1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Lightweight Commit Protocol for Mobile Clients

Yen-Wen Lin
Department of Computer Science and Information Engineering
Chaoyang University of Technology, Taichung, Taiwan
Feipei Lai
Department of Electrical Engineering and

Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan

Hsiao-Kuang Wu

Department of Computer Science and Information Engineering

National Central University, Chungli, Taiwan

Abstract

Technical advances in the deuvelopment of portable
computers and wireless commaunications enable users
to take part in distributed computing even while mov-
ing. The resulting environment is subject to be con-
strained by the mobility of users and the nature of
the cordless medium. In this paper we propose a
lightweight commit protocol for providing mobile hosts
with two phase commit service which is a powerful
technique to implement atomic actions in distributed
systems, with some important aspects such as low
power consumption, efficient mobility management,
subject oriented service binding and effective discon-
nection handling to well adapt to a mobtle computing
environment.

Keywords: mobile computing, wireless network,
2PC, hand-off, subject oriented service binding, dis-
connection

1 Introduction

A 2PC protocol is widely applied to resolve the prob-
lem of atomicity control. However, when the conven-
tional 2PC protocol is adapted to a mobile environ-
ment, unfortunately, some issues [1, 2, 3] definitely
need to be reconsidered. First, most of the conven-
tional distributed computing paradigms take station-
ary hosts as a base assumption. The mobility of the
hosts implies that they can access from any access
points at any time and stay connected while on the
move. The capability of supporting efficient mobility
management and high quality hand-off will be essen-
tial. Second, limited battery life seriously constraints

the activities of a mobile host powered by batteries.
Due to this fact, energy conservation is an important
consideration. To the greatest extent possible, we at-
tempt to shift the workload from mobile hosts to fixed
hosts. Third, due to either physical cell crossovers or
power conservation, an MH may disconnect [4] it-
self from the rest of the system. More wisdom is
needed to handle long-duration disconnection of mo-
bile hosts. Forth, the characteristics of wireless link
are often distinguished from the ones of conventional
wired network. That is, the wireless link often has
much lower bandwidth, higher bandwidth variabil-
ity, and is monetarily more expensive. Thus, it will
be rewarding to optimize the number of messages ex-
changed between a mobile host and its peer fixed host
via wireless links.

In this paper we propose a lightweight commit pro-
toco! which supports a 2PC service for mobile clients.
In this protocol, a mobile client is free to move or dis-
connect after submitting its commit service request to
its local base station. Namely prozy model, the base
station then takes over the responsibility to finish
the request and finally delivers the result to the mo-
bile client. Since most of workload is shifted to fixed
hosts, the power consumption in a mobile host is sig-
nificantly reduced. Where, through efficiently track-
ing the moving clients, we minimize the ill-influence
resulting from the mobility of the client by seperating
the ongoing service and location management func-
tionality into two independent parts, prozy handoff
and service handoff. In addition, in order to reduce
message traffic and support location-dependent infor-
mation access, the proposed subject oriented service
binding scheme can dynamically allocate most-fit ser-
vice supplier (worker) for the on-the-move client. Be-

_76_



1998 International Computer Symposium '
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

sides, disconnection of a mobile client due to power
saving or physical cell cross-over can be effectively
solved by the proposed protocol.

The remainder of this paper is organized as fol-
lows. Section 2 presents the proposed commit proto-
col and the strategies adopted in the protocol. The
correctness are described in Section 3. Some suitable
applications of the proposed protocol are described
in Section 4, while a brief summary is presented in
Section 5.

2 Lightweight Two Phase Com-
mit Protocol

In this section, we will introduce the system ar-
chitecture, the proposed protocol and the strategies
adopted in our system.

2.1 System Overview

The model, as depicted in Figure 1, is derived from
[5]. A mobile host (MH) is a computer that can move
while remaining its network connections through
wireless communication. A mobile support station
(MSS) or a base station is a computer augmented
with a wireless interface to communicate with mobile
hosts and, is connected to a fixed network through
wired communication. A cell is a geographical cov-
erage area serviced by an MSS. An MH can directly
communicate with an MSS only if the MH is phys-
ically located within the cell serviced by the MSS
via a wireless medium. The process during which
a mobile host enters a new cell is called hand-off.
All fixed hosts (including MSS) and the communica-
tion paths between them constitute the fized network.
Each MSS and the local MHs within the cell form a
wireless cell. However, our system model diverges
from the architecture of (5] by assuming that some
of the fixed hosts are equipped with a database (as
an abstraction of all needed resources maintained by
a server) of specific service. A server is the software
that runs at an MSS or a fixed host and provides
mobile application services and information to the
mobile hosts. The geographical coverage area for the
service is called a service area. It is likely that a
service area will cover several wireless cell.

Protocol Sketch

" To adapt the conventional 2PC protocol to mobile
computing environment, we extend the protocol as
consequence of taking the peculiarities of a mobile
host into account. As depicted in Figure 2, there
are four main modules (client, prozy, coordinator and

MSS: MobRle Seppert g Sutkm

' N
L MH
. M Moblle Mot
. M

Figure 1: Mobile system architecture.

DB: Data Base

worker) involved in our system. The mobile host who
issues the commit request to the system is called the
client. The base station of the cell within which the
mobile client currently located becomes the current
prozy of the client. The base station who first receives
the commit request becomes the coordinator of the
commit service. The server providing needed service
in the requested commit request is called the worker.
It is possible that several workers are involved in one
2PC request. In our design, as shown in Figure 2, as
the mobile client requests to commit a transaction,
the local MSS that receives the request becomes the
coordinator of this commit service. (Meanwhile, the
MSS becomes the current proxy of this client and acts
on behalf of the client.) The coordinator, then, tries
to find and allocate qualified workers who physically
supply the needed service. If, fortunately, all needed
workers are found and promise to finish its job, the
coordinator decides to really commit the transaction
and inform all employed workers to do so. Otherwise,
if the coordinator cannot find available workers to
support specific service, it must inform all allocated
workers to abort their jobs and rollback to their initial
states of the transaction. After receiving ACKs from
all workers, the coordinator finds the current proxy
of the client and forwards the result to it. (Since
the client may move to a new cell during the service
session, the system needs to hand-off the state infor-
mation of the mobile client from the old proxy to the
new proxy.) The proxy then delivers the result to the
mobile client. After getting an ACK from the mo-
bile client, the proxy sends ACK to the coordinator,
who can now release all locked resources and close the
commit service session. The complete version of the
proposed protocol is presented in [6].

2.2 Low Power Service

Since power is such a precious resource for mobile
hosts, it is totally unacceptable that a mobile client

_77_.



1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Client Proxy Coordinator Worker I (I=1, 2, ..., n)

1 sending

Mobile C .
Reguest to proxy
2 receiving the first proxy becomes the
Mobile Commit Requ coordinator;
esl from the client sending Would You to all
qualified workers;
waiting for replies; -

3 receiving Would You;
if can finish the job
then writing undo and redo

log;
sending Agree;
else sending Reject;
waiting for response;

4 if all workers reply Agree

then writing Commit log;
sending Commit to all

workers;

else sending Abort to all workers;

waiting for ACKs;

s if receiving Commit
then releasing resource an

locks; :
sending W_ACK;
if receiving Abort
then undo the request;
releasing resource and
locks;
sending W_ACK;
6 if any W_ack is not received
within a time-out period
then resending Commit/ Abort to
the worker;
if all W_ACK are received
then writing Complete log;
sending Commit / Abort to
the
Proxy;
7 receiving Commit /
Abort;
sending M_Comnmiit /
M_Abort to client;
8 receiving
M Commit or
M_Abort;
sending M_ACK
to proxy;
9 receiving M_ACK;
sends P_ACK 1o the
coordinator;
10 releasing locked resource;
terminating the service;

Figure 2: Sketch of the proposed lightweight 2PC protocol.

_78_




1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Mummedla
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

actively powers on to receive the result of the long-
lived transaction processing. Due to this fact, it
would be a good idea to shift most of the workload
from mobile hosts to fixed hosts. In our design, the
first local MSS receiving the commit request becomes
the coordinator of the commit service. The coordina-
tor coordinates the transaction processing among all
the allocated workers to get a joint decision (either to
commit or to abort the transaction) and keeps con-
tact with current proxy who acts on behalf of the mo-
bile client. That is, after sending the service requests
‘to the local MSS, the mobile client can either go to
sleep or just power off to reduce power consumption.
The fixed hosts (coordinator, workers and proxy) take
over all the jobs and communicate with the commu-
nity via the wired network to minimize the message
exchanged via expensive wireless links. Eventually,
the coordinator locates the requesting mobile client
and sends it the result. Thus, the workload of the
client is minimized.

2.3 Efficient Mobility Management

In our design, each time the mobile client moves out
of the physical cell boundary a prozy hand-off is
needed. That is, the new proxy requests the old proxy
to transfer the state of the client and also informs the
coordinator the current position of the client. How-
ever, in contrast, the coordinator and all the allo-
cated workers will not be changed correspondingly to
the movement of the client before the whole commit
request session completes. Hence, the ill-influence
caused by frequent hand-offs on the service response
time is minimized as a consequence of dividing the
proxy of the mobile client and the coordinator of the
service into two independent modules.

As proposed in [5], the call hand-off for mobile
clients means the physical connection transfer be-
tween the old and new MSSes, while the service hand-
off is used to depict the virtual connection transfer
between the old and the new servers for a specific ser-
vice. In our design, each time the mobile client moves
out of a cell boundary a prozy hand-off is needed.
However, when the atomicity requirement of a trans-
action is carefully considered, no service hand-off be-
tween workers is allowed after a worker is allocated by
the coordinator. The crossover message is just shown
as a notification to the user.

2.4 Subject Oriented Service Binding

In a subject oriented naming scheme, a client is bound
to a service rather than some specific server so that
the system can switch servers transparently. To facil-
itate the transparent naming functionality, we design

a naming scheme to supply the naming service. In our
system, a well-known name server is equipped with a
table, WorkerDatabase, which collects the associated
information about several kinds of service, including
the service known, the jobs included in each specific
service, all qualified workers for each specific job and
the coverage under the control of each worker. All
the information recorded in the table are collected by
active registration of each worker in advance. Each
worker locally keeps a JobTable to record the sup-
plied jobs, the covered service area and the busy sta-
tus. As mentioned above, to be allocated for a proper
job, the worker should actively register itself to the
specific name server in advance. The CandidateMap
, a3 a subset of the WorkerDatabase, is a local cache
on the coordinator as the result of querying the name
server for specific service. Notice that, each sub-task
included in the requested service may find several
qualified workers. At the coordinator, there exists
another table called WorkerMap which records in-
formation about the currently allocated workers who
are employed by the coordinator. The information
includes the service name, all the included sub-tasks,
allocated worker’s name, each worker’s service area
and the ACKed flag for indicating if it has acknowl-
edged receiving the Commit or Abort directive.

The steps included in a service binding are depicted
in Figure 3. The worker managing some specific
resources needs to register itself with a well-known
name server. The name server collects the associated
information (into the WorkerDatabase) about several
kinds of published service and the qualified workers
needed for each sub-task included in these services.
To employ suitable workers for réquested service, the
coordinator needs to query the name server to get
the related information of the needed workers and
records the result in the CandidateMap. Then, the
coordinator invites each needed worker to do the re-
quested service. After receiving the invitation, the
requested worker evaluates (by looking up the local
JobTable) if it can finish the job. Several factors
(such as if the worker is busy, if the mobile client
currently resides in the worker’s service area and if
the needed resources are available) are taken into ac-
count to evaluate the fitness. If a worker promises the
coordinator, related information about the allocated
worker will be recorded in the WorkerMap at the co-
ordinator and the binding is completed. It is worth
mentioning that all these efforts are transparent to
the clients. All the clients need do is to submit its
service request to its local MSS.

"79-



1998 International Computer Symposium ) i
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

1. Registration

‘JobTable

Figure 3: Service binding.

2.5 Disconnection Handling

In a mobile environment, disconnection and recon-
nection of a mobile host is fairly routine with cell
crossovers and/or the battery power conservation [4].
Also, it could be a long time before the mobile host
reconnects itself to the rest of the system. It seems
to be naive just to time-out, as would be the strategy
of the conventional distributed systems, if the host is
unreachable in case either the host just goes down or
the host powers-off to save battery power. However,
we would like to obtain a result after the long-run
request procedure. Fortunately, when reconsidering
the 2PC protocol, you will find that it may not be
necessary to keep the client involved in the process
all the time. Thus it would be advantageous to de-
velop a 2PC protocol to well fit in a mobile computing
environment.

As disconnection may happen frequently, it is es-
sential to develop-a strategy to handle this situation.
In our design, after the MH submitting the request,
the coordinator takes over all succeeding jobs. The
mobile client does not really need to be involved in the
service session, thence, the mobile client can discon-
nect itself from the system after submission. When
the transaction is finished, the coordinator forwards
the result to the last known proxy that was in touched
with the client. During the service session, however,
the client may disconnect and later emerge in some
cell (either moving to another cell or staying in the
same cell) and re-establish contact with the rest of
the system via its current proxy. The current proxy
of the client needs to inform the coordinator and the
old proxy of the current location of the client. Thus,
the coordinator can send the result to the new proxy
and the client. We now discuss four possible scenar-
ios resulting from disconnection and/or hand-offs in
Figure 4 to Figure 7.

Figure 5: Flow of disconnection-free and handoff han-
dling.

Scenario 1: Neither disconnection nor hand-
off

Figure 4 shows the condition involving neither dis-
connection nor hand-off in the whole service progress.
After receiving the result from the coordinator (step
8), the proxy simply forwards the result to the client
(step 9), then waits for the ACK sent back from the
mobile client (step 10) and ACKs to the coordinator
(step 11).

Scenario 2: Hand-off but not disconnection

In Figure 5, no disconnection happens, but the client
may move out of a cell and hand-off handling is re-
quired. That is, a mobile client moves to another cell
and registers itself to the new proxy (step 8). The
new proxy requests the old proxy and the coordinator
to hand-off {steps 9, 10). After that, the coordinator
can send the result to the new proxy (step 11). The
new proxy then sends the result to the client (step
12), waits for the ACK from the client (step 13) and
ACKSs to the coordinator (step 14).

_80_



1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Mulumedla

Figure 6: Flow of disconnection and handoff-free han-
dling.

Scenario 3: Disconnection but not hand-off

Figure 6 illustrates the condition that the mobile.

client never moves out of the cell boundary, but ever
disconnects itself from the proxy during the service
session. In this case, the proxy tries to forward the
result received from the coordinator (step 8) to the
client that now breaks contact with the proxy (step
9). The proxy holds the result until the client recon-
nects (step 10) and forwards the result to the client
(step 11). After receiving the ACK from the client
(step 12), the proxy ACKs to the coordinator (step
13).

Scenario 4: Both hand-off and disconnection

Figure 7 presents the condition that the mobile client
disconnects and moves out of the cell. Before the
mobile client reconnects itself to the system again,
the coordinator may send the result to the last known
proxy last in touched with the mobile client (step 8).
As the client disconnects and moves out of its cell, the
proxy fails to deliver the result (step 9). Sooner or
later, the mobile client comes up and registers itself to
a new proxy (step 10). The new proxy then requests
the old proxy and the coordinator to hand-off (step
11). Eventually the new proxy gets the result (step
12) and forwards it to the mobile client (step 13).
After receiving the ACK from the client (step 14),
the proxy ACKSs to the coordinator (step 15).

3 Correctness

Now, we would like to claim the correctness of the
protocol we proposed in this paper. Recall that,
there are two aspects of atomicity of a transaction [7].
First, a transaction either completes successfully and
the effects of all of its operations are saved in per-
manent storage or it has no effect at all. Second,

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Figure 7: Flow of disconnection and handoff han-
dling.

the intermediate effects of a transaction must not be
visible to other transactions. Where the correctness
of conventional 2PC protocol has already been well
proven in some existing literature [7]. -Take the cor-
rectness of 2PC protocol as a base assumption, all
we need to prove is to inspect whether the mobility
and disconnection of the mobile client and kinds of
failures during the transaction session will hurt the
atomicity of a transaction service. Before going any
further, it is helpful to remember that there are four
modules (client, proxy, coordinator and worker) in-
volved in our system.

3.1 Mobility

After receiving the commit request, the coordinator
takes the responsibility of processing a 2PC service.
During the service session, the mobile client and the
proxy are not really involved in the transaction pro-
cessing. Thus, they are free during the service session
under one condition, that is, to keep close contact
with the coordinator by reportting their current loca-
tion. Thence, the coordinator can eventually forward
the result to the mobile client. Though, due to the
movement of the mobile client, proxy handoff may be
needed during the session. The coordinator and all
allocated workers are not changed by the movement
of the mobile client, the result of the transaction will
not be affected at all.

3.2 Disconnection and Failures

To some’ extent, disconnection could be considered,
from the viewpoint of the rest of the system, as
planned or accident failure. To focus our attention
on the aspect of atomicity, either disconnection or
kinds of failures would be considered as failures. And,
we would like to assume that thé failed components
eventually would reconnect themself to the system

_8]_



1998 International Computer Symposium i
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

by default recovery procedure or by manual repair.
Conventional 2PC protocol has been proven [7] that
it could guarantee the atomicity of the transaction
even if kinds of failures happen. As described in [6],
for the sake of completeness, we discuss the correct-
ness according to the possible failures of the main four
modules -included in our protocol. There are several
time points that these modules may fail. We would
like to claim that according to the proposed protocol,
after the system recovers from failures, all the workers
will achieve a coordinated decision (either to commit
or to abort)-and the atomicity of the transaction will
be preserved. However, to save the space, we present
the discussion in [6].

4 Potential Applications

As mentioned earlier, 2PC protocol is applicable to
almost any multiparty operation. Now, we describe
some suitable applications of our protocol.

Distributed Transaction

The data items involved in a service may be dis-
tributed among several servers and a transaction may
involve multiple servers. That is a so called dis-
tributed transaction. Obtaining the atomicity prop-
erty of transactions requires that either all of the in-
volved servers commit the transaction or all of them
abort the transaction. You can find many suitable
applications of distributed transaction in the mobile
environment. For example, banking requests issued at
mobile host from somewhere may involve data items
at different bank branches. Thus, a strict coordina-
tion among these branches is needed to convert the
whole banking system from one consistent state to
another congistent state.

Replication Management

Replication is a key to provide enhanced perfor-
mance, high availability and fault tolerance in a dis-
tributed system [7, 8. The main problem here is
applying operations from clients to multiple repli-
cas in a consistent way, while maintaining accept-
able system throughput and response time. The ba-
sic requirement for replicated data is consistency. It
is not acceptable for different clients to get differ-
ent results when they access these replicated data
items. Besides, replication transparency is another re-
quirement when data are replicated. In other words,
clients should not be aware that multiple copies of
data physically exist. In our system, the coordinator
takes charge of all succeeding jobs after receiving the

request from the mobile client, thenceforth, replica-
tion is totally transparent to the client. Furthermore,
due to the atomicity property of 2PC protocol, replica
consistency can be completely satisfied.

Group Communication

A group is a collection of processes that act together
in some way. The key property [8] that all groups
have is when a message is sent to the group, all of
the members of the group receive it. Group commu-
nication is very useful for constructing distributed
systems with characteristics such as fault tolerance
and/or better performance based on replicated ser-
vices and multiple updates which are expected to
achieve the properties of atomicity and ordering. The
purpose of using a group is to allow processes to
handle collections of processes as a single abstrac-
tion. Thus, a process can send a message to a group
of servers without having to know where they are
or how many there are. The atomicity can be per-
fectly achieved when our lightweight commit protocol
is used.

5 Conclusion

In this paper we propose a lightweight commit pro-
tocol, which supports conventional 2PC service for
mobile clients. In our system, by shifting most work-
load to peer fixed hosts, the load, the power con-
sumption and the message exchanged via expensive
wireless links in a mobile host are greatly reduced.
Through efficiently tracking the moving clients, we
minimize the ill-influence resulting from the mobility
of the client by seperating the ongoing service and
location management functionality into two indepen-
dent parts, prozy handoff and service handoff. In
addition, a subject oriented service binding scheme
is designed to transparently allocate best-proper ser-
vice suppliers for the mobile clients, which is essential
to supply location-dependent information and signif-
icantly reduce message traffic. Disconnection can be
effectively solved in the proposed protocol.

References

(1] T. Imielinski and B. R. Badrinath. Wireless mo-
bile computing: Challenges in data management.
Communication of ACM, 37(10):19-28, 1994.

[2] G. Forman and Zahorjan. The challenges of mo-
bile computing. IEEE Computer, pages 38-47,
1994.

._82..



(3]

B. R. Badrinath, A. Acharya, and T. Imirelin-
ski. Structuring distributed algorithms for mobile
hosts. In Proc. Of the 14th Intl. Conf. On dis-
tributed Computing Systems, pages 21-28, 1994.

J. Kistler and M. Satyanarayanan. Disconnected
operation in the coda file system. ACM Trans. on
Computer Systems, 10(1), 1992.

J. loannidis, D. Duchamp, and G. Q. Maguire.
Ip-based protocols for mobile internetworking. In
Proc. of ACM SIGCOMM Symposium on Com-
munication, Architectures and Protocols, pages
235-245, 1991.

Y. W. Lin, F. P. Lai, and H. K. Wu. Lightweight
commit protocol for mobile clients. Department of
Computer Science and Information Engineering
of National Taiwan University.

G. F. Coulouris and J. Dollimore. Distributed
Systems: Concepts and Design. Addision-Wesley,
1994.

A. Goscinski. Distributed Operating Systems: The
Logical Design. Addision-Wesley, 1991.

_83_

1998 International Computer Symposium _ )
Workshop on Computer Networks, Internet, and Muitimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.



	
	76
	77
	78
	79
	80
	81
	82
	83


