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Abstract

Recently, advancement in VLSI and packaging tech-
nologies demonstrates attractiveness in building scalable
parallel systems using clustering-based architecture by
exploiting communication locality. In this paper, we pro-
pose effective prefetching and replacement policies for our
clustering-based multiprocessor system to enhance its total
performance substantially. Our inter-clustering prefetching
mechanism not only prefetches data for the single proces-
sor locality but also for the communication locality of
processors in the same cluster by using inter-clustering
caches. It also enhances conventional prefetching schemes
by prefetching more data with less traffic overhead. Re-
placement policy proposéd decreases replacement over-
head effectively in the intra-clustering bus-based system.
Simulation results show that prefetching and replacement
schemes presented improve clustering-based system per-
formance up to 33% and 25% respectively for the

SPLASH [1] benchmark suites.

1. Introduction

Shared memory multiprocessor systems have be-
come one of the most important design trends in computer
system architectures recently [1, 2]. Bus-based and direc-
tory-based multiprocessors have the limitation that they do
not scale well to large number of processors. With ad-
vancements in VLSI and packaging technologies it has
become cost effective to integrate multiprocessing ele-
ments into a board module. A modular and hierarchical
approach to build large systems with good scalability will

be one of the most effective future trends to develop high

performance multiprocessor systems {2, 3]. Thus, how to
boost the total performance of c‘lustering-based multiproc-
essor system is often an interesting and important design
topic so far [2].

In this paper, we propose the clustering-Based multi-
processor architecture with good scalability. The system
uses the SCI protocol as inter-clustering cache coherence
protocol and the Berkeley protocol [12] as our intra-
clustering cache coherence protocol. The inter-clustering
caches are also developed to exploit locality of processors
in the same clustering node. Previous research has shown
that it is effective to hide memory access latencies by pre-
fetching the data before they are really used {5]. However,
we find that prefetching mechanism in clustering multi-
processor systems encounters much overhead to fetch data
from several levels of interconnection networks. We pro-
pose inter-clustering prefetching scheme to gain communi-
cation locality of processors in the same clustering node
and enhance conventional prefetching mechanisms with
less traffic overhead. We also propose an effective re-
placement policy to reduce large replacement overhead of
the intra-clustering cache coherence protocol. By avoiding
the state transition from Dirty-Shared to Dirty-Exclusive
state, the acquiring and acknowledgement messages for
maintaining cache coherence can be greatly reduced.
Hence, the total system performance benefits reach about
25% with our effective replacement policy and 33% with
the inter-clustering prefetching scheme.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of our clustering-based multi-

processor architecture. In section 3, we present our inter-
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clustering prefetching scheme and effective replacement
policy is also described in section 4. In section 5, our
simulation environment is described first and then several
performance evaluation gains about those schemes are
given and explained in some detail. Finally, we will sum-
marize the conclusions of the paper in section 6.
2. Overview of Our Clustering-based Multiproc-
essor Architecture

We start in the following to present the architecture
we use as a base for the implementation and performance
evaluations of our effective schemes. The architecture we
consider here is a clustering-based distributed shared-
memory multiprocessor system, as depicted in Fig. 1, whi-
ch is a CC-NUMA clustering architecture consists of many
clustering nodes interconnected by the K-ary, n-Cube net-
work. Each clustering node contains a local shared-
memory area, an inter-clustering cache, a processor envi-
ronment, and a local bus. The inter-clustering cache pro-
posed contains data that is usually used in the inner clus-

tering processors.

Cluster Node Cluster Node
PE PE PE P

LSM LSM |

C InterCluster Interconnection Network ).

Fig. 1. The overall architecture of our clustering multi-
processor system

Each processor environment includes a two-level ca-
che hierarchy and associated with write buffers, as dis-
played in Fig. 2. The cache hierarchy is interfaced to the
local portion of the shared memory and the inter-clustering
cache by a local bus according to Fig.1. In order to support
release memory consistency models we implemented a
lockup-free second level cache [10]. In this architecture,
we adopt the SCI cache coherence protocol [7] to imple-
ment our linked-based cache coherence protocols. The

clustering system architecture presented above exploits
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some advantages: Resources are shared, packaging tech-
nologies are exploited, and processors within a cluster can

share data more effectively.
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Fig. 2. The processor environment

The first-level cache (FLC) is a write-through on chip
cache whereas the second-level cache (SLC) is a copy-
back cache. Both caches are direct-mapped with the same
line size in both caches and full inclusion property is sup-
ported; if a block is present in the FLC it is also present in
the SLC. All coherence actions associated with the system-
level cache coherence protocol are handled by the SLC,
inter-clustering cache and memory controller.

In o_rder to reduce the substantial network traffic
overhead incurs by deep memory hierarchy of the cluster-
ing multiprocessor system, we propose an effective re-
placement policy to reduce intra-clustering network traffic
and an inter-clustering prefetching mechanism to reduce
inter-clustering network traffic. With the inter-clustering
prefetching scheme, not only the read miss rate but also
the network traffic of the intra-clustering processors can be
greatly reduced. In the following sections, we will describe
these mechanisms in some detail.

3. Effective Prefetching Scheme

It is necessary to effectively explore communication
locality [11, 12] in clustering multiprocessor systems for
the purpose of upgrading the system performance. How-
ever, while there is no locality property in the data set, it is
impossible to reuse these data since they may often be
replaced during a short period [2, 13, 14]. Data prefetching
is an effective way to hide memory access latencies [8, 9,
10]. With using of prefetching techniques in clustering
multiprocessor systems, we may overcome such long data

access latencies. It is efficient to reduce long access laten-
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cies by using simple hardware-based sequential prefetch-
ing schemes such as fixed and adaptive prefetching
schemes [9] in those non-clustering multiprocessor sys-
tems. However, it is much complex to use prefetching
mechanism when considering clustering multiprocessor
systems that need to access data through intra- and inter-
clustering interconnection networks. The traffic overhead
becomes very serious when conventional prefetching tech-
niques are implemented in the clustering multiprocessor
systems. Therefore, it is necessary to develop new effec-
tive prefetching schemes in our clustering: multiprocessor
system architectures.

Therefore, the conventional hardware prefetching
mechanism enhances the performance of non-clustering
multiprocessor systems. However, due to large traffic
overhead of the clustering multiprocessor system, hard-
ware prefetching mechanism must be improved to further
increase the performance of the clustering multiprocessor

system. We propose our enhanced method in the follow-

ing.

N+l
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Fig. 3. The inter-clustering prefetching mechanism

3.1. Inter-clustering Prefetching Technique

There are more levels of memory hierarchy in clus-
tering than in non-clustering multiprocessor systems. Thus,
a normal prefetching access must traverse more memory
levels to read or write data while miss occurs. In addition
to original memory accesses, there are multiple times of
such accesses while prefetching is used. On the other hand,
the traffic in every level of clustering multiprocessor sys-

tems also increases several times as the number of pre-

fetching data is increased. If the prefetching mechanism is
built in the higher level of memory hierarchy, the pre-
fetching accesses need to be delay at every level of memo-
ry hierarchy because the traffic is increased in every
memory hierarchical level.

Thus, we implement the prefetching mechanism in the
inter-clustering cache rather than the SLC of our clustering
multiprocessor system as shown in Fig. 3. The inter-
clustering prefetching scheme extracts some performance'
gains from decreasing of network contention in the higher
levels of the memory hierarchy. It also increases the local-
ity of intra-clustering data because it brings in the data that
may be used soon in this clustering node.

On the other hand, the access counts in the conven-
tional hardware prefetching scheme bring in much traffic
overhead as described above. Another approach to im-
prove it is to send only one request at every read miss
request. As shown in Fig.4, while reading for block num-
ber n misses, it issues only the read miss request for block
number n. When other SLCs and inter-clustering caches
receive the request for block number n, they search for not
only block n, but also block n+1. After searching for these

data blocks, they reply for these blocks.
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Fig. 4. The traffic requests of the inter-clustering pre-

fetching scheme
This inter-clustering prefetching technique causes less
local bus requests because it issues less read miss requests
and improves our clustering system. Due to the limited
size of the cache, replacement also incurs serious traffic
overhead in the clustering multiprocessor system. We will
propose another effective replacement method to reduce

such serious traffic problems further.
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4. Effective Block Replacement Scheme

Because the number of processors in the same
clustering node would not be large, the snoopy bus proto-
col is suitable for the intra-clustering cache coherence
protocol [13, 14, 15]. Thus, we implement the Berkeley
protocol [12] as our intra-clustering cache coherence pro-
tocol. We will first describe the protocol briefly in the
following.

The Berkeley protocol uses the following states: In-
valid, Clean-Shared (possibly shared and not modified),
Dirty-Shared (possibly shared and modified), and Dirty-
Exclusive (no other .copies in caches and modified) as
shown in Fig. 5. A block in either state Dirty-Shared or
Dirty-Exclusive must be written back to main memory if it
is selected for replacement. A block in state Dirty-
Exclusive can be in only one cache. A block can be in state
Dirty-Shared in only one cache, but it might also be pre-
sent in state Clean-Shared in other caches. It uses the idea
of ownership. If a block is not owned by any cache,
memory is the owner. The consistency solution is given in

the following:
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Fig. 5. The transition diagram of the Berkeley
protocol
) Reaa miss. If the block is in state Dirty-Shared or
Dirty-Exclusive, the cache with that copy must supply
the bloci( contents directly to the other cache and set
its local state to Dirty-Shared. If the block is in any

other state or not cached, it is loaded from main mem-
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ory. In any case, the state of the block in the requesting
cache is set to Clean-Shared . Note that the block al-
ways comes directly from its owner.

(2) Write hit. If the block is already in the Dirty-Exclusive
state, the write proceeds with no delay. If the block is
in Clean-Shared or Dirty-Shared state, an invalidation
signal must be sent on the bus before the write is al-
lowed to proceed. All other caches invalidate their co-
pies upon matching the block address, and the local
state is changed to Dirty-Exclusive in the originating
cache.

(3) Write miss. Like a read miss, the block comes directly
from the owner. All other caches with copies change
the state to Invalid and the block in the requesting ca-

che is loaded in state Dirty-Exclusive.

C QBUS@ Q)
l

Come

Memory

® P2 issues request of block
replacement
PO reyhes the request and changes the state to Dirty-
B
if other p s don't have the cache copy

(@ P2 receives the ack of block replacement

Fig. 6. Block replacement of Clean-Shared state in the
Berkeley protocol

For the replacement of a cache line that is in the
Clean-Shared state, some actions must be done in advance.
As shown in Fig. 6, the states of the specific block in PO -
P2 and memory are Dirty-Shared, Clean-Shared and Gone
respectively. The cache in P2 first issues a request of block
replacement. Once PO receives the request and other proc-
essors do not have the cache copy, the cache of PO changes
the state to Dirty-Exclusive. Finally, P2 receives acknowl-
edgements of block replacement and replaces the cache
block. If the cache block is in the Dirty-Exclusive state, the
cache block in the dirty-Exclusive state can be written
directly. If some block of Clean-Shared state is replaced by

other blocks in the Berkeley protocol, the cache controller
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has to issue the request of block replacement. Because we
use Berkeley protocol as our intra-clustering protocol, the
replacement actions of Clean-Shared block are the same as
those we have discussed above.

However, if the total number of write requests from
Dirty-Exclusive state which comes from Dirty-Shared state
is less than the number of block replacement from Clean-
Shared state, we don’t need to change the state from Dirty-
Shared to Dirty-Exclusive. Tabie I displays the total num-
ber of write requests from different states. A Dirty-
Exclusive state is divided into a pure Dirty-Exclusive and
a impure Dirty-Exclusive state. The state is set to either
impure Dirty-Exclusive state if the Dirty-Exclusive state
comes from Dirty-Shared state or pure Dirty-Exclusive
state otherwise. As illustrated in table I, the number of
changes from Dirty-Shared states to Dirty-Exclusive states
are much more than the number of write requests from the
Dirty-Exclusive states. Hence, effective replacement
mechanism avoids the overhead of changing Dirty-Shared

to Dirty-Exclusive states.

Benchmark [Write Write  |Write |Delete
from pure|from from [from
Dirty- impure |Dirty- [Clean-
Exclusive |Dirty- |Shared |Shared
Exclu-
sive
Mp3d 2.8M) |0 13760 |676
FFT 5.6(M) 624 13358 118906
Ocean 14.2(M) |42432 1603722 |107581
PTHOR  [643344 [108 12900 209274
Water 25(M) |0 3093|3093

Table I Total number of write requests from different

states

5. System Simulation Environment and Perfor-
“mance Evaluations
To study and observe the performance of a multi-
processor system, we have developed a simulation and
performance evaluation environment called SEESMA [4]
before. And then, we extended it to support clustering-

based multiprocessor systems. With various options setting,

we can use it to evaluate some design issues in non-
clustering and clustering multiprocessor systems and

provide a good tool for research and education purposes.

Fig. 7. The whole structure of our SEECMA
Our simulation environment is a program-driven
simulator and constructed based on the MINT [11] pack-
age named SEECMA (A Simulation and Evaluation for
Cluster-based Multiprocessor Architecture) [5]. The whole
environment consists of two parts: the memory reference
generator and the memory subsystem:simulator as shown
in Fig. 7. The memory reference generator is made of the
simulation controller and the processor simulator. The
simulation controller monitors the execution of simulation
environment, its main functions include debugging, moni-
toring, event generation and management, task manage-
ment and scheduling, timing controller and thread man-
agement. The processor simulator simulates the instruction

interpretation and execution.

Value
Number of cluster nodes 16

Parameter

Number of processors in a cluster node 4

Size of FLC 32Kbytes
Size of SLC 256Kbytes
Size of inter-cluster cache 2Mbytes
Block size of FLC and SLC 32bytes
Number of entries in FLWB 16
Number of entries in SLWB 32

Table I Architecture Parameters
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Benchmark Description Data sets

MP3D Particle-based wind-tunnel simulator 5K particles, 10 time steps
Ocean Simulate eddy currents in an occan basin 128 by 128 grid, tolerance 107
FFT Blocked 1-D FFT 64k complex points

Water Water molecule dynamics simulation 343 molecules

Barmes N-body gravitation similation 8192 bodies, 6 steps
Radix Integer Radix sort algorithm IN integers, Radix 1024
(olesky  Cholesky factorize a sparse matrix  thld.0

Lu factors a dense matrix 128*%128 matrix, 32%32 blocks
Pthor simulate a digital circuit risc

Table III Benchmark Programs

Our memory subsystem simulator consists of the
node simulator and the global interconnection simulator.
The node simulator simulates the two-level cache hierar-
chy, doubly-linked directory cache coherence protocols,
memory consistency models and the local interconnection.
Our memory subsystem simulator can effectively and ea-
sily include the simulations of other interesting architec-
tures. Another feature of memory subsystem simulator is
that it supports n;any simulation options. By the options
we can simulate and evaluate a lot of design issues of
memory subsystem, including cache coherence protocols,
memory consistency models, interconnection network,
migratory sharing and cache hierarchy.

Before evaluating the performance, we give some
reasonable assumptions about the architecture, as summa-
rized in table II. Memory page size is 4 Kbytes and is
mapped to the local memories in a round-robin fashion.
We use several benchmark programs from the SPLASH
and SPLASH?2 suites [1] in our experimental evaluations.
We list them in Table III along with the data sets being
used. Regarding to MP3D, we run it with switching on the
locking option. All applications are written in C using
ANL macros and have been complied using cc with the
optimization level 2. All statistics are collected only the
parallel part of the benchmarks.

We first discusS the performance enhancement of
our prefetching scheme. then the efficiency of effective
replacement policy is also displayed. The total execution
time is decomposed into five parts. Busy time is the ex-

ecution time of instruction, and read miss time is the delay
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time of read miss accesses from the first level cache. Write
stall time is the delay time of write access. Because the
release memory consistency model can hide all write stall
time, the write stall time is always zero in our system.
Acquire time is the time for waiting locks, and buffer full
is the cease work time of processor due to buffer full of the
first level write buffer. The following figures for evalua-

tion of execution time is all composed of these five com-

ponents.
B Busy tme CRead mins EWrite D Acquire M Buffer full
12
B 2 8 3 B E B B 2 3§ g
[ - 2
[ | a
i
i
G 3 2 § 8 g ER N
R DR I I
Beachmarks

Fig. 8. The performance of our inter-clustering pre-
fetching (ICP) scheme

5.1 Performance Evaluation of the New Prefetch-
ing Mechanism

We built our inter-clustering prefetching technique
instead of conventional hardware prefetching scheme in
the clustering multiprocessor system. After our evaluations,
we find that the traffic overhead is reduced and the total
performance is effectively improved ranging from 3% to
33% as shown in Fig. 8. In most benchmarks, the perfor-
mance gain comes from reducing of read miss stall time.
Since our prefetching scheme reduces read miss counts, it
decreases miss ratio and reduces total access latencies. The
acquire stall time of the Lu benchmark is greatly reduced
due to the large traffic reduced of our inter-clustering pre-
fetching scheme. The ocean benchmark performs worse
than original condition because its false sharing character-
istics. Without the serious traffic overhead and read miss
penalty of conventional hardware prefetching method, the
performance gain of our inter-clustering prefetching sche-
me is much larger.

5.2 Performance Evaluation of Effective Replace-
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ment Mechanism
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Fig. 9. The performance evaluation of the effective
block replacement scheme

After evaluating the performance of effective block
replacement mechanism, Fig. 9 displays that it reduces the
total execution time of benchmarks substantially up to
25%. The FLC size is set to 1K and the SLC size is set to
8K respectively due to the great enhancement of our re-
placement policy which would be discussed later. We can
find that the time reduced by the mechanism is read stall
time and acquire stall time due to the efficient replacement
while read miss occurs. The performance of this scheme
would be better if the release memory consistency does not

hide all the write miss stall time.

D256k B128K D6k D32K MoK DK

A SR PTTPULION

Fig. 10. The total execution time of different cache sizes
with or without the effective replacement policy

In order to show that our replacement policy is cost

effective, we compare the execution time of this scheme in

different cache sizes as shown in Fig. 10. The total execu-

tion time increases less than 10% except radix benchmark

while the scheme is implemented and the FLC size is de-

creased from 8K to 1K and the SLC size is decreased from

256K to 8K respectively. However, if the scheme is not
implemented, the total execution time increases substan-
tially as the cache size is decreased. Thus, our replacement
policy is not only effective in reducing execution time but
also efficient in reducing cost in clustering multiprocessor
systems.

6. Concluding Remarks

Clustering multiprocessor system is an architecture
design trend for scalable multiprocessor systems. We pro-
pose two approaches called the effective block replace-
ment and the inter-clustering prefetching scheme to im-
prove the performance of clustering multiprocessor sys-
tems. As the simulation results summarize, the effective
block replacement policy enhance the system performance
from 2% to 25% and the inter-clustering prefetching
mechanism improve the execution time from 3% to 33%.
They are both effective to enhance the performance of the
clustering multiprocessor system not only in the intra-
clustering but also in the inter-clustering system.

Sequential hardware prefetching schemes in a clus-
tering system is not as good as it in non-clustering one due
to its high traffic overhead. With our extensions, their per-
formance is effectively improved as the traffic overhead in
them is reduced. We suggest that it is effective to apply our
improvements in a clustering multiprocessor system. Ef-
fective block replacement policy makes it efficient to im-
plement bus protocols in the intra-clustering system. It
reduces the great replacement overhead encountered in the
intra-clustering systems of the clustering multiprocessor
systems.

In the future, we will propose new schemes to im-
prove the performance of intra- and inter-clustering system
in the clustering multiprocessor systems to explore further
important design issues. Besides, our inter-clustering pre-
fetching scheme can also be extended to improve the per-
formance of software prefetching schemes.
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