1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

SPEED UP THE EXHAUSTIVE SEARCH ON
FRACTAL IMAGE COMPRESSION

M. H Hung, C. H. Hsieh, J. H. Jeng, and J. D. Sun

Department of Information Engineering, I-Shou University
Tahsu, Kaohsiung, Taiwan, R.0.C
Email:{m863002m,hsieh}@csa500.isu.edu.tw

ABSTRACT

The encoding process of fractal image compression is
extremely time consuming. This paper presents two fast
algorithms which aim to reduce the redundant
computations of the exhaustive search method. The
simulation results indicate that the computations of the two
presented algorithms reduces the encoding time over 17%.

1. INTRODUCTION

The most popular fractal compression technique is the so-
called block-based compression presented by Jacquin, who
used transformations defined for image blocks to encode
image data [1]-[4]. In the block-based approach, two
operation data sets called called range pool and domain
pool are used. The input image is divided into
nonoverlapping blocks with a fixed size, say 8 x 8. The
collection of these blocks forms the range pool. By
partitioning the image into overlapped blocks with another
fixed size, say 16 x 16, we obtain the domain pool. Each
domain block D is shrunk to 8x8 first, and rotated with
degree 90°, 180° and 270° together with an additional flip
with respect to the vertical center line to constitute 8
orientations. The encoding process is to search the best
match domain block from the domain pool for a given
range block in the range pool. The encoding with an
exhaustive search is extremely time consuming.

A number of fast algorithms such as block classification
[21,[31,[4], and DCT-domain block matching [5],[6] have
been proposed to the speed up the exhaustive search
process. This paper presents two fast algorithms which
reduce the redundant computations of the exhaustive
search algorithm. They can be combined together and may
also be applied into the existing fast algorithms to further
reduce the computation. The analysis of the computations
for the exhaustive search method is first presented. The
proposed fast algorithms are then described. Finally, the
simulation results are given.

89

2. ANALYSIS OF COMPUTATION

In the matching process, the domain block is shrunk to the
same block size as the range block. Assume that the block
size is NxN, the shrunk domain block is represented as
D=(ayg, 295 «++--- , 8y.in1)» and the range block is R=(by,
by iy weeres , byan)- For a given R, the search process is to
find a D from the domain pool, the contrast factor § and
the brightness factor 0 minimizing (1)

N-1N-1

g=ZZ(S.ai’j+o—b,—J)2)

i=0 j=0

up to the 8 orientations stated above. Taking the partial
derivatives of (1) with respective to s and o, and setting
zero, one obtains

2N—l N-1 N-1N-] N-1N-1
N Zzai,jbu_ =y bl/
s= i=0 j=0 i=0 j=0 i=0 j=0
-) TEVEE N-1N-1
2 2
N Zzai.j _(al,j) (2)
i=0 j=0 i=0 j=0
, -
= N 'Pab Sa Sb
2 2
N?-Q,-S:
1 N-1N-1 N-1N-1
0_—]\7 ;-Ob,j—'S‘ a,j
1 i=0 j= =0 j=0 (3)
- Nz [Sb S Sa]

An substitution of (2) and (3) into (1), (1) becomes

1998 Intemational Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

1 N-1 N-1 N-I N-1 N-1 N=1 N=IN-1 N-l N-1|
€=—-—2[ZZb,.2j+s(sZZa,zj -2y > a, b, +2:00 > a)+o(N*-0-23">"b,)

N |i@i= 7 w0 =0 i=0 j=0 im0 j=0 i=0 j=0
=—j—vl_2_[0b+s(5-Q,—2-R,b+2-0-Sa)+0(N2~0—2-S,,)] G

There are 8 computations of (2), (3) and (4) corresponding
to the 8 orientations. The amount of computations of each
term are listed in Table 1. It is noted that ZZb;; and ZZb;;
are neglected since they are calculated only once for each
range block. For N=8, the computations required are 704
mul/div + 704 add/sub operations for each range block.

o o o (-] o -3 o L) -3
Table 1. Computational complexity for the matching of R it e .
and D with 8 orientations °a‘__| °a‘ﬁ °34_1 °au 'a” °au °au °a“6 od, PIS.VIOUS vertical
- » |—> neighbor block
Term Computations % fao Oay On %3y O, O %o, 1%, B
S,=Z%a N? add o [Oas0 Car Paa ® g %o Ca a1
Q.'—'Zzaif I\]2 mul+ N2 add \°a7| ‘ny %1, sy, °‘7_1 o‘u Q‘u eau °a,
P,=ZZab; 8x(N? mul+ N? add) N Current domain
. Previous horizontal block By,
Eq.(2) 8x(5 mul/div+2 add/sub) neighbor block By,
Eq.(3) 8x(2 mul/div+ 1 add/sub) Figure 1. The relation between the current domain block
and the neighbor domain blocks
Eq.(4) 8x(9 mul/div+ 5 add/sub) s
- Also, it can be computed from the previous vertical block
Total (128+9 N?) mul/div + (64+10 N?) add/sub as

Note:add(addition operator), sub(subtraction operator),
mul(multiplication operator), div(division operator)

3. FAST ALGORITHMS

3.1 Algorithm I

This algorithm reduces the redundant computations of
IZa;and I3 Assume that the block size is 8x8 and the
neighboring domain blocks are overlapped with one-pixel
apart. Figure 1 shows the relation between the computed
parts of current block B,, and the previous neighbor block
in vertical direction, B,,,, and the pervious neighbor block
in horizontal direction, By,..

The sum of entries in the blocks are given as

71 7 7
sum(Be) =Y. 2.4, sum(R) =D a,,,sum(C;) =) 4,
§=0 i=0 =0 i=0
where sum(R,) and sum(C;) denote the sum of elements for
the i row and for j* column, respectively. Since sum(B,.,)
and sum(B,,) are already computed, the quantity sum(B,)
can be calculated from the previous horizontal neighbor
block as

sum(B, ;) = sum(By ;-)= sum(C_))+ sum(C5)

90

sum(B, ;)= sum(B,_, ;)— sum(R_)+ sum(R;)

Similarly, for square sum, one can derive the formulas
based on the previously computed quantities as

sqr_sum(B,) = sqr _sum(B,,,)—sqr_sum(C_))+sqr _sum(C,)

sqr_sum(B, ;) =sqr _ sum(B,_,,)—sqr_sum(R)+ sqr_sum(R,)

The new formulas which re-use the previous horizontal
neighbor blocks or vertical neighbor blocks need only 16
additions and 16 additions+16 multiplications for the
calculations of Za; and ZZa;’ . The origional formulas
required of 64 additions and 64 additions+64
multiplications. Therefore, the reduction of computations
for additions and multiplications for each range block are
96 and 48, respecrively. This corresponds to the reduction
ratios of 96/704=13.6% for additions and 48/704=6.8% for
multiplications.

3.2 Algorithm II

This algorithm reduces the redundant computation of
ZZab;;. In the comparison of R and D, R is fixed while
there are 8 orientations for D. Figure 2 shows the relation
of the entries for each orientation using 4x4 block as an
example.

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

* b 2 D' D? D’
an_o\ A, a2 /%3 B3 Q3 Q3 333 33 83, aq3) 33, 430 0 Qo g
N .
2, \E\\m\,\,a’l,’z a3 Qo Ap Ay a3 A3 2) 3y a1 A, 4, Q;
Pl

az_g/a;,] 3\2}\32,3 Q1 A, Ay &, a3 A A A, 33 Qo 3,

5;_ o 331 332 53\,3 0 10 Do 3o dg3 oy Q1 dgp 35 @3 &3 a3
D* D’ D¢ D’

3 8 Ay Ao Qo B0 B0 3o 30 3 By 353 23 33 33 g3

a3 A7 4 3 B, A A A, 30) A3 B3 332 35 @15 gy

3 ¥y By G 2 Q2 Ay A3, Ao A 32 3, 231 @) 33 3,

3 8;; @) 83 33 3 Q3 833 o Qg gy 8p3 30 5 o

Figure 2. The relation of the entries for each orientation of domain block

In D° D', D? and D’, the first diagonal entries appear again
in D, DY, D’ and Df in the same positions, respectively.
Similarly, the second diagonal entries of D°, D!, D* and D?
also appear again in D7, D, D®, and D*, respectively. Table
2 shows all the repeated portions.

Table 2. Repeated data in the 8 orientations

256x256 and 256 gray levels. The size of image block is
16x16 for elements from the domain pool and 8x8 for that
from the range pool. The program is written in Borland
C++ of 32-bit window application run on Pentium-133
computer. Table 3 shows the encoding time using the
exhaustive search and the proposed fast algorithms. The
experimental results approximately match the analysis of
the computational complexity in the previous section.

Table 3. Comparison of encoding times for various

D diagonal line appear again in D
D’ 8021 2;2855(1%) D’
D' 853,285 3;0(1%) D*
D? 3338,y 255(1%) -
i 85,0871 812805(1%) D
D° 292,53, az.o(znd) o
D' 33,822, 81) a<J,o(2"d) 9%
b’ 2508, 312 303(2") D°
D’ 30811222 2;5(2™) D¢

It indicated that the partial results of ZZa;;b;; for D°, D', D?
and D* can be used for the computation of ZZa;;b;; for D*,
D’, D® and D’. For example, in the computation of R and
D°, the term (agobog+a; by +a,,b,,%a55b55) is already
computed, but it will be computed again for D;’. So if one
saves these computed partial results for the computations
of R to D° D', D? and D’, then re-uses the quantities for the
computations of R to D*, D’, D® and D’, one can thus
remove all the redundant computations. For 8x8 blocks,
16x4 additions+16x4 multiplications will be removed,
which corresponds to 64/704 = 9.09% reductions for both
additions and multiplications. This algorithm can be
combined with the Algorithm I to further reduce the
computational complexity.

4. SIMULATION RESULTS

The simulation is conducted on the picture “Lena” of size

algorithms
Algorithms Encoding| Average [Percentage of
time | searchtime | reduction
per range
block
Exhaustive Search | 5600 sec | 5.47 sec N/A
Fast Algorithm I | 4992 sec | 4.88 sec 10.86%
Fast Algorithm IT | 5216 sec | 5.09 sec 6.86%
Fast Algorithm I + I1 | 4608 sec | 4.50 sec 17.71%

5. CONCLUSIONS

The encoding process for fractal image compression is
time consuming due to the exhaustive search for
similarities. The two algorithms proposed in this paper
remove all the redundant computations in the search
process. From the results of the simulations, it is proved
that the fast algorithms saves a lot of time in the encoding
phase. In addition, Algorithm I may be combined with any
existing fast algorithms such as block classification to
further speed up the encoding.

6. REFERENCES

[1] Fisher, Y., Fractal Image Compression ~Theory and
Application, Springer-Verlag, New York, 1994,

91

1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-16, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

[2] Kim I. K. and R. H. Park, “Still image coding based on
vector quantization and fractal approximation, “ IEEE
Trans. Image Processing, 5(4), pp. 587-597, Apr. 1996.

[3] Jacquin, A. E., “Fractal Image Coding: A Review”,
Proceedings of The IEEE, Vol.81 ,No. 10, pp.1451-
1465, Oct 1993.

[4] Jacquin, A. E., “Image coding based on a fractal theory
of iterated contractive image transformations”, IEEE
Trans. Image Processing, 1(1), pp.18-30, Jan. 1992.

[5] Wohlberg B.E. and G. de Jager, “ Fast image domain
fractal compression by DCT domain blcok matching”,
Electronic Letters, 31(11), pp.869-870, May 1995.

[6] Zhao Y. and B. Yuan, Image compression using
fractals and discrete cosine transform®, Electronic
Letters, pp. 474-475, Mar 1994

92

	
	89
	90
	91
	92

