
Monona — A Poor Man’s DIY Dictionary Kit

Wuu Yang Pin-Chia Feng

Computer and Information Science Foreign Languages and Literatures

National Chiao-Tung University National Chiao-Tung University

Hsin-Chu, Taiwan Hsin-Chu, Taiwan

Repulbic of China Repulbic of China

wuuyang@cis.nctu.edu.tw pcfeng@cc.nctu.edu.tw

Abstract

When learning a new foreign language, a
non-native speaker met more problems in us-
ing a word than in understanding the meaning
of the word. The Monona system is a use-
ful tool for learners of English that provides
a user with many sample sentences contain-
ing a queried word. Monona builds a database
of the high-quality articles that are available
freely in the internet and an accompanied in-
dex. Since building the index is done auto-
matically by programs, it is cheap to add more
articles to the database. Finally, a user inter-
face is built with the Java programming lan-
guage that allows a user to enter queries. The
results are presented in a web browser.

keywords: composition, concordance, dic-
tionary, word processing

1 Introduction

Dictionaries have been a great help for non-
native speakers to learn a foreign languages,
but only at the early stages. What a more
advanced non-native speaker wants most are
sample sentences, that is, she/he wants to
know how to use a given word. For instance,
even given the definition ”a situation in which
a desired outcome or solution is impossible to

attain because of a set of inherently illogical
rules or conditions”, it is not easy to see how
the word catch-22 is usually used in a sen-
tence. On the other hand, with a sample sen-
tence ”the catch-22 of a closed repertoire, only
music that is already familiar is thought to de-
serve familiarity” [1], a user sees not only the
meaning but also the usage of the word catch-
22.

Many modern dictionaries [3, 4] have added
helpful information, such as idioms and short
phrases, in addition to the definitions of
words. But, due to the sizes of dictionaries,
few contain sufficient examples as far as a non-
native speaker would like to see.

It is too easy for a non-native speaker to
write a sentence that agrees with all the gram-
mar rules but that is completely unnatural to
the native speakers (you probably could find
such sentences in this article). The root of this
problem lies in the fact that grammar rules are
never complete. Though grammars can help
a non-native speaker to learn a new language
quickly, there are always exceptions to rules
listed in a grammar book. The best way to
learn a natural language is to use it and to see
how it is actually used.

The Monona system is similar to an elec-
tronic English concordance that provides a



user with many sample sentences that con-
tains a queried word. It aims at helping non-
native speakers to write and speak natural En-
glish.

The first question in designing Monona is
finding sufficient sample sentences. It is out
of the question to ask professional editors to
compile sentences for all the English words
due to the budget problem. In Monona, the
sources are taken from the internet where
there are many organizations that publish
free, high-quality articles, such as Times and
Scientific American. These high-quality arti-
cles are good enough to serve as models for
non-native speakers to learn English.

After an article is retrieved from the in-
ternet (manually), a program, called sindex,
builds an index file for the words in the ar-
ticle and a database of English sentences. A
second program, called smerge, merges mul-
tiple index files into a single one. The third
program, called ssearch, provides a user in-
terface to search the database with a queried
word and to present the results of searching
to the user. The third program is written in
Java and hence should be able to run on most
platforms.

An advantage of the Monona system is that
new sentences can be easily added to our col-
lection. Only a new index needs to be built
when new articles are added to the database.
Monona can also be used to study the writing
style of a specific writer, such as Jane Austen’s
work, or of a particular academic field, such
as chemistry. It is also easy to add a dictio-
nary facility to Monona: by arranging the in-
dex properly, the definition of a word could
be viewed as a quotation containing the word.
Monona can also help editors to compile a dic-
tionary.

This paper presents the design and imple-
mentation of the Monona system. The re-
mainder of this paper is organized as follows:

The next section discusses how to decide the
boundaries of words and sentences. The third
section discusses the mechanism for merging
the index files. The fourth section discusses
the user interface of the query system. The
last section concludes this paper.

2 Building the Index

The first stage of the Monona system is the
indexing program sindex. Sindex divides the
input article into words and sentences. In-
dividual sentences are added to the database
separately. The words are used to build an in-
dex, which are used in the searching program.

The input article is a text file. Because a
user might want to view the entire article with
a browser, the input article is marked with
a few simple html tags, such as <header>,
<title>, and <p>. Because we are only in-
terested in the primary text of the article, cer-
tain information, such as the copyright notice,
publication date, author(s), etc., is skipped.
Monona provodes the pair of tags <!s> and
<!q> to mark the interesting texts. Only the
text inside the pair of tags will be indexed.

Ordinary English words are made up of En-
glish letters. In everyday English we also use
abbreviations such as Mr., etc., etc., special
words, such as catch-22, and many scien-
tific words, such as RU486. In Monona, only
ordinary words will be considered for index-
ing. Abbreviations, special words, and scien-
tific words are not indexed. However, Monona
also provides the pair of tags <!w> and <!e>

to group a sequence of characters that will be
indexed as ordinary English words. For in-
stance, we could use the following tags to in-
dex the word catch-22:

The <!w>catch-22<!w> of a

closed repertoire, only music

that is already familiar is



thought to deserve

familiarity.

Compound
words, such as brother-in-law, are treated
as three independent words, as is done in most
dictionaries. An editor can also choose to
use the pair of tags <!w>brother-in-law<!e>
to force Monona to index on the whole word
brother-in-law. Almost all characters could
be enclosed in the pair of tags <!w> and <!e>.
In order to reduce the size of the index file,

certain common words are not indexed. These
words include the pronouns (such as I, you,
etc.), prepositions (such as in, at, etc.), ab-
breviations (such as A., Mr., Jr., etc.), and
common verbs (such as have, is, etc.). These
avoided words are explicitly listed in a file,
which can be edited as necessary.
In Monona, upper-case letters are treated

as their lower-case counterparts.
Numbers, such as 1098, 3.1416, etc., are

also not indexed because their usages are very
uniform and can be found in many popular
dictionaries.
As a rule, Monona usually indexes on all

words in the regions that are explicitly marked
by the pair of tags <!s> and <!q> in an article.
However, Monona also provides a pair of tags
<!y> and <!z> that can be used to mark a
region in the article in which all words will
not be indexed.
A difficulty in processing English words in-

telligently is that there are many inflections of
a word. Nouns have singular and plural forms.
Verbs have many tenses. Adjectives and ad-
verbs have comparative and superlative forms.
For instance, fantasy and fantasies are es-
sentially the same word. In Monona, every
word taken from an article is therefore trans-
formed to its canonical form. Plural nouns are
turned into their singular form; verbs in the
past tense, part participle, present participle,
and the third-person singular form are turned

to the original form; adjectives and adverbs
in the comparative and superlative form are
translated to their normal form.
The transformation is not easy because, in

English, there are many exceptions to the
rules of inflection. Such irregular examples in-
clude criterion and criteria. In Monona,
we use the following rules to transform a word
to its canonical form. These rules are applied
in the order listed below.

1. Words ending with ables, ages, ances,
ants, ars, ates, cals, ences, ents, ers,
eses, graphs, hoods, ians, ings, isms,
ists, ments, ors, scopes, ships, sions,
sives, tions, tives, tons, tudes, tures
are considered the plural form of a word.
Monona simply deletes the last character
s and assumes the transformed word is in
the canonical form.

2. If a word ends with aries (such as
ovaries), its suffix is replaced with ary.
If a word ends with ating (such as
creating), its suffix is replaced with ate.
If a word ends with encies (such as
currencies), its suffix is replaced with
ency. If a word ends with eries (such
as arteries), its suffix is replaced with
ery. If a word ends with ifies (such
as justifies), its suffix is replaced with
ify. If a word ends with ified (such
as notified), its suffix is replaced with
ify. If a word ends with ifying (such as
qualifying), its suffix is replaced with
ify. If a word ends with ities (such as
activities), its suffix is replaced with
ity. If a word ends with ories (such
as observatories), its suffix is replaced
with ory. Monona assumes the trans-
formed word is in the canonical form.

3. If a word ends with s (such as gifts),
Monona first deletes its suffix s. If the



transformed word appears a table Sword,
then Monona assumes it is in the canon-
ical form.

4. If a word ends with es (such as matches),
Monona first deletes its suffix es. If
the transformed word appears a table
ESword, then Monona assumes it is in the
canonical form.

5. If a word ends with ies (such as
countries), Monona first changes its suf-
fix to y. If the transformed word appears
a table IESword, then Monona assumes it
is in the canonical form.

6. If a word ends with ves (such as calves),
Monona first changes its suffix to f. If
the transformed word appears a table
VESword, then Monona assumes it is in
the canonical form.

7. If a word ends with ves (such as wives),
Monona first changes its suffix to fe.
If the transformed word appears a table
EVESword, then Monona assumes it is in
the canonical form.

8. If a word ends with d (such as achieved),
Monona first deletes its suffix d. If the
transformed word appears a table Dword,
then Monona assumes it is in the canon-
ical form.

9. If a word ends with ed (such as
accepted), Monona first deletes its suf-
fix ed. If the transformed word appears a
table EDword, then Monona assumes it is
in the canonical form.

10. If a word ends with ied (such as
carried), Monona first ahanges its suf-
fix to y. If the transformed word appears
a table IEDword, then Monona assumes it
is in the canonical form.

11. If a word ends with ed and the third-to-
the-last and the fourth-to-the-last char-
acters are identical (such as mapped),
Monona first deletes its last three char-
acters. If the transformed word appears
a table REDword, then Monona assumes it
is in the canonical form.

12. If a word ends with ing (such as
boiling), Monona first deletes its suffix
ing. If the transformed word appears a
table INGword, then Monona assumes it
is in the canonical form.

13. If a word ends with ing and the fourth-
to-the-last and the fifth-to-the-last char-
acters are identical (such as robbing),
Monona first deletes its last four charac-
ters. If the transformed word appears a
table RINGword, then Monona assumes it
is in the canonical form.

14. If a word ends with ing (such as
automating), Monona first changes its
suffix to e. If the transformed word ap-
pears a table EINGword, then Monona as-
sumes it is in the canonical form.

15. If a word ends with r (such as finer),
Monona first deletes its suffix r. If the
transformed word appears a table Rword,
then Monona assumes it is in the canon-
ical form.

16. If a word ends with er (such as clearer),
Monona first deletes its suffix er. If
the transformed word appears a table
ERword, then Monona assumes it is in the
canonical form.

17. If a word ends with ier (such as
wearier), Monona first changes its suf-
fix to y. If the transformed word appears
a table IERword, then Monona assumes it
is in the canonical form.



18. If a word ends with er and the third-to-
the-last and the fourth-to-the-last char-
acters are identical (such as hotter),
Monona first deletes its last three char-
acters. If the transformed word appears
a table RERword, then Monona assumes it
is in the canonical form.

19. If a word ends with st (such as crudest),
Monona first deletes its suffix st. If
the transformed word appears a table
STword, then Monona assumes it is in the
canonical form.

20. If a word ends with est (such as
deepest), Monona first deletes its suffix
est. If the transformed word appears a
table ESTword, then Monona assumes it
is in the canonical form.

21. If a word ends with iest (such as
chilliest), Monona first changes its suf-
fix to y. If the transformed word appears
a table IESTword, then Monona assumes
it is in the canonical form.

22. If a word ends with est and the fourth-
to-the-last and the fifth-to-the-last char-
acters are identical (such as hottest),
Monona first deletes its last four charac-
ters. If the transformed word appears a
table RESTword, then Monona assumes it
is in the canonical form.

23. Monona keeps a table SPECIALword of ir-
regular inflections, such as go and went.
A word not matching any of the above
rules will be checked again this table to
see if it is an irregular inflection.

24. A word not matching any of the above
rules are considered to be in its canonical
form.

The first and the second rules do not require
any tables. However, the other 21 rules rely
on tables.

The table EDword contains the words that
have inflections by adding the suffix ed. Other
tables contain similar information. The 21
tables are compiled manually. When a new
article is about to be added to the Monona
database, we check all the words that are not
already in the database. Each word is added
to appropriate tables. It turns out that com-
piling these tables constitutes a major part of
the efforts in developing the Monona system.

When a user submits a query, his query
must also go through the same transforma-
tion. This means that the query interface
ssearch must also reserve memory space for
the 21 tables. We are trying to find more rules
similar to the first and the second rules in or-
der to reduce the size of the 21 tables.

A second difficulty in processing English
words intelligently is that there are different
words that happen to be spelled identically.
For instance, the word wound can mean injury
or it can be considered as the past tense of
the verb wind. Therefore, the canonical form
of the word wound could be either wound or
wind. For such words, Monona makes use of
a meta-file that links together these different
canonical forms of the same word.

An article is divided into individual sen-
tences. Each sentence is stored in a single
quotefile in the Monona database. Deciding
the boundary of a sentence also causes a few
minor problems. Usually, a sentence ends with
a period, a question mark, or an exclamation
mark . However, a period may also be used
as the abbreviation symbol, such as Mr.. Fur-
thermore, a sentence might interfere with quo-
tations. A sentence may be divided into two
separate quotations and a quotation may con-
tain two or more sentences. In this case, the
last sentence inside a quotation ends with .",
!" or ?". Similarly, a sentence inside a pair of
parentheses may end with .), !), or ?).

Monona keeps a list of common abbrevia-



tions. If a period together with the preceding
word is one of the abbreviations, the period
is taken as a part of the abbreviation. Oth-
erwise, a sentence is delimited by one of the
six punctuation signs: ., !, ?, .", !", and ?".
Other quotation signs are treated as ordinary
punctuation marks. An implication is that
a long quotation might be partitioned into
several sentences. For instance, the following
quotation is divided into four sentences.

The office is quiet this

morning. "The plant grows,"

she talked to me, "pretty well

in the house. Do you know how

to use the xerox machine?"

There are five xerox machines

in our office.

Sometimes, we would like a group of sen-
tences to be stored as in a single quotefile, for
instance, a poem. In this case, we can use the
pair of tags <!n> and <!q> to indicate a re-
gion of text that should be treated as a single
sentence. For instance,

<!n>Humpty Dumpty sat on a

wall.

Humpty Dumpty had a great

fall.

All the King’s horses and all

the King’s men

Could not put Humpty Dumpty

together again.<!q>

The tags defined in Monona are used to
control the indexing operations. Note that
Monona is designed to require as little human
intervention as possible. For instance, after
retrieving an article from the world-wide web,
we add only a few html tags to highlight the
title, author, date, and paragraphs in the ar-
ticle. Few other tags are added in an usual
article. Because we totally trust the selected

magazines concerning the quality of the ar-
ticles, there is no extra editing work on the
source articles. In this way, we can quickly ac-
cumulate a large database at very little cost.
Currently, the database in Monona contains
around 20 megabytes of pure text.
The output of the indexing program con-

sists of the index file and a collection of quote-
files. The quotefiles are added to the Monona
database. The format of the index file is sim-
ilar to the database of the bib program in the
Unix system. Below is a sample index file:

%A able
%F godel1999
%X 000000038
%T 000000858
%F money2000
%X 000000021
%T 000000503

%A abnormally
%F health1999
%X 000000025
%T 000000444

%A aborigine
%F walcott1992
%X 000000173
%T 000003555

An index file is divided into segments. Each
segment, which is indicated by the %A label,
corresponds to an indexed word. A segment
is made up of one or more elements. Each
element contains three labels: %F (which indi-
cates the file name), %X (which indicates the
extension of the file name) and %T (which in-
dicates an anchor point in the article).
The Monona database consists of many

quotefiles. The name of a quotefile is made
up of the %F and %X labels. In the above ex-
ample database, the first quotefile containing
the word able is godel1999.000000038. All



the quotefiles taken from an article is collected
under a directory in the Monona database.

3 Merging the Indexes

The second stage of Monona is the smerge
program. It merges and sorts the index files
produced by sindex or smerge.

Smerge also prepares several header files for
inclusion in the third stage ssearch. The
header files could be prepared in the C lan-
guage or in the Java language.

In the C language version, the header files
define several data structures, their sizes, and
their values. These header files will be com-
piled together with other part of the ssearch
program. A sample C header file is as follows:

int anchorCNT=31956;

ANCHORNODETYPE

anchorTab[31957] = {
{3709,8,56},

{3709,11,125},
{2306,52,1115}, . . . };

In the Java language version, the header
files defines the data structures and their sizes.
Their values are prepared in a separate file
which will be an input file for the ssearch

program.

The data structures defined in these header
files are the various tables (Sword, EDword,
etc.) used in the transformation process.
Smerge dumps these data structures in the al-
phabetical order.

Smerge makes use of the binary search tree
[2] when it merges several index files. After
merging the indexes, smerge dumps the com-
bined index to a file in the sorted order. The
combined index will be an input file to the
ssearch stage of Monona.

Figure 1: Query interface

4 The Querying Interface

The third stage of Monona is the query in-
terface. There are two versions of the query
interface. One version is implemented as
a server in the Unix environment. Other
programs may communicate with the server
through inter-process communication facili-
ties. Based on this server, we built a web site
that answers queries from all over the world-
wide web.

The second version of the query interface
is implemented in the Java language. This
version is a stand-alone program. Due to
the portability of Java programs, this version
should be able to run on most platforms. A
sample interface is shown in Figure 1.

The result of a query is prepared in the
html format. Monona finally invokes an in-
ternet browser, such as Internet Explorer or
Netscape, to present the result. A sample re-
sult is shown in the Figure 2.

The main data structures used in ssearch

are the index and the transformation tables.
All of these data structures are organized as
ordered lists with the binary search opera-
tions. The ordered lists are actually built by
the previous stage, smerge. Ssearch simply
restores the ordered lists from the dump files



Figure 2: The result of a query

produced by smerge.

5 Conclusion

We have described the design and imple-
mentation of a useful tool for non-native
speakers to learn English. Monona consists
of three stages: sindex builds an index for an
input article. smerge combines several index
files into a single index. ssearch provides a
query interface. Currently we are working on
enriching the Monona database while reducing
the size of the index and the transformation
tables.

Acknowledgement

This work is supported, in part, by Na-
tional Science Council, Taiwan, Republic of
China, under contracts NSC 89-2213-E-009-
014, NSC 89-2213-E-009-068, NSC 89-2213-E-
009-146 and NSC 90-2213-E-009-142.

References

[1] The American Heritage Dictionary of
the English Language, 3rd Edition,

Houghton Mifflin Company, New York,
1992.

[2] E. Horowitz, E., S. Sahni and S.
Anderson-Freed, “Fundamentals of Data
Structures in C,” W.H. Freeman and
Company, New York, 1993.

[3] Webster’s Ninth New Collegiate Dic-
tionary, Merriam-Webster, Springfield,
Massachusetts, 1985.

[4] Webster’s New World Dictionary of
American English, Third College Edition,
Prentice Hall, New York, 1994.


