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ABSTRACT 
 
We have insight into the importance of resource 
exploration derived from the quest for sustaining 
competitive advantage as well as the growth of the 
firm, which are well-explicated in the resources-
based view. However, we really do not know when 
the firm will seriously commit to this kind of 
activities. Therefore, this study proposes comparative 
approaches using auto-regressive moving-average 
regression (ARMAX), back-propagation neural 
network (BPNN), adaptive neuro-fuzzy inference 
system (ANFIS), or adaptive support vector 
regression (ASVR) to constitute the relationship 
among five indicators, the growth rate of long-term 
investment, the firm size, the return on total asset, the 
return on common equity, and the return on sales. In 
such a way, the methods we build can explain the 
timing of resources exploration in the behavior of 
firm. Meanwhile, the performance between these 
methods is compared quantitatively. 
 
Keywords: resources exploration, auto-regressive 
moving-average regression, back-propagation neural 
network, adaptive neuro-fuzzy inference system, 
adaptive support vector regression. 

 

1. INTRODUCTION 
 
When we think about the firm as a collective of 
resources [1], it drives the different aspects of 
research directions to answer two fundamental 
strategic questions: the sources of competitive 
advantage and the growth trajectory of firm. There is 
fairly general agreement that the accumulation of 
heterogeneous resources can explain the success of 
firm for a period of time [2][3][4][5][6][7]; it also 
shapes the path of firm’s growth [1][8]. However, 
resources or capabilities, like product, have life 
cycles [9]. Thus, researchers always remind us the 
importance of exploring new resources due to the 
pressure of external changing environment [1][8][10].  
We know the importance of resource exploration 
derived from the quest for sustaining competitive 
advantage as well as the growth of the firm that are 
well-explicated in the resources-based view. It is 

worth understanding that the idea of balance between 
exploration and exploitation will be solely achieved 
under the assumption of calculated rationality. 
However, we in fact do not know when the firm 
takes it into account and commits itself to the 
exploring activities. In each occasion of decision-
making, decision makers are constrained by bounded 
rationality [11][12][13] which is raised from two 
facts: (a) managers have limited absorptive capacity, 
and (b) managers acquired finite information 
subjected to the external changing environment. 
Therefore, the managers might miss or postpone the 
exact timing of exploring activities because of their 
inability on controlling the future uncertainty under 
the situation of limited rationality. Accordingly, the 
reinforcement of the precedent tendency mentioned 
above will be stressed by the conservative 
personality of managers. All of these will leads the 
managers to persist on the exploiting the existing 
resources rather than exploring new ones. 
So, we concern the timing problem, namely when the 
risky attitude of managers will be shifted from risk-
avoiding exploiting activities to relative risk-taking 
exploring activities. In the basis of the prospect 
theory [14], we argue that the turning point will be 
triggered by the negative prospects. That is, when the 
firm is framed by positive performance, it will 
incline the managers to utilize the existing resources 
and neglect the need of exploring new ones. On the 
other hand, when the firm suffers from loss or 
decline in performance, it will reverse the risky 
attitude of decision makers to approach risk-taking 
considerably that will ignite more exploring activities. 
And then, we can observe that the trajectory of the 
growth of firm is emerging with the exploration and 
the following exploitation and so on [1][15]. In the 
mean time, we also proposed that large firm holds 
much more resources than small one [16] in this case 
that leads to the large firm’s ‘value function’ [14] is 
flatter than small firm. Therefore, large firm has 
revealed low risk-aversion so as to potentially 
proceed to higher exploring activities in positive 
frames; in contrast, small firm with the emergence of 
high risk-seeking in negative frames will then 
undertake more exploring activities.  
There are five indicators that are the growth rate of 
long-term investment, the firm size, the return on 
total asset, the return on common equity, and the 
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return on sales. The relationship among these 
indicators indeed can be used to analyze the timing 
of resources exploration in the behavior of firm. 
Several quantitative methods, such linear time series 
models with single-output, multi-input structure as 
AR, MA, ARX, ARMA, and ARMAX [17][18], are 
applicable for modeling the dynamics of the 
interaction between five indicators mentioned above. 
Once the trained model has achieved, it interprets the 
timing of resources exploration in the behavior of 
firm based on the coefficients of explanatory 
variables. However, a trained ARMAX model cannot 
reach optimal one with respect to the performance 
criterion of mean absolute percent error. Thus, three 
more nonlinear models, back-propagation neural 
network (BPNN) [19][20], adaptive neuro-fuzzy 
inference system (ANFIS) [21][22], and adaptive 
support vector regression (ASVR) [23][24], are also 
provided in this study so that the performance of 
each model can be compared quantitatively. 
 

2. METHODS 
 
Several linear and nonlinear models are described in 
this section. Three major models: autoregressive 
moving-average regression, back-propagation neural 
network, and segmented adaptive support vector 
regression are introduced here.  
 
2.1. Auto-regressive moving-average regression 

(ARMAX) 
 
A general polynomial black-box model [19] allows a 
flexible model description of the response variables 

nyjty j ,...,2,1);( = , the explanatory 
variables nuitui ,...,2,1);( = , and the 
disturbances neltel ,...,2,1);( = . The most typical single-
output, multi-input system is written as follows. 
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where q  is the shift operator, nunknk ,...,1 are delays for 
input signals, as well as A , 1B ,…, nuB , C , D , and 

1F ,…, nuF  are polynomials in the lag operator 1−q .  
Before estimating the appropriate parameters for the 
model, both the orders of polynomials A , 1B ,…, nuB , 
C , D , and 1F ,…, nuF and the delays of input signals 

nunknk ,...,1  must be determined to make sure whether 
the selected structure is the best. This model can 
perform simulation, forecasting, and parameter 
estimation of univariate time series in the presence of 
auto-regressive moving-average regression 
(ARMAX) [19], especially in financial time series 
applications like asset return problem. ARMAX 
model is described below. 

)()()()(...)()()()( 111 teqCnktuqBnktuqBtyqA nununu +−++−= (2) 

where polynomials A , 1B ,…, nuB , C  indicated by 
the lag operator 1−q  are expressed below.  
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In this study, five indicators suitably plug in 
ARMAX structure for modeling their relationship in 
order to analyze the timing of resources exploration 
in the behavior of firm. More precisely, the growth 
rate of long-term investment is designed as output 

)(ty , as well as the others, the firm size, the return on 
total asset, the return on common equity, and the 
return on sales, are assigned to be input signals )(1 tu , 

)(2 tu , )(3 tu , and )(4 tu , respectively. To select the best 
structure that has the smallest loss function in the 
validation data set is a good way to choose the delays 
for input signals nunknk ,...,1  in Eq. (2). Alternatively, 
a good idea is to select the structure with the best fit 
determined by the number of parameters that will be 
used in modeling. In such a way, the appropriate 
order of polynomial in lag operator 1−q  for )(qA , 

)(1 qB ,…, )(qBnu , )(qC on Eq. (3),(4),and (5) can be 
obtained. After the best structure of ARMAX model 
is selected, it will estimate the parameters of the 
designated structure based on the training and 
validation data sets. 
 
2.2. Back-propagation neural network (BPNN) 
 
A well-known intelligent computing machine, three-
layer back-propagation neural net (BPNN) [20] is 
used for modeling nonlinear structure to analyze the 
timing of resources exploration in the behavior of 
firm. For a three-layer BPNN, a structure of 4×10×1 
multilayer-perceptron is used that the input layer has 
4 input neurons to catch the input patterns, the 
hidden layer has 10 neurons to propagate the 
intermediate signals, and the output layer has 1 
neuron to display the computed results (output )(ty ) 
as shown in Fig. 1. We arrange the input pattern in 
the following four input signals: the firm size )(1 tu , 
the return on total asset )(2 tu , the return on common 
equity )(3 tu , and the return on sales )(4 tu . Only an 
appropriate growth rate of long-term investment )(ty  
is designed as output. For more training assignments 
in this three-layer BPNN, the tangent-sigmoid 
transfer function is applied as the activations in the 
hidden layer, the symmetric saturating linear transfer 
function is employed to the output layer as the 
activations, and Bayesian regulation derived from 
Levenberg-Marquardt training method is used as the 
learning algorithm for three-layer BPNN. Moreover, 
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training epochs is assigned to 1000 as well as 
training stop criteria is set to be 10-6 in this case. 
 
2.3. Adaptive neuro-fuzzy inference system 

(ANFIS) 
 
The acronym ANFIS derives its name from adaptive 
neuro-fuzzy inference system [21]. Using a given 
input/output data set, the ANFIS constructs a fuzzy 
inference system (FIS) whose membership function 
parameters are tuned (adjusted) using either a 
backpropagation gradient descent algorithm alone, or 
in combination with a least squares type of method 
[22]. This allows your fuzzy systems to learn from 
the data they are modeling. It actually is of Sugeno-
type fuzzy inference systems in which ANFIS uses a 
hybrid learning algorithm to identify parameters of 
Sugeno-type fuzzy inference systems. ANFIS can 
also be invoked using an optional argument for 
model validation. The type of model validation that 
takes place with this option is a checking for model 
overfitting, and the argument is a data set called the 
checking data set. We may think of a learning data 
set as a training data set plus another checking data 
set. ANFIS has been shown to be very useful for 
modeling nonlinear system concerning the complex 
dynamic behavior [21], for instances, the 
applications of non-periodic short-term forecasting. 
This is because the feature of ANFIS with inherent 
distributive architecture and the efficient learning 
algorithms for adapting system’s parameters. 
However, ANFIS must follow four constraints: (a) 
Each output is specified to be first or zeroth order 
Sugeno-type function. (b) All output membership 
functions must be a single output with the same type 
and either being linear or constant. Defuzzification 
employs weighted average method (c) the number of 
output membership functions must be equal to the 
number of rules. (d) Unity weight for each rule is 
applied.  
A typical rule in a Sugeno fuzzy model has the form 
 cbyaxzOutputthenyInputandxInputIf ++=== ,21  (6) 
For a zero-order Sugeno model, the output level z  is 
a constant )0( == ba . 
The output level iz  of each rule is weighted by the 
firing strength iw  of the rule. For example, for an 
AND rule with Input 1 = x  and Input 2 = y , the 
firing strength is 
 ))(),(( 21 yFxFAndMethodwi =  (7) 
where (.)2,1F  are the membership functions for Inputs 
1 and 2. The final output of the system is the 
weighted average of all rule outputs, computed as 
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A Sugeno rule operates [21] like the designated 
diagram  as shown in Fig. 2. 
 
2.4. Adaptive support vector regression (ASVR) 
 
Support Vector Machines along with neural networks 
as one of the standard tools for machine learning and 
data mining [23][24]. Initially developed for solving 
classification problems, SV technology can also be 
successfully applied in regression, i.e. functional 
approximation, problems. Unlike pattern recognition 
problems, where the desired outputs are discrete 
values like Booleans, here there are real-valued 
functions [25]. We consider approximating functions 
solved by support vector regression (SVR) as the 
form of 
 ∑
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where )(xφ  are denoted by features. In order to 
introduce all relevant and necessary concept of SV 
regression in a gradual way, a simple linear 
regression is considered first. 

 bxwwxf T += )(),( φ  (10) 
Furthermore, Vapnik introduced a general type of 
loss function, namely, error, the linear loss function 
with ε -insensitivity zone: 
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A new empirical risk is introduced for performing 
support vector regression. 
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According to the learning theory of SVMs, the 
objective is to minimize the empirical risk and norm-
squared of weight vector simultaneously. Thus, 
estimate a linear regression hyperplane 

bxwwxf T += )(),( φ  by minimizing 
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under constrains 
 libxwy ii

T
i ,...,1,)( =+≤−− ξεφ  (14) 

 liybxw iii
T ,...,1,)( * =+≤−+ ξεφ  (15) 

 lii ,...,1,0 =≥ξ  (16) 
 lii ,...,1,0* =≥ξ  (17) 
where the constant C influences a trade-off between 
an approximation error and an estimation error 
decided by the weight vector norm w , and this 
design parameter is chosen by the user. iξ  and *

iξ are 
slack variables as the measurement upper bound and 
lower bound of outputs. This quadratic optimization 
is equivalence to apply Karush-Kuhn-Tucker (KKT) 
conditions for regression in which maximizing dual 
variables Lagrangian ),( *ααdL : 
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subject to constraints 
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After calculating Lagrange multipliers iα  and *

iα , 
find an optimal desired weights vector of the 
regression hyperplane as 
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and an optimal bias of regression hyberplane as 
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In nonlinear cases for regression, the kernal function, 
for typical instances, polynomial, RBF, or sigmoid 
function, will be adopt to replace the scale product 

)()( j
T

i xx φφ  with ),( ji xxK  in Eq. (18).  
If the term )( *

iii ααβ −=  is defined in training data 
set, the output of SVR can be obtained with new 
input pattern iz  [25]. 
 0bgy += β  (24) 
where the vector g  is constructed by 

xzg T
i= , 

and matrix x  stands for patterns in training data set 
as well as vector iz  represents new input pattern. 
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T
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The algorithm applied to the constrained 
optimization of support vector regression (SVR) is 
called adaptive support vector regression (ASVR) 
and designed for exploring two free parameters C 
and ε  such that the computation burden for 
quadratic programming (QP) reduce a lot, and it 
converges to the near-optimal solution soon.  
The unit-step function )(tu  is written by 
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the delta function is represented as 
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and the sign function is defined as 
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Let the original data sequence as expressed below. 
 )}(),...,2(),1({ )0()0()0( nxxxX N =  (28) 
The algorithm of adaptive support vector regression 
(ASVR) is proposed in the following several steps 
from Eq. (29) to Eq. (46). 

Step 1: normalization of data sequence on Eq. (25) 
as follows. 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(~

)3(~
)2(~
)1(~

|)(|max
~

,

)(

)3(
)2(
)1(

)0(

)0(

)0(

)0(

)0(

)0(

)0(

)0(

)0(

nx

x
x
x

ix
XX

nx

x
x
x

X

i

N
NN

MM

 (29) 

Step 2: constructing a simple linear regression 
among the most recent normalized data points, 

)(~),...,(~),1(~ )0()0()0( nxnxx . 
 ψϕ += kkx )(~ )0( , nk ,...,2,1=  (30) 
where ϕ  is the slope and ψ  is the bias in this line.  
Step 3: Eq. (30) turns out to be a normal equation 
and its solution Θ  to this least squared problem is 
obtained. 
 ΩΘ=X
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Step 4: taking difference on Eq. (29) led to 1N−Δ  

followed by normalizing 1N−Δ  to 1N−Λ . 
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Step 5: according to the above sequences both 1N−Δ  

and 1N−Λ , the total deviations κ , the coefficient of 
oscillation τ , the ratio of final deviation to mean 
deviation ρ , the ratio of last two deviation in 
average to mean deviation ϑ , and a coefficient of 
weighted-oscillation at final deviation σ  are 
calculated. 
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 )/tanh( 2 μρσ =  (39) 
Step 6: After that, a brief formula based on the 
several expressions on Eq. (35)-(39) to determine the 
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value of ε  is established in the following Eq. (40)-
(42). 
 { }ϑμ ρμσϕ ⋅−−−= −− )1(|)tanh(|exp ))1(1(2/1 uq u  (40) 
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Once the value of v  has been determined, the ε  in 
Eq. (42) is set, and then the constrained optimization 
on Eq. (18)-(21) will start for several iterations to 
search the optimal 0w  and 0b  on Eq. (22)-(23). In 
support vector regression, an increase value of 
parameter C will highly penalizes the big empirical 
error while an increase value of ε  will reduce the 
support vectors to loose the bound of empirical error 
[26]. Therefore, how to deal with a trade-off between 
C and ε  in SVR is become a very important issue. In 
this research, the relationship between ε  and C, we 
proposed, can be constructed in the basis of modified 
Bessel function of second kind with the order n  [27] 
as expressed below. A specific integer number n  is 
obtained from a function ⎡ ⎤  of the coefficient of the 
oscillation μ  as described on Eq. (33). 
 ⎡ ⎤μ/1=n  (43) 
where the operator ⎡ ⎤μ/1  is represented as a smallest 
integer bigger than μ/1 . 

 
{ }

{ }∑

∑
∞

=

+

−

=

−+

+Φ+Φ
+

−
+

−−−++−==

0

2

1

0

21

)()(
)!(!

)2/(
2
)1(

)2/()!1()1(
2
1)()2/ln()1()(

k

knn

n

k

nkk
n

n
n

knk
knk

knIKC

ε

εεγεε

 (44) 

 ∑
∞

=

+

++Γ
=

0

2

)1(!
)2/()(

k

kn

n knk
I εε  (45) 

where ...5772156.0=γ  is Euler’s constant and 
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The tunable free parameters in SVR can be 
done automatically and referred it to as adaptive 
support vector regression (ASVR). In addition, 
another free parameter σ of radial basis kernel 
function has exploited here for optimizing SVR 
learning. As we know, radial basis function is usually 
utilized as a sort of activation function while training 
an intelligent machine. Furthermore, the radial basis 
function can not only be applied to linear or 
nonlinear dynamics, but it also frequently acted as a 
kernel function for SVR learning  more than 
polynomial or tangent-sigmoid function do. Thus, it 
is important that how to select an optimal one from 
the given training data set is a critical issue. However, 
there is no any unified thumb of rule to search an 
appropriate scale for free parameter σ of radial basis 
kernel function, even though several literatures 
[28][29] has proposed some method to explore the 
near optimal free parameter σ. Accordingly, the 
optimal learning in SVMs becomes an challenge 

problem. In this study, we proposed a novel scheme 
to compute a near optimal value of free parameter σ, 
denoted by rbkfσ , automatically so that it can be 
obtained fast and succinctly according to provided 
training data sequence { }lxxx ,...,, 21 in the following 
formula on Eq. (46) 
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In such a way, the calculation burden for searching 
an appropriate free parameter σ indeed reduces a lot. 
 

3. EMPIRICAL SIMULATION AND 
DISCUSSIONS 

 
A collection of data about five indicators, (i) the 
growth rate of long-term investment (GRLTI), (ii) 
the firm size (FS), (iii) the return on total asset 
(ROA), (iv) the return on common equity (ROE), and 
(v) the return on sales (ROS), from TEJ [30] 
including 30 corporations have been cited herein for 
explaining the timing of resources exploration in the 
behavior of firm to fit in with the real world 
dynamics in changing environments. In order to 
accomplish data manipulation easier, data preprocess 
is required to transform indicator GRLTI linearly 
with appropriate bias, and a natural logarithm applied 
to indicator FS. The first phase designed as 
training/learning stage for modeling linear structure 
of ARMAX as well as nonlinear structure of BPNN 
and SASVR, which is of the posterior analysis from 
observed 383 historical data for a period of 10 years 
from 1995 to 2004. Next, the second phase, the prior 
validation stage proceeded to simulate the empirical 
results for examining the system performance 
employing interpolation from trained model. 
Estimated ARMAX with a bias of scalar (bias2 = 
2000.5) simulated from computer:  

 

)2(0.1648
)1(0.2227)()3(0.0056)1(0.0023

)2(0.004114)3(0.04312)4(0.2023
)3(0.04129)2(0.1651)1(3023.0)(

43

21

−⋅−
−⋅−+−⋅−−⋅−

−⋅−−⋅+−⋅+
−⋅+−⋅+−⋅=

te
tetetutu

tututy
tytytyty

(47) 

Thus, we can construct an estimated ARMAX model 
as expressed in Eq. (47). In this estimated ARMAX 
model, we can check directly from Eq. (47) to 
explain the current GRLTI is related to it’s the most 
recent four lags of GRLI, as well as coupled to the 
second lag of FS, the second lag of ROA, the second 
lag of ROE, and the second lag of ROS. We can 
interpret that in the respect of autoregressive GRLTI 
is definitely auto-correlated to a few of most recent 
historical (the past) GRLTI. Furthermore, there are 
three indicators ROA, ROE, and ROS playing the 
roles to affect the current GRLTI negatively. In other 
words, increasing on ROA, ROE, or ROS will 
depress the current GRLTI. This development can 
meet the typical theory in the prospect theory 
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perspective [14]. Nevertheless, an indicator FS can 
promote the current GRLTI such that the larger FS is, 
the higher GRLTI will be.  It is also noted that 
strictly speaking the residual terms indicated by )(te , 

)1( −te , and )2( −te  in MA part  have small values 
usually. The MA part cannot affect GRLTI 
significantly, even though they have relatively larger 
coefficients with respect to those terms, )(te , )1( −te , 
and )2( −te  as shown in Fig. 3. Obviously, MA part is 
trivial in this ARMAX model as a result of small 
residuals; in contrast, AR and X part of estimated 
ARMAX model are used to determine GRLTI 
predominantly and their corresponding coefficients is 
displayed as shown in Fig. 4. As a matter of fact, the 
most recent lags of GRLTI are essentially related to 
the performance of GRLTI, and secondly we must 
also take FS into account when we examine the 
changes in GRLTI. 
The performance criteria [31] derived by mean 
square error (MSE), mean absolute deviation (MAD), 
and mean absolute percent error (MAPE) will be 
used to compare the empirical simulation for every 
competitive models (ARMAX, BPNN, ANFIS, and 
ASVR) applied to the same sample data set, as listed 
in Table 1. After the comparison between three 
models, nonlinear models have better performance 
on MSE, MAD, and MAPE than the linear one, 
namely, ARMAX model. This is because MAPE 
criterion of the trained ARMAX model with different 
biases always cannot less than 5%. It implies that the 
accuracy of empirical simulation is not enough for 
the trained ARMAX model. On the contrary, 
nonlinear models like BPNN, ANFIS, and ASVR 
have achieved higher effectiveness in modeling. 
Furthermore, the goodness of fit for the proposed 
methods, as listed in Table 1, is also tested by Q-test 
[17], and null hypothesis cannot be rejected due to all 
p-value greater than level of significance (5%). In 
other words, all of trained models are significant on 
the test of fitting problem.  As for model validation, 
ASVR has achieved the best Akaike information 
criterion (AIC) and Bayesian information criterion 
(BIC) [18], that is, the better reliability for ASVR 
modeling. However, the individual interaction 
between any single input indicator and the output 
indicator cannot be presented in the nonlinear 
structures of BPNN, ANFIS, or ASVR. In linear 
structure of ARMAX model, we can view directly 
which input indicator affecting the output indicator 
to explain the timing of resources exploration in the 
behavior of firm. Even though SVR takes a large 
longer time to train its model, ASVR we proposed 
takes much less computation time for modeling than 
ordinary SVR as listed in Table 1. 
 

4. CONCLUSING REMARKS 
 

The following statements summarize the 
accomplishment of the proposed methods. 

(a) In the linear structure of ARMAX model, four 
input indicators (the firm size, the return on total 
asset, the return on common equity, and the 
return on sales) can actually affect the changes 
in the output indicator (the growth rate of long-
term investment) significantly over the different 
levels. That is, the resulting ARMAX model can 
explain the growth rate of long-term investment 
that can help decision-maker to explore new 
resources due to the pressure of external 
changing environment. This dynamics also can 
be considered as the timing when the risky 
attitude of managers will be shifted from risk-
avoiding exploiting activities to relative risk-
taking exploring activities. 

(b) In ARMAX model, the firm size affects the 
growth rate of long-term investment positively 
whereas the return on total asset, the return on 
common equity, and the return on sales 
influence the growth rate of long-term 
investment negatively. Besides, 1-lag and 2-lag 
of innovations are also involved in the resulting 
output. There are four lags within auto-
regression of ARMAX model, and the auto-
regression of ARMAX model dominates the 
growth rate of long-term investment largely 
since the coefficients with respect to four lags of 
auto-regression are relatively bigger than the 
other parts. Secondly, we cannot neglect the 
contribution of 3-lag of firm size to the output 
due to its big coefficient. 

(c) For a given long length data stream, the 
performance of estimation using ASVR not only 
reduces the MSE a lot to attain better 
generalization, but it also improves MAPE 
highly to boost the localization as comparing 
with the ordinary SVR. Clearly, the nonlinear 
structure of ASVR can get the satisfactory 
results better than the linear structure of 
ARMAX model or the nonlinear structure of 
BPNN and ANFIS. However, the nonlinear 
models, BPNN, ANFIS, or ASVR, cannot tell us 
the exact the contribution of individual factor to 
the output, the growth rate of long-term 
investment, because those factors are hidden in 
the nonlinear system. 
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TABLE 1 

The performance criteria is asserted by using mean 
square error (MSE), mean absolute deviation (MAD), 
and mean absolute percent error (MAPE) for five 
indicators to analyze the timing of resources 
exploration in the behavior of firm with 383 sampled 
data from 1995 to 2004. Data preprocess has been 
manipulated linearly with two different biases 
(bias1=1000.5 and bias2=2000.5). The goodness of 
fit for the proposed methods is also test by Q-test 
with the level of significance ( α =0.05). Model 
validation is evaluated by Akaike information 
criterion (AIC) or Bayesian information criterion 
(BIC) and the computation time is done as well. 
 
Criteria ARMAX 

(bias1) 
ARMAX 
(bias2) 

BPNN 
(bias2) 

ANFIS 
(bias2) 

SVR 
(bias1)

ASVR 
(bias2) 

MSE 0.0025 0.0023 0.0021 0.0021 0.0021 0.0000215
MAD 0.0063 0.0085 0.0066 0.0068 0.0457 0.0046 

MAPE 0.0532 0.0511 0.0349 0.0368 0.3856 0.0392 
p-VALUE 0.4415 0.1583 0.4823 0.6262 0.0733 0.4797 

AIC -1205.0 -1230.6 -1258.5 -1261.2 -2520.9 -2293.5 
BIC -1189.2 -1214.8 -1242.7 -1245.4 -2505.1 -2285.8 

Method abbreviation 
1. ARMAX- Auto-regressive Moving-average Regression 
2. BPNN- Back-propagation Neural Network 
3. ANFIS- Adaptive Neuro-fuzzy Inference System 
4. ASVR- Adaptive Support Vector Regression 
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Figure 1. A typical three-layer BPNN architecture 
and Tangent-sigmoid and Pure-line transfer function 
used as the output of activations in the hidden layer 
and output layer, respectively. 
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Figure 2. A fuzzy inference through a single rule is 
conducted by ANFIS. 
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Figure 3. The coefficients with respect to the 
corresponding explanatory variables of AR, MA and 
X parts of ARMAX are displayed. 
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Figure 4. The coefficients with respect to the 
corresponding explanatory variables of AR and X 
parts of ARMAX model are emphasized here. 

 


