DCORDIC iteration before
deciding the addition or subtraction of that itera-
tion, the DCORDIC is not suited to iterative (folded)
structure or digit-serial implementation.

Although the comparison in Tab. 1 is for pipelined
digit-parallel structure, the VLSI implementation in
the next section is based on the pipelined on-line
(digit-serial) structure in order to reduce the the
hardware and I/O cost.
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4 VLSI Implementation

According to eqns. (6)(7), the i-th pipelined stage
(i < n/2) of the redundant on-line 2-D Householder
CORDIC processor is derived as shown in Fig. 1
where each wire corresponds to a signed-digit repre-
sented by two binary bits. The delay elements of var-
ious size implement the shifting operation for proper
digit alignment. The multiplexers select the left in-
put during the angle calculation mode and the right
input during the vector rotation mode. The sign se-
lection unit scans three MSDs of w(i) and generates
appropriate sign tuple (a;, §;). The 3-to-2 carry-save
adders (CSAs) perform fast addition for the three in-
puts and generate two outputs for the on-line SDAs
followed. The group of delay elements of size 2 ac-
counts for the delay of the sign selection unit and the
CSAs. One cycle is assigned for the sign selection and
the CSA; the operation of SDA takes another sepa-
rated cycle. The major component in each redundant
on-line CORDIC stage is the on-line SDA. Since the
carry of a radix-2 SD addition propagates at most
two digits [6], three consecutive digits are required to
generate one sum digit, as shown in Fig. 2(a). The
structure of an on-line SDA is illustrated in Fig. 2(b).
Adjustment of the SD number for w(%) is required to
transform the MSDs of 11 into 01, and to transform
the MSDs of 11 into 01. The multiplication by 2 in
eqns. (6)(7) is realized by one-digit left-shift, which is
equivalent to insert a unit delay to every other com-
ponent.

We practically implemented a redundant digit-
serial 2-D Householder CORDIC processor using the
cell-based design methodology. The design flow be-
gins with register-transfer level (RTL) Verilog de-
scription of the redundant on-line 2-D Householder
CORDIC. Then, the Synopsys high-level synthesis
tool is used to transform the RTL Verilog code into
gate-level description based on the Compass 0.6um
cell library. The pre-layout timing and area estima-
tion is generated at this stage. Afterward, the gate-
level Verilog code is read into the Cadence environ-
ment for automatic placement and routing to create
the physical layout. Finally, post-layout simulation
is done in order to acquire more accurate timing and
power estimation. In order to supply necessary input
stimulus, we also wrote a hardware simulator which
generates random input patterns and the correspond-
ing output patterns for examining the correctness of
the simulation.

An 8-bit redundant on-line CORDIC processor has
been implemented which contains 14 pipelined stages
including 12 unscaled CORDIC stages (n 12),
two scaling stages, and an on-the-fly SD converter
to transform the digit-serial SD outputs to the con-
ventional bit-parallel 2’s complement format. The
reason for the choice of the iteration number n = 12
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will be discussed in Sec. 5 of numerical error analy-
sis. As shown in Tab. 2, the processor has a core area
of 2700 um x 2600 pm and can operate at a max-
imum frequency of more than 100 MHz with power
dissipation less than I'W using 5V power supply.

We also synthesized a digit-parallel redundant
CORDIC processor where the SDAs in each pipelined
-stage perform the digit-parallel addition. The synthe-
sized chip information of the word-level redundant
CORDIC processor is also included in Tab. 2. Al-
though the digit-parallel implementation has higher
throughput, it requires more hardware area, more
1/0 pins, and consumes more power compared to the
digit-serial implementation.

5 Numerical Error Analysis

In this section, a statistical approach to the analysis
of the round-off errors for the fired-point redundant 2-
D Householder CORDIC processor is presented from
which practical guidelines for the design of CORDIC
processors are deduced. In [11], Hu proposed a worst-
case error analysis method for original CORDIC op-
erations only in vector rotation modes. Kota and
Cavallaro extended the analysis to angle calculation
mode [12]. Both papers did not take into considera-
tion the errors caused by the implementation of the
scaling.

5.1 Modeling of Round-Off Errors

The round-off errors due to the truncation of the
right-shifted operand in the i-th unscaled 2-D House-
holder CORDIC iteration can be modeled as

. — Tit1
Vit1 [ Vi1 ]
— 1- 2-.21' a';2'i+1‘ z; + ef
—g; 2Tl 19— yi e
= Uivi + ¢, 1<i<n 8)
where e and e} are the round-off errors due to the

truncation of the shifted operands and n is the total
number of unscaled CORDIC iterations. .

Similarly, the round-off error in a scaling iteration
is expressed as

;i
e =[50
_ 140274 4 2% 0 .
- 0 14 a;27 ! 4 g;2-2%
E e¥
<[5 ]+ [F]
= C.’u.‘+ei, n+l1<i<n+s (

Combining eqns. (8)(10), we have

{Ui

Ci

1<i<n
n+1<i<n+s

(10)

vig1 = Mivi +ei, M;
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To simplify the analysis, we assume that the er-
ror sources ef and e! are statistically independent
random variables with mean g, and variance o?.
For a fixed-point system with b fractional bits and
downward-direct truncation, g, = 27%~! and o2 =
2-2%/12. First, consider the effect of the i-th stage
noise source e; = [e7 €/]7 on the final outputs and
set the other noise sources e = e? = 0,7 #1i. The
outputs at the final stage due to e7,e!, represented
by the vector f; = [f¥ f} ], can be expressed as

n+s

H Mje,-

j=i+l

_=_P,-e,-, (11)

where P; = H'-'f;l M; is the transfer matrix from
the outputs of stage i to the final outputs. The mean
of vector f; is

z n+s
p;, = [ l;;, ] =E(f,‘)= E( H Mje,-)
' j=itl
n+s

= H M,-E(e;) = P,' [ He ] . (12)
jmitl He
The covariance of f; is
Fi = E((f; — p;) = 02 PT. (13)

Due to the orthogonality of the CORDIC rotation,

P:PT =¢; is a scaled identity matrix with
H'—x+1(1 +27 2'7)2
H?j;ﬂ(l + ;27941 4+ g;27%)?

6 = 1<i<n-1

H;:i’+1(l + a;279%1 4 §;27%)?
n<i<n+t+s—-1
(14)
Hence, the outputs f7, f{ are independent with iden-
tical variance €;02.
Since the model is linear, the overall error at the
output of the final stage is

n+s
=[5 ]-%e
i=1
where
n+s n4s
=Y =) f
i=1 i=1
with
f:+, = e:+u fZ-}-s = e!rlx-l-s‘
Thus, the mean of f is
n+ts
po= [p ] E(f)=) m
# i=1
nts—1

o el

(15)

> n
i=1

and its covariance matrix is

nts nt+s-1
E(fT) = S F=o? Y PRPT+oll
i=1 i=1
n4s-—1
= Y goll+oil=coil  (16)
i=1
where € = Z:’:l’_l €; + 1. The random variable f*

can be approximated as a random variable of Gaus-
sian distribution with mean p* and variance €02 be-
cause f* = 3, f¥ with ff contributions independent
and identically distributed. Hence, the probability
that |f* — p*| > 5\/€0, is less than 0.00002. It is a
reasonable approximation to take the overall worst-
case round-off error as p* +5./c0, = 27 b where b, is
defined as the effective fractional bit accuracy for the
round-off errors. The strictly worse-case round-off er-
rors as in [11] can be derived in a similar approach,
but we found out that the above statistical approach
gives bounds closer to the simulation results.

5.2 Angle Approximation Error

Another source of error, called angle approzimation
error, is introduced through the approximation of an
angle 6 by the sum § = Z._l o:0; of the n quantized
elementary rotation angles §;. The angle approxima-
tion error has two sources: one from the finite number
of the unscaled CORDIC iterations, n, and the other
from the finite resolution of the quantized elementary
angle. Assuming n unscaled CORDIC iterations, the
difference between the true angle § and the ideal an-
gle 8 is

n
AG=10-06] <0, + > 16: — b (17)
i=1
where 8, = 2tan=1(27") is the error due to the fi-
nite number of CORDIC iterations and |6; —6;] is the
quantization error of the i-th elementary rotation an-

gle. Let v = [z y]T be the ideal result after CORDIC
rotations without angle approximation error and let

7 = [£ §]T be the actual result. We have
z ]| _ [ cosOf sinAf z
] 7\ —sinAf cosAf v i’

The difference between v and ¥ is

- () [2]
-y ] [ Oy
( cosAf—1 sin Af
—sinAf  coshf—1

)]

|Az| < (|sin AB] + | cos A8 — 1]) - maz(|z], |y])
~ Af-maz(lz),|y)) = 27"

An upper bound for |Az] is given by
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where b, is defined as the effective number of frac-
tional bits for |Ax| due to the angle approximation
error Af. The same result can be derived for |Ayl.

5.3 Overall Effective Error

As mentioned before, the scaling constant K is ap-
proximated by the product of s simple factors K =
[1723 (1 + @27+ + 3;2-%) implemented by the
scaling CORDIC iterations. Hence, an additional er-
ror AK = |K — K| due to the scaling constant ap-
proximation must be taken into account. Combining
the round-off error, the angle approximation error,
and the scaling constant approximation error, we ob-
tain the overall effective error

9 br 4 9=be 4 9=b = 9=y (18)

where b, and b, depend on the internal fractional bit
accuracy (b) and the number of unscaled and scaling
CORDIC iterations (n and s), while the scaling con-
stant approximation error b, is fixed for a particular
scaling factor decomposition. Our objective is to find
n,s and b such that the overall effective error 2-bess
does not exceed 27%«=t where b,s: is the prescribed
external bit accuracy. The error analysis for the re-
dundant CORDIC is quite similar to that in Secs. 5.1
and 5.2.

We wrote a hardware simulator which computes
the worse-case numerical errors from 10° randomly
generated input patterns. Tab. 3 compares the anal-
ysis results (b.;) with the simulation results (byim)-
For single scaling iteration (s = 1) with the scaling
factor (1 — 2-2 — 279), the effective bit accuracy for
the scaling factor approximation error is b, = 8.34
which is not accurate enough when combining with
other error sources. Thus, we use two scaling iter-
ations (1 — 272 — 278)(1 + 278 — 2718) which gives
approximation error less than 27114, Boldface num-
bers indicate choices of b and n assuming the pre-
scribed external bit accuracy is b,z = 8. From Tab.
3, we know that 12 unscaled CORDIC iterations and
2 scaling iterations with 12 internal fractional bits are
enough to achieve an external accuracy of 8 fractional
bits. That is the reason why we select the numbers of
the unscaled and scaling CORDIC iterations and the
internal wordlength during our VLSI implementation
in Sec. 4.

6 Conclusions

A new redundant on-line CORDIC with constant
scaling factor was presented using the 2-D House-
holder CORDIC. Compared to previously proposed
approaches, our method does not require complicated
scaling factor calculation or extra correcting itera-
tions, and can perform both CORDIC angle calcu-
lation and vector rotation. VLSI implementation of

1998 Intemational Computer Symposium
Workshop on Computer Architecture
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the processor using standard cell design methodol-
ogy is presented. Numerical accuracy analysis of the
fixed-point processor is also given.
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b n vector rotation angle calculation
7, pp. 769-779, July 1993. boim | 0 | Dba_ | bess || bsim | befs=ba
8 9 5.75 | 4.89 7.33 4.63 6.35 4.92
10 5.77 | 4.81 7.87 4.63 6.35 4.71
methods || total delay major hardware 11 || 5.75 | 4.73 | 8.25 | 4.59 || 6.4 4.71
VR | AC of arithmetic units 12 || 589 | 465 | 8.48 | 4.54 || 6.35 159
13 5.87 | 4.58 8.61 4.49 6.42 4.47
14 3n - | 3n x SDA +2n x CSA 9 | 9 || 6.61 | 5.89 | 7.57 | 5.47 || 6.90 5.84
15 4.5n | 4.5n 3.75n x SDA 10 || 6.79 | 581 | 8.24 | 5.54 || 7.03 | 5.84
11 6.83 | 5.72 8.75 5.53 7.03 5.76
16 3.5n 4n 3n x SDA + n x ABS 12 6.71 5.65 9.28 5.50 7.45 5.66
ours 3n 3n_| 3nx SDA +2n x CSA 13 || 6.88 | 5.568 | 9.30 | 5.45 || 6.79 5.53
10 9 7.57 | 6.89 7.81 6.24 7.68 6.55
Table 1: Comparison of several redundant constant- 10 || 7.73 | 6.81 | 8.64 | 6.40 || 7.93 6.69
factor CORDIC methods in pipelined (unfolded) g ;3 g-g g-gi g-:g g-g; g-gg
digit-parallel implementation. 13 [ 771 [ 638 [ 10.29 | 6.40 || 7.93 | _ 6.52
11 9 7.67 | 7.89 | 7.93 6.85 8.01 7.21
10 8.37 | 7.81 8.87 7.16 8.38 7.56
Processor digit-serial | digit-parallel 11 || 8.65 | 7.73 | 9.75 | 7.32 || 8.77 ;-Zg
H 12 8.70 | 7.65 | 10.54 | 7.38 8.77 .
Architecture 13 8.59 | 7.58 | 11.18 | 7.38 8.78 7.63
cycle time 6.7 ns 14 ns 129 8.07 | 8.89 | 7.96 | 7.26 || 8.03 7.50
Tatency 81 cycles 29 cycles 10 || 8.77 | 8.81 | 8.92 | 7.74 || 8.70 8.03
th hout * 11 9.25 | 8.72 9.84 8.03 9.14 8.33
roughpu 12 | 9.47 | 8.65 | 10.60 | 817 || 9.30 | 8.45
(ns /sample) 80 14 13| 9.58 | 8.58 | 11.43 | 8.22 || 9.34 | 845
internal word Re(1-2-.23-2-"°)(1+2-27° —27TF), b, = 11.84.
length 12 12 .
core size Table 3: The external bit accuracy (bsim or besy) vs.
(um x pm) 2700 x 2600 | 3500 x 3800 the number of unscaled CORDIC iterations (n) and
power dissipation the internal bit accuracy (b).
(at 50 MHz) 1w 28 W
Table 2: Chip information of the digit-serial and
digit-parallel redundant CORDIC processors.
x w,(y,)
i | {iddq
I T 2 1un (2 )|
i+ i I i C X ] Vo2
Lo ® Ly}
. Xy Yier
2ie2 2i+2 ® [;lj
2 2 2 2 2 X, ﬁ Y
CSA Lo CSA
B
8
delay ' L u,
7 1 . 4 U
MUX UX l
Sur Py 5 on-line SDA
Xit Wt (s ) Zif W) (@) (b)

Figure 1: Implementation of the i-th pipelined stage Figure 2: (a) The structure of an SD adder. (b) The
(i < n/2) for the redundant digit-serial 2-D House- implementation of an on-line SD adder.

holder CORDIC processor. Each wire corresponds to

a sign digit represented by two binary bits.
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