1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

DATA MANAGEMENT IN A FLASH MEMORY BASED
STORAGE SERVER®

Mei-Ling Chiang®, Paul C. H. Lee*, and Ruei-Chuan Chang*¢

Department of Computer and Information Science®

National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
Email: joanna@os.nctu.edu.tw, rc @cc.nctu.edu.tw

Institute of Information Sciencef

Academia Sinica, Nankang, Taiwan, R.O.C.
Email: paul @iis.sinica.edu.tw

ABSTRACT

Flash memory has many attractive features, such as non-
volatility, light weight, and low power consumption. These
features show promise for using flash memory as storage in
consumer electronics, embedded systems, and mobile
computers. However, flash memory has specific hardware
characteristics that impose challenges on the design of
storage systems. It cannot be overwritten unless erased in
advance. The erase operations are slow and power-wasted,
which usually decrease system performance and consume
lots of power. In addition, the number of times that flash
memory can be erased is also limited. This paper descries
the design and implementation of a storage server for flash
memory. To overcome hardware limitations, the server
employs an effective dynamic data clustering method and
an efficient cleaning algorithm. Performance evaluation
shows that, with these mechanisms, throughput is
significantly improved, flash memory lifetime is prolonged,
and even wearing is ensured.

1. INTRODUCTION

Flash memory is non-volatile, which can retain data even
after system is powered off. Besides, it has many attractive
features, such as fast access speed, low power consumption,
shock resistance, small size, and light weight [2,3,15]. As
its price decreases and capacity increases, flash memory is
expected to be largely used in consumer electronics,
embedded systems, and mobile computers. Applications
are digital cameras, voice recorders, set-top boxes, pagers,
cellular phones, notebooks, hand-held computing devices,
Personal Digital Assistants (PDAs) [9], etc.

Flash memory has special hardware characteristics
{7,12,13,18] that impose challenges on the design of
storage systems. Flash memory is partitioned into
segments' and the segment sizes are defined by hardware

* This work was partially supported by the National
Science Council of the Republic of China under grant no.
NSC88-2213-E-001-016.

_38..

150 ~ 250 s

Read Cycle Time

Write Cycle Time 6 ~ 9 us/byte

Block Erase Time 0.6 ~ 0.8 sec

Erase Block Size 64 Kbytes or 128 Kbytes
Erase Cycles Per Block . 100,000 ~ 1,000,000

Table 1: Flash memory characteristics:

manufactures. Segments cannot be written over existing
data unless erased in advance. The erase operations must
be performed only on whole segments, which waste
relatively lots of power. Besides, the erase operations are
slow compared to read operation and write operation. Write
operations are much slower than read operations.
Furthermore, the number of times a segment can be erased
is limited. Table 1 lists the typical flash memory
characteristics [12,13].

Because of these hardware limitations, the design of flash
memory based storage systems should avoid having to
erase as possible for the longer flash memory lifetime,
better system performance, and power conservation. To
maximize the lifetime of flash memory and avoid wearing
out some segments to affect the usefulness of entire flash
memory, write and erase operations must be balanced over
the whole flash memory. The operation is called wear-
leveling or even wearing [7].

Since flash segment sizes are large, storage systems
generally divide flash segments into smaller read/write
blocks. Updating data in place is not efficient since all data
in the segment to be updated must first be copied out and
then updated. After the segment has been erased, all data
with updates must be written back to the segment. Thus,
updating even one byte data requires one slow erase and
several write operations. If every update is performed in
place, then performance will be poor and flash memory
blocks of hot spots will soon be worn out.

Our goal is to design and implement a flash memory
storage server to overcome limitations from hardware
characteristics. To avoid having to erase in every update,

! We use “segment” to represent hardware-defined erase
block, and “block” to represent software-defined block.

we use the non-update-in-place scheme for data updating.
Instead of updating data at the same address, data updates
are written to any empty space in flash memory and
obsolete data are left as garbage. A software cleaner later
reclaims these garbage by migrating valid data from the
segment to be cleaned to another segment. Then the
original segment is erased and available for rewriting.

With this non-in-place-update mechanism, the cleaner has
significant effect as the utilization (the percentage of flash
memory space occupied by valid data) gets higher because
more segments need to be reclaimed in order to have one
free segment. As a result, more data must be migrated and
more erasures have to be done. Performance is thus
severely degraded, lifetime is greatly decreased, and
energy consumption is greatly increased. Cleaning policies
determining which segments to clean, when to clean them,
and how to clean them control the behavior of the cleaner.
Thus, cleaning policies severely affect cleaning
performance [5,14,21} and are key to flash memory
management.

Two major concerns regarding cleaning policies are the
segment selection algorithm that determines the segments
to be cleaned and the data reorganization method that
determines how to migrate valid data in the selected
segments. The data reorganization method has the most
important impact on cleaning performance [5]. Clustering
hot data together in the same segments can reduce cleaning
overhead has been shown in previous literature {5,14].

In this paper, the data reorganization method, Dynamic
Data Clustering (DAC), is used for data clustering. The
DAC method dynamically clusters data according to data
update frequencies by active data migration. The data
clustering is performed during segment cleaning and data
updating time, which is fine-grained and low-overhead.
When selecting segments to clean, the Cost Age Times
policy (CAT) [4,5] is used, which selects segments
according to cleaning cost, ages of data in segments, and
the number of times the segment has been erased. Because
the number of times segments has been erased is concerned,
even wearing is ensured.

This paper describes the design and implementation of a
storage server utilizing DAC method and CAT policy.
Performance evaluation shows that the number of erase
operations performed and the cleaning overhead are
significantly reduced. Flash memory is evenly worn.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 presents the flash
memory management scheme using DAC method and CAT
policy. Section 4 describes the design and implementation
of the flash memory server. Section 5 shows performance
evaluation results, and Section 6 concludes this paper.

2. RELATE WORK

Several storage systems and file systems have been

39

1998 Internationat Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

developed for flash memory. They are either designed from
the scratch for flash memory or use the device driver
approach. The driver approach is used with existent file
systems and translates the file system requests from disk
sectors to flash memory addresses.

Wu and Zwaenepoel [21] proposed a large flash memory
based storage system, eNVy, to provide flash memory as
linear memory array rather than emulated disks. eNVy uses
hardware support of copy-on-write and page-remapping
techniques to avoid updating data in place. Its hybrid
cleaning method combining FIFO and locality-gathering in
cleaning segments aims to minimize the cleaning costs for
uniform access and high localities of reference.

Microsoft’s Flash File System (MFFS) [20] uses a linked-
list data structure to manage data and supports the DOS
FAT system. MFFS maintains data blocks of variable size
instead of fixed length. The greedy policy that always
selects segments with the largest amount of garbage for
cleaning is used to clean segments.

M-Systems’s TrueFFS [6] allows flash memory to emulate
hard disks for DOS and Windows. TrueFFS is a software
block device driver to be used with an existent file system.
The data recording format, patented by M-Systems, is
called Flash Translation- Layer (FTL) standard. Flash
memory is divided into fixed-sized read/write blocks.
TrueFSS uses a statistical approach to wear-leveling. The
garbage collection selects segments with the large amount
of garbage, the least number of erasures, and the most
static data. It then decides which segments to clean. A
random selection process is also used to ensure the evenly
reclamation among all segments.

Rosenblum et al. [16] suggested that the Log-Structured
File System [16,17,19] that writes data as append-only log
instead in-place update can be applied to flash memory.
Kawaguchi et al. [14] used a log approach similar to LFS
to design a flash-memory-based file system for UNIX. The
device driver approach is used. They also modified the
cost-benefit policy [16,17] of LFS to use different cost
measure for flash memory. The proposed separate segment
cleaning, which separates hot segments from cold
segments, was used when segments are to be cleaned. Wear
leveling is not implemented.

David Hinds {10,11] implemented flash memory drivers in
the Linux PCMCIA [1] package. It uses the greedy method
at most of time, but sometimes chooses to clean the
segment that has been erased the fewest number of times
for even wearing.

In our early study, the CAT policy [4,5] is proposed to take
into account utilization, segment age, and the number of
times segments have been erased in selecting segments to
clean.. Because the number of erasures performed on
individual segments is concerned, flash memory is more
evenly worn than greedy policy and cost-benefit policy.
Valid blocks in the segments to be cleaned are migrated
into separate segments depending on whether the blocks

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

writle pointer

1T 11 1 | | |

flash segments

write pointer
invalidated block

flash segments

Figure 1: Non-in-place update that updates data to empty
flash memory spaces.

cold data

B ohsolete blocks

L1

1Selecta victim segment to clean

: l hefore cleaning

J—g

2Copy out valid blocks in the victim
segment to free flash space

<\
TRACHERIT T T

segments

l cleaning

\f‘/

3 Erase the victim segment

segmenis

Figure 2: Three-stage operations of cleaning process.

[}I_'huldam D frec

flash sepment A

W fclulclcicnmlulc|ciulc]c lH]

hot data are updated

A is selected to be cleaned

coid data are copied out

B is filled with new data
hot data are updated
B is selected to be cleaned

flash segment C

HINENN
@ clejcfefeefelel JITTT11]

cold data are copied out
again

Figure 3: Cold data are migrated again and again when they are mixed with hot data.

are hot or cold. Data reorganization was shown to be the
most important factor affecting cleaning performance [5].

Douglis et al. [8] provided a detailed discussion of storage
alternatives for mobile computers: hard disks, flash
memory disk emulators, and flash memory cards. It is
concluded that a flash memory file system has the most
attractive qualities with respect to energy and performance.
They showed that the key to flash memory file system is
erasure management and found that the utilization of a
flash memory card has substantial impact on energy
consumption, performance, and endurance.

3. FLASH MEMORY MANAGEMENT

We use the non-in-place-update scheme in our server to
manage data in flash memory to avoid having to erase
during every update. As shown in Figure 1, data updates
are written to any empty space, and the obsolete data are
marked invalidated and left at the original place as garbage.
When the number of free segments is below a certain
threshold, a software cleaning process, cleaner, begins to
reclaim garbage.

The cleaning process involves three-stage operations, as
shown in Figure 2. The cleaner first selects a victim

segment for cleaning and identifies valid data (not obsolete)
in this victim segment. Then it migrates valid data out by
copying them to free space in other segments. Finally, the
victim segment is erased and available for new data.

3.1 Data Reorganization Method

The way valid data in victim segments are migrated during
segment cleaning can severely affect future cleaning costs
[5,14]. The simplest way is to copy valid data to another
segment in the same order as they appear in the victim
segment. However, hot data and cold data are possible to
be mixed. Figure 3 illustrates the following situation. If the
victim segment contains both cold data and hot data, cold
data have high possibility to remain valid at the cleaning
time since cold data are updated less frequently. Cold data
thus are migrated during cleaning process. The new
segment is possible filled with hot data and soon is selected
for cleaning. The cold data previously migrated are
possible to remain valid and are migrated again and again.

If data are migrated in the way that hot dara (most
frequently updated data) are clustered in the same
segments, then flash segments will be either full of all hot
data or all non-hot data. Then segments containing most of
the hot data will soon contain the largest amount of

40

Bottom Top
(coldy = > (hoy)
region 0 region 1 region n

(a) Partitioning flash memory into regions.

(b) State transition diagram.

Figure 4: State machine for data clustering.

invalidated blocks because hot data have high possibility to
be updated soon and become invalidated. Cleaning these
hot segments can reclaim the largest amount of garbage
and the least amount of valid data must be migrated during
cleaning. Cleaning costs thus can be significantly reduced.

Since separately clustering hot data and cold data can
reduce cleaning overhead, the major problem of cleaning
becomes how to effectively cluster hot data. Previous
researches [4,5,14,21] reorganize data only at the cleaning
time when valid data in the segment to be cleaned are
migrated. We noted that data reorganization can not only be
done during cleaning, but also can be done during data
updating time without extra cost. By taking advantage of
the chance that when data are updated, they are updated to
another free flash space, hot data and cold data can be
separately clustered.

We propose a new data reorganization method that uses a
state machine to dynamically cluster data according to their
access frequencies during run time and cleaning time:
DAC (Dynamic dAta Clustering) approach. Instead of
classifying data into hot and cold as in [4,5,14], the DAC
approach clusters data according to their write access
frequencies. Only write access frequencies are concerned is
because only write operations incur cleaning.

The DAC method logically partitions flash memory into
several regions that contain data with different localities of
reference, as shown in Figure 4(a). Data blocks in the same
region have similar write access frequencies. Each data
block is associated with a state indicating which region the
block resides in. As their access frequencies change over
time, data blocks are actively migrated between
neighboring regions according to the state transition
criteria. So regions can be dynamically shrunk or enlarged.

The state machine shown in Figure 4(b) contains several
states and the starting state is “Bottom region”. The state
machine operates as follows. When a data block is newly
created, it is allocated in the Bottom region. Once a data
block is updated and is young to the current region (i.e., the

1998 Internationat Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Write()
{
If new write {
Allocate a free block in Bottom region;
Write data into the free block;
} else
Update ();

Update()
{

Mark the obsolete data as invalid;
If the data block is young to the current region
Allocate a free block in the upper one region;
else
Allocate a free block in the current region;
Write data into the free block;
}

Cleaning()
{

Select a victim segment for cleaning;
For all valid data blocks in the victim segment
{
Mark the block as invalid;
If the data block is old to the current region
Allocate a free block in the lower one region;
else
Allocate a free block in the current region;
Copy this valid data block into the free block;
}
Erase the victim segment;
Enqueue the victim segment to free segment list;

Figure 5: Operations for update and cleaning process.

resident time in the current region is smaller than a certain
threshold), then it is promoted to the upper one region and
its state changes accordingly. That is, the obsolete data
block residing in the original region is invalidated as
garbage and the update data are written to any free space in
the segments belonging to the upper one region. Otherwise,
the update data are written to the free space in the segments
belonging to the current region.

When garbage collection is needed, the cleaner reclaims
the invalidated spaces which obsolete data occupy. The
segment to be cleaned is selected based on a certain
segment selection algorithm. If the valid blocks in the
cleaned segment are old to the current region (i.e., their
resident times exceed a certain threshold), then they are
demoted to the lower one region and their states change
accordingly. That is, these valid blocks are migrated back
to the lower one region by coping data into free space in
the segments belonging to the lower one region. Otherwise,
the blocks are migrated to the free space in the segments
belonging to the current region. After all valid blocks in the
segment to be cleaned are migrated out, the segment is
erased and available for new data.

By this active data migration between regions during data
updating and segment cleaning, data blocks in the Top
region are the hottest during the recent accesses. The closer
to the Top region, the hotter the block is. Otherwise, the

41

1998 Intemnational Computer Symposium
Workshop on Software Engineering and Database Systems
‘December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

colder the block is. Therefore, data blocks of similar access
frequencies can be effectively clustered. Figure 5 shows
the detailed operations.

In comparison, DAC approach dynamically clusters data
according to their write access frequencies during cleaning
time and during data updating, while other policies [4,5,14]
cluster data at the cleaning time by using certain criteria to
determine whether data blocks are hot or not. The criteria
may need more effort to be performed. Besides, only two
states of data are allowed (i.e., hot and cold). The DAC
approach is more fine-grained and more effective in data
clustering since more states of data are allowed depending
on the configuration of state machine.

3.2 Segment Selection Algorithms

The Cost Age Times (CAT) formula [4,5] is used. The
cleaner chooses to clean segments that minimize the
formula:

1

Cleaning Cost piugs memory * Age * Number of Cleaning.
The cleaning cost is defined as the cleaning cost of every
useful write to flash memory as w/l-u), where u
(utilization) is the percentage of valid data in a segment.
Every (/-u) write incurs the cleaning cost of writing out u
valid data. The age is defined as the elapsed time since the
segment was created. The number of cleaning is defined as
the number of times a segment has been erased. The basic
idea of CAT formula is to minimize cleaning costs, but
gives segments just cleaned more time to accumulate
garbage for reclamation. In addition, to avoid concentrating
cleaning activities on a few segments, the segments erased
the fewest number of times are given more chances to be
selected for cleaning. Besides, to avoid wearing specific
segments out and thus limiting the usefulness of whole
flash memory, we swap the segment erased most times and
the segment erased fewest times when a segment is
reaching its projected lifecycle limit.

4. SYSTEM DESIGN AND
IMPLEMENTATION

The server manages flash memory as fixed-size blocks and
uses the non-in-place-update scheme. Every data block is
associated with a unique constant logical block number,
while its physical location in flash memory changes when
updated. The server uses table-mapping method to map
logical lock numbers to physical locations in flash memory.

We first describe the data layout on flash memory in
Section 4.1. We then describe three tables, the region table,
the translation table, and the lookup table, in Section 4.2,
4.3, and 4.4, respectively. Those tables are constructed in
main memory and maintained during runtime, which are
used mainly to speed up processing. The information
stored in tables is only copies of information stored in flash
memory. Therefore, even if power failures occur, these

42

Index

i

Per-Block Information

segmen scgmen(\ ase

Segment Header

Segment
Summury |
no. of seg

Hewder 1o o iocks]

no. of erase operations
limesiamp
tn-used flag
clcaning {lag

logical block no.
region no.

per-block information timestamp

per-block information —%ﬁiﬂfiﬂm—“—-
in-used flag
invalid flag

per-block information

Figure 6: Data layout on flash memory.

tables can be reconstructed from flash memory. Storing
these tables requires a substantial amount of main memory:
12 bytes per region, 13 bytes per block, and 17 bytes per
segment. However, it is a trade-off between space
consumption and performance. Because currently flash
memory capacity is small, the space overhead is limited.
For a 24-Mbyte flash memory, 128-Kbyte segments, 4K-
byte blocks, and 4 regions, these tables take up 78 Kbytes
of main memory.

4.1 Data Layout on Flash Memory

The data layout on flash memory is shown in Figure 6.
Each segment has a segment header to record segment
information, such as the number of times the segment has
been erased, a timestamp, control flags for cleaning, and
the per-block information array. The per-block information
array contains information about each block in the segment,
such as the corresponding logical block number, timestamp,
the number of times the block has been updated, and
invalid flag. The invalid flag indicates whether a block is
obsolete or not. The index segment keeps track of currently
active segments for data writing in each region. The
segment summary header, located in the first segment,
records global information about flash memory, such as the
total number of segments in flash memory and the total
number of blocks per segment.

4.2 Region Management

A region table, shown in Figure 7, keeps track of
information for each region, including the total number of
segments in the region, the currently active segment for
data writing, and a region segment list. The region segment
list keeps track of each segment in the region. This table is
used by the cleaner in selecting segments to clean.

The active segments record those segments currently used
for data writing in each region. They are stored in the index
segment on flash memory. A free segment list records the
available free segments. Initially, the server reads segment
headers from flash memory to identify free segments to
construct the free segment list at server startup time. When

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Segment Index Segment

Summary

R A N 2 I

count active scgment
seg. no. st

ch\mcnl Header

region no,
ion 1 region n
region 0 fegion " .
segment list scgment fist segment list Free Segment List
etive r__i\._ ______ % i__.l _
1

: : : segments _ Sooe L—— oo = ! .
- . - T -
.

Region table _

Figure 7: Region table and region segment lists.

scq}m:nl block region timestamp
0. no., no.

I }

logical I
blocK §
no. j

Translation table

flash memory

Loseent Jjth segment

TR

kth per
block information

kth data black

Figure 8: Translation table and address translation.

an active segment is out of free space, a segment from the
free segment list is used as the active segment and the
change of active segment is written to the index segment as
an appended log. When running out of free space, the index
segment is erased first before wrapping around the log.

4.3 Block-based Translation Table and Ad-
dress Translation

Since data blocks are not updated in place, their physical
locations in flash memory change when updated. A
translation table, shown in Figure 8, is constructed in main
memory to record the physical location for each block to
speed up the address translation from logical block
numbers to physical addresses in flash memory. This table
also records a region number for each block to indicate
which region the block belongs to and a timestamp to
indicate when the block is allocated in the region. These
information together are used by the DAC state machine to
decide whether a block’s state should be switched and
whether data should be migrated between neighboring
regions.

During the startup time, the server reads all segment
headers from flash memory to construct this translation
table in main memory. When a data block is updated to
another new empty block, the old block’s per-block
information is marked invalid and the new block’s per-
block information records the logical block number. The
corresponding translation table entry is also updated to
record the current physical location.

Valid blocks
count

First free
block

Erase | Time- | Used { Cleaning
stamp | flag flag

count

Segment
no. i

Figure 9: Lookup table to speed up cleaning.

4.4 Segment-based Lookup Table

The lookup table, shown in Figure 9, records information
about each segment, such as the number of times the
segment has been erased, segment creation time, and
control flags for cleaning. Initially, information is obtained
by reading all segment headers from flash memory during
server startup time. During run time, the server does
bookkeeping of valid blocks count to count the number of
valid blocks in a segment. The cleaner then uses these
segment information to speed up the process of selecting
segments for cleaning. The first free block indicates the
first free block available for writing in a segment, which is
used to speed up block allocation.

5. EXPERIMENTAL RESULTS

We have implemented the server on Linux Slackware96 in
GNU C-++. Table 2 lists the experimental environment. To
measure the effectiveness of alternate cleaning policies,
three policies were implemented in the server:

- greedy policy (Greedy)
The cleaner always selects the segment with the largest
amount of invalid data for cleaning.

- cost-benefit policy [14] (Cost-benefit)

The-cleaner chooses to clean segments that maximize the

a*(l-u)

formula: =———=, where u is flash memory utilization

and a (age) is the time since the most recent

modification.
- CAT policy [4,5] (CAT)

The cleaner chooses to clean segments that minimize the

43

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Hardware
Pentium 133 MHz with 32-Mbyte RAM
PC Card Interface Controller: Omega Micro 82C365G
Flash memory:
Intel Series 2+ 24Mbyte Flash Memory Card
(segment size:128 Kbytes)
HD: Seagate ST31230N 1.0 G
Operating system:
Linux Slackware 96
(Kernel version: 2.0.0,PCMCIA package version: 2.9.5)

Table 2: Experimental environment.

formula: * t, where u is utilization, a is

—_
{(1-u)*a
segment age, and ¢ is the number of times the segment
has been erased.

A synthetic workload combining random access and
locality access was created. The workload contained 4-
phase data accesses: the first and third phases were locality
accesses in which 90% of accesses were to 10% of data;
the other phases were random accesses. Since read
operations do not incur cleaning, the workload focused on
data updates that incurred invalidation of old blocks,

7000

—¥— Greedy

6500 —&— Cost-benefit

—&— CAT
6000

5500

5000

number of erase operations

4500

1 2 3 4
number of regions

(a) Number of erase operations.

36000
—>—Greedy

—&— Cost-benefit
—4&—CAT

34000

32000 f

30000 f

28000

26000

24000

average throughput (bytes/sec)

! 2 3 4
number of regions

(c) Average throughput.

writing of new blocks, and cleaning. Each phase contained
40-Mbyte write references and totally 160-Mbyte data
were written to flash memory in 4-Kbyte units.

The block size the server managed is 4 Kbytes. The
number of states that DAC state machine was configured
ranged from 1 to 4. The time threshold for state switching
was set to 30 minutes. Since at low utilization cleaning
overhead does not significantly affect performance [14], in
order to evaluate cleaning effectiveness, we initialized the
flash memory by writing blocks sequentially to fill it to
90% of flash memory space for each measurement.
Benchmarks were created to overwrite the initial data
according to the synthetic workload.

Figure 10 shows that applying DAC data clustering (i.e.,
the number of regions is more than 1) is beneficial for each
policy. The numbers of erase operations were reduced by
15.8-21.83% for CAT, 14.54-18.57% for Cost-benefit, and
9.19-11.5% for Greedy, as shown in Figure 10(a). The
numbers of blocks copied were reduced by 11.46-14.36%
for Greedy, 18.33-23.43% for Cost-benefit, and 19.96-
27.55% for CAT, as shown in Figure 10(b). Throughput -
improvement was 18.89-27.05% for CAT, 17.55-23.73%
for Cost-benefit, and 9.9-12.16% for Greedy, as shown in

170000

—— Greedy

160000 }
—&~ Cost-benefit

150000 | —aCAT
140000 | i
130000 |

120000

number of blocks copied

110000

1 2 3 4
number of regions

(b) Number of blocks copied during cleaning.

16.00
2 1400 |
= B Greedy B Cost-benefit [CAT
<1200 +
(5]
= 10.00
5
> 8.00
2
5 600 [
e
o 400
Q
L 200 }
&
-5 000

number of regions

(d) Degree of uneven wearing.

Figure 10: Performance results of using DAC data clustering for various segment selection algorithms.

44

Figure 10(c). Among various segment selection algorithms,
CAT performed best.

Since another important goal for flash memory storage
systems is wear leveling, the degree of uneven wearing [5]
which indicates the variance of wearing for flash segments
is also used as the other metric. A utility was created to
read the number of erase operations performed on
individual segments from flash memory. The standard
deviation of these numbers is computed as the degree of
uneven wearing. The smaller the standard deviation, the
more evenly the flash memory is worn. As shown in Figure
10(d), flash memory was more evenly worn for CAT. This
is because only CAT considers even wearing when
selecting segments to clean.

~ 6. CONCLUSIONS

In this paper we describe the design and implementation of
a storage server utilizing flash memory. The server uses the
non-in-place-update approach to avoid having to erase
during every update, and employs the DAC data
reorganization technique for clustering frequently accessed
data to reduce cleaning overhead. Data are clustered
dynamically according to their write access frequencies.
The CAT policy is used to reduce the number of erase
operations performed and to evenly wear flash memory.

Performance evaluations show that with the CAT policy
and the fine-grained DAC data clustering, the proposed
storage server not only significantly reduces large amount
of erase operations performed, but also evenly wear flash
memory. The number of blocks copied during cleaning are
significantly reduced as well. The result is extended flash
memory lifetime and reduced cleaning overhead.

Several factors are important in determining how well the
DAC data clustering will work in a given environment,
such as the configuration for the number of states in the
DAC state machine and the setting of the time threshold
for state switching. In our experience, these factors are
highly dependent on workloads. These factors will be
examined in detailed with simulations in the future.

7.REFERENCES

{1} D. Anderson, PCMCIA System Architecture,
MindShare, Inc. Addison-Wesley Publishing
Company, 1995.

[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M.
Seltzer, "Non-Volatile Memory for Fast, Reliable
File Systems," Proceedings of the 5th International
Conference on Architectural Support for
Programming Languages and Operating Systems,
Oct. 1992.

[3] R. Caceres, F. Douglis, K. Li, and B. Marsh,
"Operating System Implications of Solid-State
Mobile Computers," Fourth Workshop on
Workstation Operating Systems, Oct. 1993.

45

(4]

(6]

(7]
(8]

9]

(10]

(11]

(12]
(13]

(14}

{15]

(16]

(17]

(18]

(19]

(20]

(21]

1998 International Computer Symposium
Workshop on Saftware Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

M. L. Chiang, Paul C. H. Lee, and R. C. Chang,
“Managing Flash Memory in Personal
Communication Devices,” Proceedings of the 1997
International Symposium on Consumer Electronics
(ISCE’97), pp. 177-182, Singapore, Dec. 1997,

M. L. Chiang and R. C. Chang, “Cleaning Policies in
Mobile Computers Using Flash Memory,” accepted
by Journal of Systems and Software.

R. Dan and J. Williams, ‘A TrueFFS and Flite
Technical Overview of M-Systems Flash File
Systems’, 80-SR-002-00-6L Rev. 1.30.
http://www.m-sys.com/tech.htm, Mar. 1997.

B. Dipert and M. Levy, Designing with Flash
Memory, Annabooks, 1993.

F. Douglis, R. Caceres, F. Kaashoek, K. Li, B.
Marsh, and J. A. Tauber, "Storage Alternatives for
Mobile Computers,” Proceedings of the Ist
Symposium on Operating Systems Design and
Implementation, 1994,

T. R. Halfhill, "PDAs Arrive But Arent Quite Here
Yet," BYTE, Vol. 18, No. 11, 1993, pp. 66-86.

D. Hinds, “Linux PCMCIA HOWTO,”
http://hyper.stanford.edu/~dhinds/pcmcia/doc/PCMC
IA-HOWTO.html, v2.5, Feb. 1998,

D. Hinds, ‘Linux PCMCIA Programmer’s Guide’,
http://hyper.stanford.edu/~dhinds/pcmcia/doc/PCMC
IA-PROG.html, v1.38, Feb. 1998.

Intel, Flash Memory, 1994.

Intel Corp., ‘Series 2+ Flash Memory Card Family
Datasheet’,
http://www.intel.com/design/flcard/datashts, 1997

A. Kawaguchi, S. Nishioka, and H. Motoda, "A
Flash-Memory Based File System,” Proceedings of
the 1995 USENIX Technical Conference, Jan. 1995.
B. Marsh, F. Douglis, and P. Krishnan, "Flash
Memory File Caching for Mobile Computers,"
Proceedings of the 27 Hawaii International
Conference on System Sciences, 1994.

M. Rosenblum, “The Design and Implementation of
a Log-Structured File System,” PhD Thesis,
University of California, Berkeley, Jun. 1992. -

M. Rosenblum and J. K. Ousterhout, “The Design
and Implementation of a Log-Structured File
System,” ACM Transactions on Computer Systems,
Vol. 10, No. 1, 1992.

SanDisk Corporation. SanDisk SDP Series OEM
Manual, 1993,

M. Seltzer, K. Bostic, M. K. McKusick, and C.
Staelin, “An Implementation of a Log-Structured File

System for UNIX,” Proceedings of the 1993 Winter
USENIX, 1993.

P. Torelli, "The Microsoft Flash File System,” Dr.
Dobb’s Journal, Feb. 1995.

M. Wu and W. Zwaenepoel, "eNVy: A Non-Volatile,
Main Memory Storage System,” Proceedings of the
6th International Conference on Architectural
Support for Programming Languages and Operating
Systems, 1994,

	
	38
	39
	40
	41
	42
	43
	44
	45

