
A Load Balancing Algorithm on Heterogeneous Distributed WWW Servers

SingLing Lee Hann-Jang Ho Feng-Wei Lien

Department of Computer Science and Information Engineering
National Chung-Cheng University

Chia-yi, 621, Taiwan, ROC
Email:flee,hjho,fwl88g@cs.ccu.edu.tw

Abstract

As the increasing of Web traffic, a distributed web
cluster is needed to cope with growing client demands. In
this paper, we propose a load-balancing algorithm to dis-
tribute client demands into several servers. Since the algo-
rithm dispatches web documents to heterogeneous servers,
each server does not contain all documents and only al-
lows to access the local available documents. The aims of
our algorithm include two-fold: (1) to make load balanc-
ing as good as possible, and (2) to respond a request as
soon as possible. When a server is busy handling with CGI
requests, it may delay the response time of a HTML re-
quest. That’s why we have the second aim. Our algorithm
can produce a 15% performance improvement on load bal-
ancing and a 10% performance improvement on average
response time.

KEYWORDS: Distributed Web Cluster, Load-balancing
Algorithm , Dispatch, Average Response Time

1. Introduction

A popular website must have a strong web system
to cope with growing client demands. There are many
kinds of architecture had been proposed for such a web-
site. Most of them are based on a distributed or parallel ar-
chitecture while preserving a virtual single interface. Such
a system provides scalability and transparency, but needs
to have some mechanisms that dynamically assign client
requests to the web server [1]. The redirection mechanism
can be done at IP level through some address packet rewrit-
ing mechanisms [2, 3, 4], or at the Domain Name System
(DNS) level through mapping URL-name to the IP-address
of one of the web servers [5, 6, 7, 8, 9].

Once a client attempts to establish a TCP connection
with one of the servers, a decision is made as to whether
or not the connection should be redirected to a different
server. The IP-address in the packet will be changed to
the destination server’s if the redirection is required. The
main disadvantage of all IP-level solutions is that they can
be applied only to locally clustered web servers. One-IP
[4] distributes requests to the different server in the clusters
by dispatching packets at the IP-level. The dispatcher redi-

rects requests to the different servers based on the source
IP-address of the client. TCP-Router approach dispatches
client requests to the appropriate server at the server site
router which receives the requests. The router dispatches
requests according to load information and changes the
destination address of each IP-address before dispatching.
In a server cluster, the router will have an acknowledge-
ment of server failure. The router will know that which
server is alive and will not redirect a request to a dead
node. Therefore, both TCP-Router approach and ONE-IP
approach can provide server fault-tolerance. And these two
approaches also can provide load balancing since they both
take account of load information.

Unlike the IP-dispatcher based solutions. The HTTP
redirection does not require the modification of the IP-
address of the packets reaching or leaving the web server
cluster. What the DNS has to do is mapping the URL-
name to the IP-address of one of the servers when a client
request arrives. A simplest solution is using a DNS with
round-robin (RR) scheduling algorithm on it. And the DNS
redirects all requests to web servers by RR algorithm. But
this solution will not perform very well on load balancing
since it does not care about any load information and just
redirects the client requests. SWEB [5] is a web system
using distributed memory machines and network of work-
stations as web servers. In the SWEB, a server does not
store all the documents but can go over the local-area net-
work to fetch the document that is requested but not store
in itself. A round-robin domain name resolution (DNS)
is used to assign requests to back-end workstations. The
weakness of SWEB is that failures are still a problem be-
cause of DNS name caching. NCSA’s web servers [8] use a
distributed file system to access document requested by the
clients. A round-robin domain name services (RR-DNS) is
used to multiplex requests to web servers. But, like SWEB,
a high degree of load balance may not be achieved due to
DNS name caching which is the main disadvantage of all
DNS-level solutions.

In this paper, we will focus on an architecture that
integrates the DNS dispatching mechanism with a redirec-
tion mechanism provided by HTTP protocol.The architec-
ture we propose has a front-end domain name server and
several back-end web servers. These web servers are as-
sumed to have different capacities and hence this is a het-

erogeneous system. The front-end DNS receives all the
HTTP requests, and uses HTTP to redirect the client re-
quest to the appropriate web server. Each server does not
have all the documents, and can serve the requests only for
it’s locally available documents. We also propose an algo-
rithm for document distribution. Our algorithm dispatches
all documents to web servers and each server handles with
only some specific kinds of documents. We demonstrate
that the DNS dispatcher combined with suitable redirec-
tion mechanism provides good load control. Our algorithm
will be compared with the RR algorithm and the binning al-
gorithm [9]. According to simulation results, our system’s
average response time is 10% faster than the system that
only uses DNS with RR to dispatch requests. For dispatch-
ing document requests, our algorithm could have 15% bet-
ter performance on load balancing than dispatching by the
binning algorithm, and about 100% better than dispatching
by round-robin algorithm.

2. System Model

Our system model has a front-end domain name
server and several back-end web servers , for example, as
shown in Figure-1. The system consists of heterogeneous

DNS

Client
Domain

Client
Domain

Client
Domain

Document
1, 2

Document
5

Document
4, 6

Document
3

Document
7

Servers Clients

Figure 1. An example of the system model

distributed web servers that manage different sets of web
documents and a DNS that translates the URL-name into
the IP-address of one of the servers in the cluster. The DNS
receives all the client requests as a single interface to access
web documents, and uses HTTP to redirect each client re-
quest to an appropriate server. Each web server contains
some of all documents and serves the requests only for lo-
cally available documents. Every server is independent to
others, not like SWEB architecture, a server will not access
the document which is stored in another server. The server
processing capacity is different from one to each other, so
the execution time of a request in one server may be shorter
or longer than it in another server.

Given a set of N web servers S1, S2, ..., SN , and a
set of M documents D1, D2, ..., DM . Each client demand
requests for one of M documents. Assume that M docu-

ments have request arrival rate r1, r2, ..., rM , and average
execution time e1, e2, ... , eM . That is, the load which is
produced by requests to document j will be r j �ej , then the
total system load L can be presented as

P
j(rj � ej), and

the load probability of document j, Lj =
rj�ej
L

. A server
i should bear the load equal to

P
j(aij � Lj) where aij is

the partial of requests to document j that will be assigned
to server i. If a12 = 0:2, that is 20% of requests to D2 will
be redirected to S1.

We propose an algorithm called enhanced binning
algorithm (EBA) to initial document distribution that
achieves load balance in the heterogeneous server cluster.
The algorithm will decide all values of aij initially. The
DNS needs to maintain information about the location of
documents and the values of all aij in order to determine
which server should take the request just arrived.

3. Influences on Average Response Time

If now we have two web servers and two web doc-
uments at present: one of the documents is a HTML file
and the other is a CGI file. We assume that the load pro-
duced by HTML requests is equal to the load produced by
CGI requests, and the processing capacities of these two
servers are also equal. The simplest solution is dispatch-
ing both two kinds of documents to each server, and uses a
Round-Robin DNS to distribute all requests to web servers.
This solution can make load balancing indeed, but it may
not provide good performance on response time. The other
method is: one server only takes care of the HTML re-
quests, and the other one only takes care of CGI requests.
Since the loads produced by HTML requests and by CGI
requests are equal, this approach can also provide load bal-
ancing very well. We expect that this method has faster av-
erage response time and can save more disk capacity than
the first solution since we don’t have to store both kinds of
documents on each server.

Suppose that both kinds of documents are stored in
the same server and a Round-Robin DNS algorithm is used
to distribute all requests to web servers. We will find that
once the server is busy in handling HTML requests, it may
delay the response time of CGI requests; if the server is
busy in handling CGI requests, it may delay the response
time of HTML requests. We design a simulation exper-
iment to verify the impact of storing two kinds of docu-
ments in one server, as shown in Figure-2. In this figure,
if a server deals with only document D1 on it, the average
response time for document D1 is t1. In the same way,
when a server deals with only document D2, the average
response time for document D2 is t2. The horizontal axis
of Figure-2 represents the value of t2/t1. If a server deals
with both D1 and D2, the average response time of all re-
quests is t. Then the vertical axis represents the value of
t/t1+t2.

As shown in Figure-2, the more difference between
two documents’ average response time, the longer total av-

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12

re
sp

on
se

 ti
m

e
de

la
y

ra
tio

ratio of two documents’ average response time

Figure 2. A variation of the response time

erage response time will be. In that case, we will dispatch
all documents to web servers in order of their execution
times since the response time of a request almost equals to
the execution time if the server starts executing right away
when the request arrives. We hope that the server could
respond a request as soon as possible, so we have to avoid
putting two documents on the same server if their execution
times are very different.

Table 1. Notations

N Number of back-end web servers.
M Number of web documents.
Pi Processing capacity of server i.
P Total processing capacity.
Ci Capacity probability of server i, i.e. Ci =

Pi

P
.

rj Arrival rate of request to document j.
ej Average execution time of request to document j.
L Total system load:

P
j(rj � ej).

Lj Load probability of document j. i.e. L i =
(rj�ej)

L
.

4. Related Works

Using a DNS with Round-Robin algorithm to dis-
tribute requests among web servers is the simplest solution
for a website. The Round-Robin algorithm dispatches a re-
quest just according to the incoming order of a request. In
this architecture, each web server should contain all doc-
uments and can serve requests for all documents. If there
are N servers S1, S2, ..., SN . The first request will be redi-
rected to server S1, the second request will be redirected to
server S2, and the Nth request will be redirected to server
SN . That is, the jth request will be redirected to server Si,
where i = j mod N . Without considering the factors that
might effect the performance of load balancing, this solu-
tion can not achieve load balance.

To improve the performance of the Round-Robin al-
gorithm, a binning algorithm was proposed in [9]. This al-
gorithm dispatches requests according to access rate, which
equals to request arrival rate in our algorithm. The binning
algorithm works as follows. A random server S i is picked
each time and a random document j is picked and placed
on that server. After the access probability of the document
(can be obtained by scaling the access rate) is assigned to
the server, if there is still some residual capacity left in the
server then another document k is randomly picked and
placed on this server, this goes on until the total access rate
to the server upon the placement of a document m exceeds
the capacity of Si. At this stage, another server Sj is ran-
domly picked and document m is replicated on S j . Con-
tinue doing these stages until all access rates are assigned
to servers. Thus, if we consider each of the servers to be
a bin with a certain capacity, then the algorithm fills every
bin completely before another bin is chosen to be filled.

We consider an example for a heterogeneous cluster
with one redirection server, three document servers with
capacity probabilities 0.3, 0.6 and 0.1, and five documents
with access probabilities 0.35, 0.5, 0.05, 0.04 and 0.06.
Please take notice of that access probabilities here are not
equal to load probabilities in our algorithm. The binning
algorithm chooses documents and servers at random. For
this example, we assume that the documents are picked in
order D1 throughD5 and the servers are also picked in nu-
merical order. Then, all documents initially are distributed
as following steps:

1. S = f0:3; 0:6; 0:1g,
R = f0:35; 0:5; 0:05; 0:04; 0:06g.

2. ci = c1 = 0:3, and rj = r1 = 0:35.

3. Assign r1 to c1) S1 contains the copy of D1.

4. 0:3 < 0:35) rj = 0:05, S = f0:6; 0:1g, and ci =

c2 = 0:6.

5. Assign r1 to c2) S1 contains the copy of D5 and S2

also contains the copy of D1.

6. 0:6 > 0:05) ci = 0:55,R = f0:5; 0:05; 0:04; 0:06g,
and rj = r2 = 0:5.

7. Assign r2 to c2) S1 contains the copy of D1 and S2

contains copies of D1 and D2.

8. 0:55 > 0:5) ci = 0:05, R = f0:05; 0:04; 0:06g, and
rj = r3 = 0:05.

9. Assign r3 to c2) S1 contains the copy of D1 and S2

contains copies of D1, D2 and D3.

10. 0:05 = 0:05) S = f0:1g, and ci = c3 = 0:1,
R = f0:04; 0:06g, and rj = r4 = 0:04.

11. Continue the assignment until both S and R are
empty.

The redirection mechanism will now work as follows.
Requests to D1 will be redirected to S1 with probability
0.3/0.35 = 0.86 and to S2 with probability 0.05/0.35 = 0.14.
All requests to D2 and D3 will be redirected to S2 and all
requests to D4 and D5 will be redirected to S3. This is
shown in Table-2.

Table 2. Redirection Probabilities in the Example (BA)

D1 D2 D3 D4 D5

S1 0.86
S2 0.14 1 1
S3 1 1

5. The Enhanced Binning Algorithm

We propose an enhanced binning algorithm to im-
prove the average response time. A formal description of
the enhanced binning algorithm is given as follow:

1. Sort the capacity probabilities in decreasing order,

assume the ordered set S = fc1; c2; :::; cNg.

2. Sort the load probabilities in decreasing order by their
execution times,

assume the ordered set D = fl1; l2; :::; lMg.

3. Set i = 1 and j = 1.

4. Assign lj to ci and document j is replicated on server
i.

5. If (ci > lj) then ci = ci � lj , D = D � flig, and
j = j + 1.

else if (ci < lj) then lj = lj � ci, S = S � fcig, and
i = i+ 1.

else if (ci = lj) then S = S � fcig, i = i + 1,
D = D � flig, and j = j + 1.

6. Repeat step 4 and step 5 until all load probabilities are
assigned to servers.

As the same example for BA algorithm, we consider
a heterogeneous cluster with one DNS, three document
servers S1, S2, S3 and five documents D1, D2, ..., D5.
Assume that the load probabilities of the five documents
are 0.35, 0.5, 0.05, 0.04 and 0.06, and execution times of
five documents are e5 > e4 > e1 > e2 > e3. Also as-
sume that the capacity probabilities of servers are 0.3, 0.6,
and 0.1. According to the enhanced binning algorithm, all
documents initially are distributed as following steps:

1. Sort the capacity probabilities of servers in decreasing
order, S = f0:6; 0:3; 0:1g.

2. Sort the load probabilities of documents in de-
creasing order by their execution times, D =

f0:06; 0:04; 0:35; 0:5; 0:05g.

3. Set i = 1 and j = 1) ci = c1 = 0:6 (server S2) and
lj = l1 = 0:06 (documentD5).

4. Assign l1 to c1) S2 contains the copy of D5.

5. 0:6 > 0:06) ci = 0:54,D = f0:04; 0:35; 0:5; 0:05g,
and lj = l2 = 0:04 (document D4).

6. Assign l2 to c1) S2 contains copies of D5 and D4.

7. 0:54 > 0:04) ci = 0:5, D = f0:35; 0:5; 0:05g, and
lj = l3 = 0:35 (documentD1).

8. Assign l3 to c1) S2 contains copies of D5, D4 and
D1.

9. 0:5 > 0:35) ci = 0:15, D = f0:5; 0:05g, and lj =
l4 = 0:5 (documentD2).

10. Assign l4 to c1) S2 contains copies of D5, D4, D1

and D2.

11. 0:15 < 0:5) lj = 0:35, S = f0:3; 0:1g, and ci =

c2 = 0:3 (server S1).

12. Continue the assignment until both S and D are
empty.

Table 3. Redirection Probabilities in the Example (EBA)

D1 D2 D3 D4 D5

S1 0.6
S2 1 0.3 1 1
S3 0.1 1

After the document distribution is done, server S1

contains copy of D2, server S2 contains copies of D1, D2,
D4 and D5 and server S3 contains copies of D2 and D3.
The redirection mechanism will use the probabilities shown
in Table-3 to redirect all requests to the appropriate server.
An entry for row S1 and column D1 in the table indicates
the probability with which the request to documentD1 will
be redirected to server S1.

In the enhanced binning algorithm, when a document
is placed on a server, either all it’s load probability can be
completely assigned onto that server or the server’s cumu-
lative load probability will exceed the capacity. A docu-
ment is replicated on next server only when the server is
not able to accept the load probability of that document
completely. Each server can be exhausted once at most and
exhaustion will not produce more than one replica of the
document. Consequently, with N servers, there can be N
replications at most. Since the sum of capacity probabili-
ties of the servers is equal to the sum of load probabilities

of documents, all load probabilities of documents can be
assigned exactly when the last server is exhausted.

In our system, each server doesn’t have to store all
web documents and only has to serve requests for it’s lo-
cal documents. Documents which are stored in memory
will not be replaced frequently. The cache mechanism will
provide higher cache utilization efficiency than the server
which is capable of serving all documents. So use our al-
gorithm to dispatch documents will improve the cache uti-
lization and memory utilization of the whole system.

6. Simulation Results

In the distributed system, jobs are assigned to differ-
ent servers to execute. What we need is to shorten the total
execution time of these jobs. The job distribution algo-
rithm is the key of the whole system. If we use two job
distribution algorithms, A and B, in the same distributed
environment. Fe can easily determine that which algorithm
has better performance on load balancing by their total ex-
ecution times. That is, if the total execution time using A
is shorter than the total execution time using B, then we
can say that the system using algorithm A will have better
performance on load balancing.

We use simulation to analyze our algorithm and com-
pare our algorithm with algorithm BA and algorithm RR.
Except for the dispatch algorithm, the platform and other
conditions include parameters shown in Table-1 are all the
same. In this situation, we can make out if our algorithm
is better than others directly. If the total execution rounds
(a round means a unit time) of system using our algorithm
EBA is smaller than the system using another algorithm,
we can say that dispatch requests by our algorithm will
have better performance on load balancing than dispatch
by another algorithm. In the beginning of each simulation,
we have to define the values of all parameters. Some pa-
rameters will be generated in the way shown in Table-4.

Table 4. Parameters

Processing capacity Pi Random number: 100 � 1000

Avg. execution time ej Random number: 1000 � 5000

Arrival rate rj Rnd. number: 10000 � 100000

Total capacity P Can be obtained by
P

i(Pi)

Capacity probability Ci Can be obtained by Pi

P

Total load L Can be obtained by
P

j(rj � ej)

Load probability Lj Can be obtained by (rj�ej)

L

Since we use program to simulate actions of web
servers, the simulation platform won’t have any effect on
our results. A simulation has only one total execution
rounds whether it executes on a PC with 800MHz CPU
or on a PC with 500MHz CPU. Do simulation on differ-
ent PC will only cause different elapsed time, but the total

execution rounds will be the same.
First, we consider that the number of servers is fixed

and the number of documents is from 1 to 20. In this sit-
uation we can find out the difference between three algo-
rithms when the number of documents is getting more and
more. Assume that there are 5 servers, and the simulation
results are shown in Figure-3. Each point in the figure is
the average value of fifty times simulations. The horizontal
axis represents the number of documents, and the vertical
axis represents the total execution rounds of the algorithm.
As the Figure-3 shows, our algorithm EBA has the least
total execution rounds; the algorithm RR has the worst re-
sults, and algorithm BA performs between EBA and RR.

By comparing EBA with the other two algorithms RR
and BA, it seems that more number of documents is re-
quested the better result we gain. We present simulation re-
sults in ratios of one algorithm’s execution rounds to RR’s
execution rounds, so the ratio of execution rounds of RR
will be always 1. Results are shown in Figure-4. As what
we can see in the Figure-4, the ratio of execution rounds
that dispatch requests by RR is at least double of ours, and
ratio of execution rounds that dispatch requests by BA is
1.2 times of ours in average.

Now, we consider another situation that the number of
documents is fixed and the number of servers is from 1 to
20. Assume we have 10 documents, the simulation results
are shown in Figure-5. Each point in figure is also the av-
erage value of fifty times simulations. The horizontal axis
represents the number of servers, and the vertical axis rep-
resents the total execution rounds of the algorithm. In this
situation, our algorithm also performs better than other two
algorithms, especially when the number of servers is dou-
ble of the number of documents. As the increasing of the
number of servers, the total execution rounds of three algo-
rithms are getting close. Normally, it should be so since our
parameters are generated in a fixed range, total load will not
increase as the increasing of number of servers because of
the number of documents is fixed. We also present these
results in ratio form and shown in Figure-6. When number
of servers is less than 10, our dispatch algorithm has better
performance than other two algorithms clearly.

According to simulation results of Figures 3-6, our
system’s average response time is 10% faster than the sys-
tem that only uses DNS with RR to dispatch requests. For
dispatching document requests, our algorithm could have
average 15% better performance on load balancing than
dispatching by the binning algorithm, and about 100% bet-
ter than dispatching by round-robin algorithm.

At the beginning of this paper, we mentioned that we
wish our system could respond a request as soon as possi-
ble. We select a document and assign it’s load probability
to a server in decreasing order of execution times of docu-
ments. When load balance is achieved, our algorithm will
always dispatch the document with longer execution time
to the server that has higher processing capacity. For this
reason, we think that our algorithm should have better per-
formance on average response time. In order to prove our

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 10 15 20

ex
ec

ut
io

n
ro

un
ds

 (
1:

10
0)

of document

EBA
BA
RR

Figure 3. 5 Servers and M Documents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20

ra
tio

 o
f e

xe
cu

tio
n

ro
un

ds

of document

EBA/RR
BA/RR
RR/RR

Figure 4. 5 Servers and M Documents (ratio to RR)

point of view, we have some simulations to estimate av-
erage response time of our algorithm and compare it with
other two algorithms. The number of documents is 5 and
the number of servers is from 1 to 10 and Figure-7 shows
the scaled results.

In this experiment, our program simulates handling
web requests as a real web server to compute the average
response time. The average response time can be obtained
by the amount of execution times of servers divided by the
number of total requests. As shown in Figure-7, we gain
about 10% faster than other two algorithms on average re-
sponse time. We also have simulations in the environment
that has 5 servers and the number of documents is from 1
to 10. Results are not very different from results of pre-
vious simulations and the diagram is similar to Figure-7.
Since our algorithm dispatches documents by their execu-
tion times, the binning algorithm dispatches documents in
random and the Round-Robin DNS dispatches documents
by round-robin algorithm, we think that our algorithm can
gain more benefits under the two situations listed below:

2000

4000

6000

8000

10000

12000

14000

16000

5 10 15 20

ex
ec

ut
io

n
ro

un
ds

 (
1:

10
0)

of server

EBA
BA
RR

Figure 5. N Servers and 10 Documents

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20

ra
tio

 o
f e

xe
cu

tio
n

ro
un

ds

of server

EBA/RR
BA/RR
RR/RR

Figure 6. N Servers and 10 Documents (ratio to RR)

1. Server capacities are very different.

2. Documents’ execution times are very different.

If all documents are dispatched by BA, the more dif-
ferent server capacities are, the longer average response
time of a document will be. Because a document with
longer execution time may be dispatched to a server has
lower processing capacity. If dispatches by RR, the more
different server capacities are, the longer average response
time of a document will be. Because the average response
time will lower due to requests with longer execution times
will be equally dispatched to each server. Both BA and RR
will have the same results in the second situation as in the
first one.

7. Future Works

In this section, we will introduce two problems that
might occur, and we bring up two simplest solutions to

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

2 4 6 8 10

ra
tio

 o
f e

xe
cu

tio
n

tim
e

of server

EBA/RR
BA/RR
RR/RR

Figure 7. N Servers and 5 Documents (ratio to RR)

these two problem. For further investigations, it is worth-
while to look into ways of making better mechanism for
obtaining the optimal solution.

First, we consider the DNS bottleneck. There is only
one dispatcher (DNS) in the architecture. Because of the
DNS with EBA is not like a common DNS that just needs
to return a corresponding IP-address, it should spend more
time on running dispatch algorithm and chooses an appro-
priate server to handle the request. Hence, for a popular
website, client demands may crowd into web server very
fast, DNS might become a bottleneck in this kind of archi-
tecture.

S1 SNS2

DNS DNSDNS

RR DNS

Figure 8. Multi DNS Architecture

To solve this problem, we can use a two-level DNS ar-
chitecture that is shown in Figure-8. A Round-Robin DNS
in the first level and several DNS with EBA which we call
dispatchers in the second level. When Round-Robin DNS
receives a HTTP request, it just needs to pass the request to
one dispatcher by round robin scheduling algorithm. And
each dispatcher does the same jobs as what the DNS does

in One-DNS-Architecture.
Next, we consider the problem about the fault toler-

ant. Document distribution using our algorithm guarantees
load balance, and has better performance on average re-
sponse time. But the system can’t stand any server failure
because each server only maintains the documents it is dis-
patched. If a server fails, the requests to documents on that
server will not be served. To save capacity of hard disk and
to avoid server failure will become a trade off. If we spend
more disk capacity to store all documents in each server,
the fault tolerant problem could be solved. When a server
is fault, redirection probabilities are recomputed to exclude
capacity probability of that server.

Consider the example which we mentioned in Chapter
3. The redirection probabilities after document distribution
is finished, shown in Table-5.

Table 5. Original Redirection Probabilities

D1 D2 D3 D4 D5

S1 0.6
S2 1 0.3 1 1
S3 0.1 1

If server S2 is fault, the capacity probabilities of two
residual servers are 0.75 and 0.25 since the processing ca-
pacity of S1 is three times of S3’s. Once the document
distribution is completed, redirection probabilities will be
changed as shown in Table-6.

Table 6. New Redirection Probabilities

D1 D2 D3 D4 D5

S1 1 0.6 1 1
S3 0.4 1

Compare our algorithm with the other two algorithms,
the system still has better performance on load balancing
and average response time after redirection probabilities
are recomputed.

8. Conclusion

In this paper we have proposed a load-balancing algo-
rithm to distribute client demands into a heterogeneous web
server cluster. Since client requests are handled by HTTP
redirection on DNS, our solution belongs to the DNS-level
solutions. The DNS dispatching function is integrated with
a redirection mechanism and assigns requests to servers ac-
cording to redirection probabilities. We use simulations to
analyze our algorithm EBA and have compared our algo-
rithm with two alternative dispatching algorithms. The ex-
perimental results indicate that our algorithm performs well
on load balancing. Furthermore, the load balance perfor-
mance of the system using our algorithm has increased by

15% as compared with the algorithm proposed in [9] and
also has a little performance improvement on average re-
sponse time. Although our solution has DNS bottleneck
problem and server failure problem, the system will pro-
vide higher cache utilization efficiency and can save more
disk capacity.

References

[1] M. Colajanni, P.S. Yu, and D.M. Dias, ”Analysis of
task assignment policies in scalable distributed web-
server systems,” IEEE transaction on parallel and dis-
tributed systems, Vol 9, No. 6, June, 1998

[2] L. Aversa, and A. Bestavros, “Load balancing a clus-
ter of web servers using distributed packet rewriting,”
Performance, Computing, and Communications Con-
ference, 2000. IPCCC ’00. Conference Proceeding of
the IEEE International, pp. 24-29, 2000.

[3] A. Bestavros, M. Crovella, J. Liu, and D. Mar-
tin, “Distributed packet rewriting and its application
to scalable server architectures,” Network Protocols,
1998. Proceedings. Sixth International Conference
on, pp. 290-297, 1998.

[4] O.P. Damani, P.-Y. Chung, Y. Huang, C. Kintala, and
Y.-M. Wang, “ONE-IP: Techniques for hosting a Ser-
vice on a Cluster of Machines,” International World
Wide Web Conference, Santa Clara, Apr. 1997.

[5] D. Andresen, Y. Tao, V. Holmedahl, and O.H. Ibarra,
“SWEB: Towards a scalable World Wide Web Server
on Multicomputers,” IEEE International Symp. on
Parallel Processing, pp. 850-856. April, 1996.

[6] M. Colajanni, P.S. Yu, and V. Cardellini, “Dynamic
load balancing in geographically distributed heteroge-
neous Web servers,” International Conference on Dis-
tributed Computing Systems, pp. 295-302, 1998.

[7] Z. Huican, S. Ben, and Y. Tao, “Scheduling Optimiza-
tion for Resource-Intensive Web Requests on Server
Clusters,” Proceedings of the eleventh annual ACM
symposium on Parallel algorithms and architectures,
pp. 13-22, 1999.

[8] T.T. Kwan, R.E. McGrath, and D.A. Reed, “NCSA’s
World Wide Web Server: Design and Performance,”
IEEE Computer, pp. 68-74, 1995.

[9] B. Narendran, S. Rangarajan, and S. Yajnik, “Data
distribution algorithms for load balanced fault-tolerant
Web access,” Proceedings of The Sixteenth Sympo-
sium on Reliable Distributed Systems, pp. 97-106,
1997

[10] C.S. Yang, and M.Y. Luo, “A content placement and
management system for distributed web-server sys-
tems,” International Conference on Distributed Com-
puting Systems, 2000.

[11] M. Castro, M. Dwyer, and M. Rumsewicz, “Load bal-
ancing and control for distributed World Wide Web
servers,” IEEE Conference on Control Applications,
vol. 2, pp. 1614-1619, 1999.

[12] V. Holmedahl, B. Smith, and Y. Tao, “Cooperative
caching of dynamic content on a distributed Web
server,” High Performance Distributed Computing,
The Seventh International Symposium, 1998.

[13] V. Cardellini, M. Colajanni, and P.S. Yu, ”Redirec-
tion algorithms for load sharing in distributed Web-
server systems,” International Conference on Dis-
tributed Computing Systems, 19th IEEE, pp. 528-535,
1999.

[14] Z. Huican, S. Ben, and Y. Tao, “Hierarchical resource
management for Web server clusters with dynamic
content,” International conference on Measurement
and modeling of computer systems, 1999.

