
An Indexing Method for Supporting Structure Queries on
XML Documents

Y.R. Jean

yrjean@pu.edu.tw
H.W. Hsiao

g8911116@pu.edu.tw

Department of Computer Science and Information Management
Providence University

200 Chung-chi Rd.,Shalu Taichung County, TAIWAN 433

Abstract

 Much research has been carried out to
manage structured documents such as SGML
(Standard Generalized Markup Language) or
XML (eXtensible Markup Language)
documents and to provide powerful query
facilities exploiting document content, structure,
and attributes. In order to perform structure
queries efficiently on structured documents, a
good indexing method for structured
documents is important and necessary. In this
paper, we present an indexing method which is
utilized for supporting efficient query on
content, structure and attributes on XML
documents. Furthermore, we propose some
strategies of update method to maintain the
integration of changed index information and
original XML documents.

Keywords: structure query, index method,

DOM parser, structured document,
and XML

1 Introduction
 Structured documents are the documents that
embed the document structures into the texts.
Recently, many documents tend to be produced
as structured ones using markup languages like
SGML or XML since they make it possible to
handle the texts in piece by piece in browsing

or retrieval. Assume that the documents have
been originally supplied with tagged in SGML.
Furthermore, World Wide Web is likely to step
toward XML from HTML (HyperText Markup
Language) soon in creating Web pages. SGML
and XML provide full-fledged features in
making documents structured as they are,
whereas HTML has only limited functions in
structuring.
 This tendency calls for the emergency of a
new information retrieval system that enables
to retrieve and access arbitrary parts of
documents easily. It raises a difficult problem
that the system should be able to figure out
relevant elements to users queries issued at any
level of the structure, which have not been
tackled seriously in the conventional
information retrieval system. And most of the
structuring techniques proposed so far did not
handle the problem efficiently.
 In this paper, we propose an indexing
method for supporting query on content,
structure and attributes on XML documents that
minimizes the indexing overhead and
guarantees fast query response time. The main
idea is that indexing is performed by assign an
index interval to every node while traversing
the tree in preordering way. We build inverted
lists for content, structure and attributes query
on XML documents.

 1

 This paper is organized as followings. In
Section 2 we describe some related works
about indexing methods on structured
documents, in Section 3 we discuss how to
build the index information, modify the index
interval method, and reduce the space overhead
on index information to improve query
efficiency and more query types. Section 4 is
describing the update method to maintain the
integration of index information and original
XML documents after the structured documents
had be inserted, deleted, or modified. In section
5, we discuss the works we are doing follows
up this paper was published and some future
works that can improve in the information
retrieval system. Section 6 presents concluding
remarks with the proposed concepts of this
paper.

2 Related works
 For years, there has been growing interest in
handling structured documents well in terms of
indexing and retrieval. In this section, we
discuss some indexing methods for structured
documents e.g. SGML or XML documents.
First one is a kind of indexing methods on
structured documents by using TEI (Text
Encoding for Interchange) guidelines – an
encoding standard adopted by the humanities
desciplines. Second one is uses an m-ary
complete tree structure to create a document
tree and assign a UID for each node of tree
structure according to the order of the
level-order tree traversal in subsection 2.2. In
subsection 2.3, a method uses the index interval
concept to assign each node the step numbers
for reaching and leaving the node while
traversing by the preorder way.

2.1 Indexing with TEI guidelines

 Tuong Dao [6] encodes the structured
document according to the TEI guidelines, and
uses the extension of SCL (Simple
Concordance Lists) model to support content,
structure, and attribute queries on structured
document. But, this method does not use the
concept of tree structure to handle the index
information. It uses containment relationships
rather than hierarchical relationships to support
queries on document structure. The document
in Figure 1 is the collection of English classic
texts available for public use at the Oxford Text
Archive which contains three divisions, the
table of contents and two chapters. In Figure 1,
structural elements are marked up with XML
tags and encoded by TEI guidelines.

100.1 100.2 101 102 103 104 104.1
<doc n=”1975”> <dtitle> Tarzan of the Apes </dtitle>

104.2 105 105.1
<div type=”toc”> Contents … </div>

105.2 106 107 108 109
<div type=”chapter” id=”C7”> The Light of Knowledge …
109.1 110 111 112 113 114 115 116 117 118
<p> … Let all respect Tarzan of the Apes and Kala,

119 120 120.1 120.2
his mother … </p> … </div>

120.3 121 122 123 124
<div type=”chapter” id=”C11”> King of the Apes …
124.1 125 126 127 128 129 130 131 132 133
<p> And thus came the young Lord Greystoke into the

134 135 136 137 137.1
kingship of the Apes … </p>

137.2 137.3
… </div> … </doc>

Figure 1:Document in the text collection

2.2 Indexing with UID
 Lee et al. [7] proposed an indexing structure
that is able to reduce the storage overhead
taken to indexing at all levels of document
structure. They first represented a document as
an m-ary complete tree where m is the largest
number of child elements of an element in the
structure. The result of the mapping is called
‘document tree’. Secondly they assigned each
element a UID (Unique element IDentifier)
according to the order of the level-order tree
traversal. For example, the document tree in

 2

Figure 2, we assign UID’s as shown in the
Table 1 assuming a 3-ary tree. Here, we can
consider this document tree as following: the
node a is a book, b a chapter, d a section, and h
is a subsection. Because they use the concept of
complete tree, there are some virtual nodes
which do not exist.

a

cb

e gd

i

f

h j
real node

virtual node
Figure 2:Example of document tree

Table 1:Unique element identifiers

Element UID Element UID

a
b
c
d
e

1
2
3
5
6

f
g
h
i
j

8
9
14
15
16

The UID’s of the parent and j-th child of a

node whose UID is i can be obtained by the
following two functions. Using these functions
we can only decide the parent-child
relationship between two nodes on condition
that the difference of their level numbers is just
1. If the condition doesn’t hold, the parent-child
relationship has no choice to be decided by
these two functions in recursive way.

 +

−
= 1)2()(

k
iiparent (1)

1)1(),(++−= jikjichild (2)

2.3 Indexing with index interval
Jyh-Hong Tsay et al. [3] proposed an index

method by using the index interval concept
which assigns each node a pair of interval
numbers - <1st_index, 2nd_index> according to
the step numbers for reaching and leaving the
node while traversing through the DOM tree in
the preorder way. From this index interval
concept, we can infer the relationship of
parent-child in any level and the relationship of
sibling in the same level by comparing the
index interval numbers of specified nodes.
They also proposed a document updating
method – Lazy update by using the index
update table to record the index update and
index transformation information. This method
lets the system does not need to update the
index information immediately and could select
suitable time to clean up the index table after
the document is inserted, deleted, or modified.
However, this method does not provide
complete solution for inserting elements to the
structured document and deleting elements
from the structured document. Furthermore,
they do not support the attribute query type for
structured documents.

3 The indexing method
 Indexing on structured documents for
content, structure and attribute queries can be
performed in various ways. In traditional text
information retrieval systems, only the queries
on content are supported. The rich structural
information is contained in documents and the
attributes of document components are not
captured in these systems, and the queries on
structure and attributes are not supported. For
improving the index interval method [3] and
adding the extra index information about the
elements in XML documents, we use a kind of
XML parser – DOM (Document Object Model)
parser to build the index information and

 3

propose five basic query functions to carry out
the structure queries, provide information
retrieval efficiently, and support more structure
query types on structure documents.

3.1 Building the index information
 The main idea of building the index
information is that we use the DOM parser to
parse the whole XML document into a tree
structure, assign associated information (i.e.
index information = <document number,
1st_index, 2nd_index, level number>) to each
node in preordering way, and save the index
information into three kinds of index
information lists according to the node types –
the element node, the attribute node and the
text node. The index information of all element
nodes is recorded into the ELEMENT list, the
index information and attribute values of all
element attribute nodes are recorded into the
ATTRIBUTE list and the index information
and content of all text node are recorded into
the TEXT list. The concept of this processing is
shown in Figure 3.

XML
Documents

DOM Parser
ELEMENT list

ATTRIBUTE list
TEXT list

index
information

Figure 3:Building index information

 The two interval numbers (1st_index and
2nd_index) of index interval are the step
numbers of reaching and leaving the node of
the document tree while traversing in preorder
way. This pair of index interval numbers could
be used to determine what kind of relationships
do specify nodes have by comparing the index

interval numbers. We assume the two index
interval numbers of nodes - U and V are U1st,
U2nd and V1st, V2nd respectively. If V1st < U1st,
and U2nd < V2nd, then the node U is a descendent
of the node V. If U1st = V2nd + 1 or V1st = U2nd +
1, then the node U is a sibling of the node V.
The document number tells which document
the element belongs to, and the level number
informs which level the element belongs to. An
example of an XML document and its tree
structure are shown in Figure 4 and Figure 5
respectively.

Figure 4:Example document

<?xml version=”1.0”?>

<!DOCTYPE bib [

<!ELEMENT bib (book+) >

<!ELEMENT book (title, author+, publisher) >

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT title (#PCDATA) >

<!ELEMENT author (lastname) >

<!ELEMENT lastname (#PCDATA) >

<!ELEMENT publisher (name) >

<!ELEMENT name (#PCDATA) >

]>

<bib>

 <book year="1995">

 <title> An Introduction to Database Systems </title>

 <author> <lastname> Date </lastname> </author>

 <publisher> <name> Addison-Wesley </name > </publisher>

 </book>

 <book year="1998">

 <title> Foundation for Object/Relational Databases: The Third

Manifesto </title>

 <author> <lastname> Date </lastname> </author>

 <author> <lastname> Darwen </lastname> </author>

 <publisher> <name> Addison-Wesley </name > </publisher>

 </book>

</bib>

After building the index information,

according to the node type number we separate
the index information into three lists –
ELEMENT, ATTRIBUTE, and TEXT. In this
processing phase, the system does not store the
2nd_index and level number into ATTRIBUTE
and TEXT lists. Moreover, the system adds the
attribute values after the corresponding index

 4

information of the attribute. The content of
these lists are shown in Figure 6. There is an
additional temporary list – Q-TEXT that is not
stored in the storage. We can use TEXT list to

figure out Q-TEXT list for answering query
requirements after loading these three index
information lists into the memory.

#document
<1, 0, 47, 0>

bib
<1, 3, 46, 1>

bib
<1, 1, 2, 1>

book year="1995"
<1, 4, 21, 2>

book year="1998"
<1, 22, 45, 2>

author
<1, 9, 14, 3>

title
<1, 5, 8, 3>

publisher
<1, 15, 20, 3>

An Introduction to
Database Systems

<1, 6, 7, 4>

lastname
<1, 10, 13, 4>

Date
<1, 11, 12, 5>

name
<1, 16, 19, 4>

Addison-Wesley
<1, 17, 18, 5>

author
<1, 33, 38, 3>

title
<1, 23, 26, 3>

publisher
<1, 39, 44, 3>

Foundation for
Object/Relational
Databases : The
Third Manifesto
<1, 24, 25, 4>

lastname
<1, 34, 37, 4>

Darwen
<1, 35, 36, 5>

name
<1, 40, 43, 4>

Addison-Wesley
<1, 41, 42, 5>

author
<1, 27, 32, 3>

lastname
<1, 28, 31, 4>

Date
<1, 29, 30, 5>

Figure 5:Tree structure of example document

Figure 6: The content of listings.

We will discuss the contents of these lists in

following. In ELEMENT list, it contains the
name of elements and its index information. If
an element includes only one element, it could
combine with its child element and keep the
index information of its child. In this way, we
can not only store the parent-child relationship
of these two nodes but also save some storage

spaces. In our example document, author and
lastname elements are combined into one
element – author/lastname and stored into
ELEMENT list using the index information of
lastname. The symbol “/” between author and
lastname is used to show their parent-child
relationship. The index information of TEXT
list and Q-TEXT list just includes content of
nodes, its document number and first index
interval number. Because the second index
interval number of TEXT nodes always equals
to its first index interval number adds one. In
this way, we not only reduce some space
overhead but also infer the second index
interval number of specific node from one’s
first index interval number. In order to keep the
attribute value of the attribute node, the
ATTRIBUTE list includes the name of attribute
and its index information – document number,
first index interval number, and attribute value.
In the ATTRIBUTE list, we just keep the first
index interval number, because we can only use
the first index interval number to decide which
element node includes this attribute node.

ELEMENT index information:<Doc_No, 1st_index, 2nd_index, level_No>
bib > 1 3 46 1
book > 1 4 21 2 > 1 22 45 2
title > 1 5 8 3 > 1 23 26 3
author/lastname > 1 10 13 4 > 1 28 31 4 > 1 34 37 4
publisher/name > 1 16 19 4 > 1 40 43 4

ATTRIBUTE index information:<Doc_No, 1st_index, Att_Value>
year > 1 4 1995 > 1 22 1998

TEXT index information:<Doc_No, 1st_index>
An Introduction to Database Systems > 1 6
Date > 1 11 > 1 29
Addison-Wesley > 1 17 > 1 41
Foundation for Object/Relational Databases: The Third Manifesto > 1 24
Darwen > 1 35

Q-TEXT index information:<Doc_No, 1st interval>
1 6 > An Introduction to Database Systems
1 11 > Date
1 17 > Addison-Wesley
1 24 > Foundation for Object/Relational Databases: The Third Manifesto
1 29 > Date
1 35 > Darwen
1 41 > Addison-Wesley

 5

3.2 Five basic query functions
 The XML documents are marked up with
start-tags and end-tags, these markup tags are
used to delimit the boundaries of structural
elements or specify the values of attributes
associated with structural elements. Based on
these properties of XML documents, we

propose five basic query functions for finding
out the index information and inferring
relationships of specified elements, attributes,
or keywords. The description of these basic
query functions and the corresponding
examples based on the previous example
document are shown in Table 2.

Table 2: The description and examples of basic query functions

Function Description Example

Match_Text

Return the index information of the specified word or the

word of the specified index information in a document.

Return NULL, if not matched.

1) Match_Text (“Darwen”)

Return: 1 35

2) Match_Text (1, 11)

Return: Date

Match_Att
Return the index information of the specified attribute and

its value in a document. Return NULL, if not matched.

Match_Att (“year”, “1998”)

Return: 1 22 1998

Match_Ele
Return the index information of the specified element in a

document. Return NULL, if not matched.

Match_Ele (“title”)

Return: 1 5 8 3 and 1 23 26 3

Include

Return index information of the specified element which

includes the specified index information. Return NULL, if

not found.

1) Include (“publisher/name”, 1, 41)

Return: 1 40 43 4

2) Include (“book”, 1, 16, 19, 4)

Return: 1 4 21 2

Included

Return index information of the specified element which is

included in the specified index information. Return NULL,

if not found.

Included (“title”, 1, 4, 21, 2)

Return: 1 5 8 3

3.3 Query on content, structure and

attributes
 So far, we have discussed the index method
for extracting the index information of
elements, attributes, and texts in a document.
Moreover, we have proposed five basic query
functions for finding out the index information
and inferring the including relationship. Now
we will describe how to use the index method
and the five basic query functions for
processing the higher-level user queries. Based
on the previous example document, we take
three examples to explain how to find out the
results of query on content, structure and

attribute as following. The first and second
examples are combinations of content and
structure query. The third one is a combination
of structure and attribute query.

Example 1: Find out the title and author’s name of every
book whose publisher’s name is “Addison-Wesley”.

Step 1:
Call Match_Text (“Addison-Wesley”)

Return: 1 17 and 1 41
Call Include (“publisher/name”, 1, 17)

Return: 1 16 19 4
Call Include (“publisher/name”, 1, 41)

Return: 1 40 43 4
Step 2:

Call Include (“book”, 1, 16, 19, 4)
Return: 1 4 21 2

Call Include (“book”, 1, 40, 43, 4)
Return: 1 22 45 2

 6

Step 3:
Call Included (“title”, 1, 4, 21, 2)

Return: 1 5 8 3
Call Included (“author/lastname”, 1, 4, 21, 2)

Return: 1 10 13 4
Call Included (“title”, 1, 22, 45, 2)

Return: 1 23 26 3
Call Included (“author/lastname”, 1, 22, 45, 2)

Return: 1 28 31 4 and 1 34 37 4
Step 4:

Call Match_Text (1, 6)
Return: An Introduction to Database Systems

Call Match_Text (1, 11)
Return: Date

Call Match_Text (1, 24)
Return: Foundation for Object/Relational

Databases: The Third Manifesto
Call Match_Text (1, 29)

Return: Date
Call Match_Text (1, 35)

Return: Darwen

In Step 1, after calling Match_Text(“Addison

-Wesley”) function to get index information of
keyword “Addison-Wesley”, the system checks
to see if the keyword “Addison-Wesley” is a
publisher’s name by call Include(“publisher/n-
me”, 1, 17) and Include (“publisher/name”, 1,
41) functions. The Step 2 is finding out which
book includes the index information of results –
1 16 19 4 and 1 40 43 4 in Step 1 by calling
Include(“book”, 1, 16, 19, 4) and Include
(“book”, 1, 40, 43, 4) functions. The Step 3
looks for what index information of “title” and
“author/lastname” are included in index
information of element book - 1 4 21 2 and 1 22
45 2 by calling Included(“title”, 1, 4, 21, 2),
Included(“author/lastname”, 1, 4, 21, 2),
Included(“title”, 1, 4, 21, 2), and Included
(“author/lastname”, 1, 4, 21, 2) functions. The
last Step, the system uses the document number
and the first index interval number of returned
index information of Included() functions in
Step 3 to extract the content of the title and
author’s name for answering the user’s query
by call Match_Text() function sequentially.
Before the system calls the Match_Text()

function, the system has to add 1 to the each
first index interval number of returned index
information in Step 3. These index information
can be used to extract the corresponding
content. For instance, the content of element
title>1 5 8 3 is 1 6>An Introduction to
Database Systems.

Example 2: Find out the title and publisher of every book
whose author’s name is “Darwen”.

Step 1:
Call Match_Text (“Darwen”)

Return: 1 35
Call Include (“author/lastname”, 1, 35)

Return: 1 24 27 4
Step 2:

Call Include (“book”, 1, 24, 27, 4)
Return: 1 22 45 2

Step 3:
Call Included (“title”, 1, 22, 45, 2)

Return: 1 23 26 3
Call Included (“publisher/lastname”, 1, 22, 45, 2)

Return: 1 40 43 4
Step 4:

Call Match_Text (1, 24)
Return: Foundation for Object/Relational
 Databases: The Third Manifesto

Call Match_Text (1, 41)
Return: Addison-Wesley

 The Step 1 checks to see if the keyword
“Darwen” is a author’s name and the Step 2
checks which book includes the author name is
“Darwen”. Step 3 finds out the index
information of book’s title and publisher’ name
and uses these information for answering the
user’s query in Step 4.

Example 3: Find out every book whose publishing year is
“1995”.

Step 1:
Call Match_Att (“year”, “1995”)

Return: 1 4 1995
Call Include (“book”, 1, 4)

Return: 1 4 21 2
Step 2:

Call Included (“title”, 1, 4, 21, 2)
Return: 1 5 8 3

Call Included (“author/lastname”, 1, 4, 21, 2)
Return: 1 10 13 4

Call Included (“publisher/lastname”, 1, 4, 21, 2)
Return: 1 16 19 4

 7

Step 3:
Call Match_Text (1, 6)

Return: An Introduction to Database Systems
Call Match_Text (1, 11)

Return: Date
Call Match_Text (1, 17)

Return: Addison-Wesley

In Step 1, the system will check the keyword

“1995” is included in which book. The Step 2
finds out the index information of book’s title,
author, and publisher and uses these index
information for answering the user’s query in
Step 3.

4 Update method
 After on user insert or remove some element
of structured document, the document content
and index information has to be changed. Once
the structure changed, we have to do something
to maintain the document content and index
information integrations. Otherwise, we cannot
retrieve the content correctly anymore. One of
the update methods is to re-compute the index
information of the document immediately. And
then write the new index information back to
the index information storage. This method is
called Immediate Update, which can maintain
the integration on index information of
document and the content of document. But
this way may waste too much overhead for
frequent updating. Another update methods can
avoid the expensive update cost and provide
update index information more efficiently is
called Lazy update [3]. Lazy Update use an
index update table to record the index update
and index transformation information, it let’s
the system does not need to update the index
immediately. Then, the system can select
suitable time to clean up the index information.
However, Jyh-Hong Tsay et al. did not consider
the validation of the structured document after
inserting and removing the element of

structured documents.
 We take advantages of Lazy Update and
modified the concept of Lazy Update to solve
the problem on the validation of the structured
documents and let the updating of index
information more efficiently. The following are
our different strategies on different cases.

(1) Modifying the specific content of some

element
First of all, we have to find out the

specific content position of the element in
TEXT list and Q-TEXT list that we want to
modify. Then we use the new data to replace
the old data. In this case, we only need to do
this modification immediately, because the
structure of whole XML document does not
be changed.

(2) Removing some element structure

 In this case, we will use the update table
to keep the index interval of the removed
element. For example, we want to remove
the first author of second book of example
document in Figure 4 (i.e. Date). First, we
have to find out which index interval of
element includes the author’s name “Date”.
Next, we record it’s index information (i.e.
<1, 27, 32, 3>) in the update table. Using the
concept of update table a user still could
issue the query after this operation, but the
system needs to check that the element
structure is removed from the index
information lists or not before outputting the
query result.
 If we issue a query: Find out the title and
author’s name of every book whose
publisher’s name is “Addison-Wesley” (i.e.
Example 1 of section 3) after the above
removing operation, the system will check

 8

to see if the index interval of result data is
included in the index interval which are
recorded in the update table. So the result of
Example 1 doesn’t contain “Date”.

(3) Inserting some element structure
In this case, the system will insert the

element structure that we want to add into
the XML document into the last of relative
position of document tree. Because we have
to consider the validation of XML document
and insert the index information of the
inserted element structure into the index
information lists easily.

We will describe the concept of inserting
an element structure by using the following
element structure in Figure 7. Assume that
we will insert the element structure into the
example document in Figure 4. First of all,
the system has to figure out the index
information of tree structure of the inserted
elements, assign the one to document
number, and calculate the difference of
index interval numbers of the root node (i.e.
17-0=17) in the inserted element structure.
The concept of insertion operation and the
result document tree of insertion operation
are shown in Figure 8 and Figure 9
respectively. The inserted element structure
is a sibling of second book in the example

document tree. So the first index interval
number of the root in inserted element
structure is starting form 46 and it’s level
number is starting form 2. The system will
add 46 to each index interval number, add 2
to each level number in the inserted element
structure, add 18 (i.e. the difference of index
interval numbers of root node in inserting
element structure+1) to each index interval
number great than 45 in the original index
information lists, and then insert the index
information of the inserted element structure
into the last of the corresponding position of
the ELEMENT, ATTRIBUTE, TEXT lists.
The new content of all lists after insertion
operation are shown in Figure 10.

<book year=”1997”>

 <title>Current Programming in Java</title>

 <author><lastname>Doug Lea</lastname></author>

<publisher><name>Addison-Wesley</name></publisher>

</book>

book year="1997"
<1, 0, 17, 0>

author
<1, 5, 10, 1>

title
<1, 1, 4, 1>

publisher
<1, 11, 16, 1>

Current Programming
in Java

<1, 2, 3, 2>

lastname
<1, 6, 9, 2>

Doug Lea
<1, 7, 8, 3>

name
<1, 12, 15, 2>

Addison-Wesley
<1, 13, 14, 3>

Figure 7: Inserted element and structure

book year="1995"
<1, 4, 21, 2>

book year="1998"
<1, 22, 45, 2>

author
<1, 9, 14, 3>

title
<1, 5, 8, 3>

publisher
<1, 15, 20, 3>

An Introduction to
Database Systems

<1, 6, 7, 4>

lastname
<1, 10, 13, 4>

Date
<1, 11, 12, 5>

name
<1, 16, 19, 4>

Addison-Wesley
<1, 17, 18, 5>

author
<1, 33, 38, 3>

title
<1, 23, 26, 3>

publisher
<1, 39, 44, 3>

Foundation for
Object/Relational
Databases : The
Third Manifesto
<1, 24, 25, 4>

lastname
<1, 34, 37, 4>

Darwen
<1, 35, 36, 5>

name
<1, 40, 43, 4>

Addison-Wesley
<1, 41, 42, 5>

author
<1, 27, 32, 3>

lastname
<1, 28, 31, 4>

Date
<1, 29, 30, 5>

book year="1997"
<1, 0, 17, 0>

author
<1, 5, 10, 1>

title
<1, 1, 4, 1>

publisher
<1, 11, 16, 1>

Current Programming
in Java

<1, 2, 3, 2>

lastname
<1, 6, 9, 2>

Doug Lea
<1, 7, 8, 3>

name
<1, 12, 15, 2>

Addison-Wesley
<1, 13, 14, 3>

inserted element

#document
<1, 0, 47, 0>

bib
<1, 3, 46, 1>

bib
<1, 1, 2, 1>

Figure 8: The concept of insertion operation

 9

book year="1995"
<1, 4, 21, 2>

book year="1998"
<1, 22, 45, 2>

author
<1, 9, 14, 3>

title
<1, 5, 8, 3>

publisher
<1, 15, 20, 3>

An Introduction to
Database Systems

<1, 6, 7, 4>

lastname
<1, 10, 13, 4>

Date
<1, 11, 12, 5>

name
<1, 16, 19, 4>

Addison-Wesley
<1, 17, 18, 5>

author
<1, 33, 38, 3>

title
<1, 23, 26, 3>

publisher
<1, 39, 44, 3>

Foundation for
Object/Relational
Databases : The
Third Manifesto
<1, 24, 25, 4>

lastname
<1, 34, 37, 4>

Darwen
<1, 35, 36, 5>

name
<1, 40, 43, 4>

Addison-Wesley
<1, 41, 42, 5>

author
<1, 27, 32, 3>

lastname
<1, 28, 31, 4>

Date
<1, 29, 30, 5>

book year="1997"

<1, 46, 63, 2>

author

<1, 51, 56, 3>

title

<1, 47, 50, 3>
publisher

<1, 57, 62, 3>

Current Programming
in Java

<1, 48, 49, 4>

lastname

<1, 52, 55, 4>

Doug Lea

<1, 53, 54, 5>

name

<1, 58, 61, 4>

Addison-Wesley

<1, 59, 60, 5>

#document

<1, 0, 65, 0>

bib

<1, 3, 64, 1>

bib
<1, 1, 2, 1>

Figure 9: The result document tree of insertion operation

Figure 10: The content of lists after insertion
operation

5 Future work
So for, we have discussed the update method

on the index information lists, but did not
discuss how to update the XML document
correspond to the changed index information
lists. The reason is that we can answer user’s
queries just by the index information lists, not
original XML document. Furthermore, we will

propose the write back strategy to handle the
integration problem of the original XML
document and it’s index information lists.
Moreover, we will use the XML scheme for
setting more data types on content of XML
document on the document validation, and take
the XQL or XML-QL [1] grammar to
implement the system query language.

ELEMENT index information:<Doc_No, 1st_index, 2nd_index, level_No>
bib > 1 3 64 1
book > 1 4 21 2 > 1 22 45 2 > 1 46 63 2
title > 1 5 8 3 > 1 23 26 3 > 1 47 50 3
author/lastname > 1 10 13 4 > 1 28 31 4 > 1 34 37 4 > 1 52 55 4
publisher/name > 1 16 19 4 > 1 40 43 4 > 1 58 61 4

ATTRIBUTE index information:<Doc_No, 1st_index, Att_Value>
year > 1 4 1995 > 1 22 1998 > 1 46 1997

TEXT index information:<Doc_No, 1st_index>
An Introduction to Database Systems > 1 6
Date > 1 11 > 1 29
Addison-Wesley > 1 17 > 1 41 > 1 59
Foundation for Object/Relational Databases: The Third Manifesto > 1 24
Darwen > 1 35
Current Programming in Java > 1 48
Doug Lea > 1 53

Q-TEXT index information:<Doc_No, 1st interval>
1 6 > An Introduction to Database Systems
1 11 > Date
1 17 > Addison-Wesley
1 24 > Foundation for Object/Relational Databases: The Third Manifesto
1 29 > Date
1 35 > Darwen
1 41 > Addison-Wesley
1 48 > Current Programming in Java
1 53 > Doug Lea
1 59 > Addison-Wesley

6 Conclusions
 In order to perform structure queries
efficiently on structured documents, we have
proposed the new index method that makes the
users can issue the content, structure and
attribute queries on XML documents. We have
shown how to handle these kinds of queries and
how to use the strategies of update method for
solving the update problem on element’s
insertion, element’s removing and content’s
modification situations.

References
[1] Alin Deutsch, Mary Fernandez, Daniela

Florescu, Alon Levy, Dan Suciu. XML-QL:
A Query Language for XML. March 2001
http://www.w3.org/TR/1998/NOTE-xml-ql-19
980819

[2] Dongwook Shin, Hyuncheol Jang, and
Honglan Jin. BUS: An Effective Indexing

 10

and Retrieval Scheme in Structured
Documents. Dongwook Shin, Hyuncheol
Jang and Honglan Jin; Proceedings of the
third ACM Conference on Digital libraries,
Pages 235 - 243, 1998

[3] Jyh-Jong Tsay and Gang-Heng Lu. Dynamic
Indexing Schemes for Structured Documents.
Master Thesis, Department of Computer
Science and Information Engineering
National Chung Cheng University. August
31, 2000

[4] S. Park, and Hyoung-Joo Kim. A new query
processing technique for XML based on
signature. Database Systems for Advanced
Applications, 2001. Proceedings. Seventh
International Conference, Pages: 22 –29,
2001

[5] Takeyuki Shimura, Masatoshi Yoshikawa and
Shunsuke Uemura. Storage and Retrieval of
XML Documents using Object-Relational
Databases. July 2001.
http://citeseer.nj.nec.com/shimura99storage.
htm

[6] Tuong Dao. An Indexing Model for
Structured Documents to Support Queries on
Content, Structure and Attributes. Research
and Technology Advances in Digital
Libraries, 1998. ADL 98. Proceedings. IEEE
International Forum on 1998 Pages:88-97

[7] Yong Kyu Lee, Seong-Joom Yoo, Kyoungro
Yoon. Index Structures for Structured
Documents. Proceedings of the 1st ACM
international conference on Digital libraries,
Pages 91-99, 1996

[8] W3C. Document Object Model (DOM). July
2001.
http://www.w3.org/DOM/

 11

