1998 interational Computer Symposium
‘Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Dynamic Java Program Corpus Analysis

Chung-Chien Hwang?, Shih-Kun Huang’, Min-Shong Lin® , Chorng-Shiuh Koong® and Deng-Jyi Chen*

* Computer Science and Information Engineering Department, National Chiao Tung University, Hsin-Chu, Taiwan
® Institute of Information Science, Academia Sinica, 128 Academic Road, Section 2, Nankang 115, Taipei, Taiwan
¢ Computer and Communication Research Laboratories, Industrial Technology Research Institute, Hsin-Chu, Taiwan

Email: cchwang@csie.nctu.edu.tw, skhuang@iis.sinica.edu.tw, {minslin,csko,djchen}@csie.nctu.edu.tw

ABSTRACT

Program corpus analysis is important in optimization of
run-time systems. Conventional linguistic analysis is static
in nature and can’t reflect dynamic behaviors revealed by
versatile object-oriented programming languages. Pattern
based run-time profiler is proposed and realized in this
paper. Unlike conventional profiler or run-time
visualization tools, representative program corpora
accumulated and benchmarked not only show monolithic
functions that introduce excessive run-time overhead but
also reflect their correlated code patterns. We proposed
pattern-based analysis to address program run-time
bottleneck in a sequence of method invocations. It will
reveal more semantic meanings in performance bottleneck
rendered by object-oriented programming systems.

Keywords: Object-Oriented Computing, Java VM,
Program Corpus Analysis, Run-time Profiler and
Visualization, Design Patterns, Code Patterns

1. INTRODUCTION

Linguistic analysis of text corpus is done by parsing
strings of token sequentially due to the spoken nature of
human beings. However, program execution is not
sequential and polymorphic operations largely complicate
execution trace. For example, a string of tokens A, B and
C is a program corpus. P{A|B) is the condition probability
that A will occur consecutively before B and P,(C|B) with
C occurred after B. If P{A|B) and P,(C|B) relatively
small, B may be a candidate code patterns that are
frequently used. However, program behavior is not static
and varied due to dynamic binding and polymorphic
operations associated with the context where B resides. If
we want to fit the lexicon model into program corpus, we
must consider using run-time trace to detect dominant
converge of code patterns.

Code patterns (also named Idioms) are low-level patterns
specific to a programming language. They reflect the style
experienced programmers frequently apply in their routine
work. The same recurrent structures are used many times
and may embed in certain design patterns like Singleton
design pattern in C++ or Smalltalk. It’s hard to find a
specific pattern from a large of program corpus due to

diversity of dynamic binding and inheritance. We have
built a Java run-time profiler in a pattern based approach
to detect specific control structures that are central to the
code patterns. We call them the control pattems[4]. These
control patterns can be performance bottleneck and will be
highlighted in our visualization tool. They can be recurrent
structures in some problem domain and can be used for a
pattern finding system. If applied in a software
vulnerability penetration tool, it is a good testing tool for
finding interface incompatibility.

The rest of this paper is organized as follows. In section 2,
the design and implementation of the profile analyzer are
discussed. The meanings of the evaluation results of the
programs are also discussed in this section. In section 3, a
suite of Java programs is collected for our benchmark
programs. The analyzing results of these benchmark
programs by our analyzer are discussed. Finally, our
system is compared with the profile produced by the
original software implementation of the JVM]6].
Conclusions and further work will be given in section 4.

2. THE DESIGN AND IMPLEMENTATION OF THE
ANALYZER

The run-time information of Java programs can be
obtained by running the Java programs on our modified
JVM software implementation. In this section, we will
design and implement an analyzer to analyze several
object-oriented program behaviors for seeking possible
patterns and find potential performance improvement.

2.1 Object-Oriented Program Behaviors
2.1.1 Method Invocation Localities

Hardware caches in a computer system can improve
performancef11]. It is because there is existed reference
locality of memory space in programs. Reference locality
of memory space means that given a period of time,
references to memory space are confined to a small range
of memory space. Similarly, we wonder if there exists
method invocation locality during object-oriented program
execution. Method Invocation locality means that during a
period of time, method invocations are confined to a small
set of methods, or classes.

-154-

Take the segment of program in Figure 2-1 as an example.
It traverses a tree and gives each node a number to
represent the traversal order. In spite of how many classes
and methods in the whole programs, during the execution
of this program segment, only 2 classes and 7 methods are
involved. They are stack and ce classes, and stack.empty(),
stack.push(), stack.pop(), cesetOK(), ce.setValue(),
ce.hasoreChildren() and ce.nextChild() methods. As a
result, method invocation locality might be a behavior to
characterize object-oriented programs.

while (Istack.empty()) {
ce = stack.pop();
if(ce.traverse()) {
ce.setOK();
}
else {
ce.setValue(value++);
stack.push(ce);
while(ce.hasMoreChildren())
stack.push(ce.nextChild());
}

Figure 2-1 Segment of A Tree Traversal Program

A method invocation is consisted of three parts: receiver
class, method class, and method. In the analyzer, localities
of receiver class, method class, and method are evaluated
respectively. To define the localities, a window size is first
chosen to be the range to count the number of classes or
methods. For receiver class locality and method class
locality, the total number of classes of the evaluated
programs is chosen as the. window size. For method
locality, the total number of methods of the evaluated
programs is chosen as the window size. The receiver class
locality {method class locality, method locality} is then
defined as the ratio of the receiver class count {method
class count, method count} in this window to the window
size. By the definition of locality values, one can easily
realize the phenomenon that method invocation sequences
with smaller value of locality exhibit better overall locality.
Figure 2-2 shows the method invocation sequence
produced by running the program segment of Figure 2-1.
We hypothetically define the window size as 12. Then the
receiver class locality {method class locality, method

locality} of this window is 2/12 {2/12, 7/12}.

For the whole method invocation sequence of a program
execution, the window is shift from the beginning to the
end of the method invocation sequence, and respective
localities of each shift are evaluated. And then the average

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

method invocation sequence

1 (stack)stack.empty()
2 (stack)stack.pop()
3 (ce)ce.traverse()
4 (ce)ce.setValue()
5 (stack)stack.push()
6 (ce)ce.hasMoreChildren()
7 (ce)ce.nextChild()
8 (stack)stack.push()
9 (ce)ce.hasMoreChildren()
10 (ce)ce.nextChild()
11 (stack)stack.push()
_ 12 (ce)ce.hasMoreChildren()
13 (ce)ce.nextChild()
14 (stack)staek.push()
15 (stack)stack.empty()
16 (stack)stack.pop()
17 (ce)ce.traverse()
18 (ce)ce.setValue()

Window Size

Figure 2-2 Method Invocation Sequence of the
Program Segment in Figure 2-1

of these locality values is used to represent the locality of a
program execution.

2.1.2 Control Patterns

During object-oriented program execution, the action of
invoke a method to execute is known as a control
transformation. A method invocation sequence keeps track
of all the control transfers occurred during program
execution. There might exhibits some recurrence patterns
in the method invocation sequence, and these recurrence
patterns of control transformation are called control
patterns. In this thesis, we evaluate three kinds of control
patterns, and they are consecutive patters, hierarchy
consecutive patterns, .and loop-N patterns. Examples are
used to explain these patterns in the following paragraphs.

Consider the method invocation sequence in Figure 2-2.
The 1* and 2™ method invocation is an instance of receiver
class consecutive pattern and method class consecutive
pattern, because they are consecutive, and their receiver
classes are the same (stack), and their method classes are
the same (stack). Consider the 6™ to 14™ method
invocations, the same method invocation is repeated every
three method invocations. As a result, they are an instance
of receiver class loop-3 pattern, method class loop-3
pattern, and method loop-3 pattern.

Let's look at another example in Figure 2-3. At the left of
this figure is a class hierarchy diagram, and at the right is a
program segment. Textdrea class is a subclass of
TextComponent class, Component class and Object class.
Method appendText() is defined in Textdrea class, and
method enable() is defined in Component class. The
correspondent method invocation sequence of the last four

-155-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems -
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

statements is listed in Figure 2-4. The 1% and 2™ method
invocations are both invoke the enable() method of class
Component, so they are an instance of method consecutive
pattern. Now let's focus on the method classes of these
four method invocations. All of the method classes belong
to the same class hierarchy, although two of them are
Component class, and two of them are Text4rea class. As a
result, these four method invocations are an instance of
class hierarchy consecutive pattern. When the situation
happens on the receiver class, then it is called a receiver
hierarchy consecutive pattern.

Object
/]\ TextArea t1 = new TextArea();
TextArea t2 = new TextArea();
Component
enable() tl.enable();
12.enable();
Text tl.appendText(“This is t1”);
Component t2.appendText(“This is 27);

appendText
ppendexd

Figure 2-3 Ul Program Example

1 (TextArea)Component.enable()
2 (TextArea)Component.enable()
3 (TextArea)TextArea.appendText()
4 (TextArea)TextArea.appendText()

Figure 2-4 Method Invocation Sequence of the
Program in Figure 2-3

2.1.3 Other Behaviors

An object can receive a message (method invocation)
either defined in the class of the receiver or defined in the
superclasses of the receiver. When an object execute the
method defined in the class of the object, then the method
class is the same with the receiver class. When an object
execute the method defined in the superclasses of the
object, then the method class is not the same with the
receiver class, but they are in the same class hierarchy. The
analyzer we designed can measure the distance between
the receiver class and method class when they are in the
same class hierarchy. If the method lookup algorithm is
implemented by searching the class hierarchy, the
efficiency of method lookup will be affected with the
distance between the receiver class and method
class{1,3,10]. Take the method invocation sequence in
Figure 2-4 as an example. The receiver class of the 1* and
2™ method invocations is Text4drea, while the method class
of them is Component. Component is a direct superclass of
TextComponent, and TextComponent is a direct superclass
of TextArea, so the distance between Component and
TextArea is 2.

Other behaviors of Java program that our analyzer
measures and analyzes are listed as follows: average
method size of all methods in a program, method size
distributions, the number of native method exist in a
program, and the invocation count of native methods
during program execution. How these behaviors affect the
program performance are explained in the section 3 of this

paper.
2.2 Analyzer Architecture

The architecture overview of the analyzer is shown in
Figure 2-5. The static information file is first read in line
by line to construct the database. After reading the whole
static information file, the database contains the classes
and methods information that is used during the program
execution, and the events produced during the program
execution.

In the database the methods that defined in the same class
are linked together, and pointed by the class that defines
them. Each method node contains its name, signature and
size. Classes are linked by their inheritance relationships.
Each class node contains its name, a pointer pointed the
class node of its superclass, a pointer pointed to the
methods which defined in it, and two integer values (left-
value and right-value) which are used in class inclusion
tests. The lefi-value and right-value of the class node will
be further discussed in 2.3 Implementation Notes. The
database also contains an event list in which the event
entries are indexed by the data in the dynamic information
file. Each event entry contains three pointers. The
ReceiverClass points to a class node that represents the
receiver class of this event. The MethodClass also points
to a class node that represents the method class of this
event. The Method points to a method node that represents
the method of this event.

After the database is constructed, it is ready for the
analysis engine to access. The analysis engine is designed
to analyze the various program behaviors described in
section 2.1.

2.3 Implementation Notes
2.3.1 Class Hierarchy Encoding

Class inclusion tests[5,12] are usually needed
during our analysis. For example, when analyzing the class
hierarchy consecutive pattern, two classes should be tested
to see if they are in the same class hierarchy. Java is a
single inheritance programming language, so the relative
numbering method is adopted for the class inclusion tests
in our analyzer implementation.

-156-

1998 Interational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Analyzer

Static

Database

Information
File

Event List

\‘[Method Information |

v

Dynamic

Information
Fila

Analysis Engine

Presentation

Ml

Figure 2-5 Analyzer Architecture Overview

2.3.2 Control Pattern Evaluation

In this section, we describe how the percentages of control
patterns in a method invocation sequence are calculated.
Different control patterns are calculated separately. Only
one control pattern is calculated for each pass of the
method invocation sequence. Figure 4-9 illustrates the way
our analyzer used to calculate the percentages of control
patterns in a method invocation sequence.

hit ar micg ?

Predictor
(internal states)

input

method invocation sequence

Figure 2-6 Predictor for Evaluating Control Patterns

The method invocation sequence is fed into the predictor.
The predictor keeps several internal states to predict the
next method invocation. The output of the predictor is
compared with the next method invocation input from the
method invocation sequence. If the output of the predictor
is same with the input method invocation, then the input
method invocation together with the method invocations in
the predictor is an instance of the evaluated control pattern.
The input method invocation is then fed into the predictor
to update the internal states of predictor.

The predictor is configurable. Setup the predictor with
different internal state configuration correspond to
different control pattern evaluation. To evaluate the
consecutive patterns, setup the predictor with one internal
state to record the previous method invocation. The
internal state is used as an output to compare with next
input method invocation. To evaluate the loop-3 pattern,
setup the predictor with three internal states to record the

previous three method invocations. The third internal state
is used as an output to compare with the next input method
invocation. With these techniques, the percentages of
control patterns in a method invocation sequence can be
easily evaluated.

3. PATTERN-BASED CORPUS ANALYSIS

In order to see if there exist any particular behaviors in
typical Java programs, we collected a suite of Java
programs to analyze. These programs are first executed on
the modified JVM to get the run-time invocation sequence,
and then analyzed by the analyzer to obtain various
statistics. In this chapter, the benchmark programs are
described and the results are discussed.

3.1 The Program Corpus: Benchmark Programs

We have collected 18 Java programs for our analyzer
to analyze. Most of these programs are from two sources.
One is the sample programs included in the JDK, the other
is the winner programs of JavaCup program contest, which
was held by Sun Microsystem in 1996. Javac program is
included in the JDK API. LinpackJava is a Java version of
Linkpack benchmark[2]. It is hoped that these programs
can represent the application domains of java programs
and exhibit the typical java program behaviors.

Below are the overview and descriptions of our benchmark
programs. In the # of Classes field, the number in the
parentheses is the number of classes exist in the program,
while the number outside the parentheses is the number of
classes that are actually used in the run-time of the
program execution. Most of these programs are user-
intervention programs. In other words, it needs users to
terminate the execution of these programs. We always
terminate their execution after the execution behaviors
have reached a steady state, or after proceeding a
meaningful work. For example, in the Animation program,

-157-

1998 International Computer Symposium
‘Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

we kept the program running for the animation repeating
two or three times before terminating it. In the WebDraw
program, we drew a Mickey Mouse face and saved it
before exiting the program.

Javac § (8)
Animation 361 139(1)
Molecule 705 132(4) 558,202
Viewer
ScrollText 307 121(1) 32,907
Blink 94 111(1) 59,977
Fractal 385 115(4) 134,158
Dither Test 332 141(3) 303,727
TicTacToe 306 146(1) 40,391
Tubes 617 149(8) 585,210
Background 367 135(5) 159,120
Thread
ThreadX 278 118(3) 74,449
CardTest 113 118(2) 31,547
Mapinfo | 4,277 192(26) 306,904
TrafficSim 669 125(6) 563,661
TuringMachi 991 167(1) 156,045
ne
WebDraw 5,170 156(23) 248,353
DigSim 10,293 225(64) 993,350
LinpackJava 629 39(1) 11,180

These benchmark programs can be classified into the
following eight categories:
1. Text Processing

1.1 Javac A java compiler which is included in the
JDK. This program is run to compile the 2.1
Animation program.

2. Image Processing

2.1 Animation An animator program which can show
a sequence of pictures circularly.

2.2 MoleculeViewer The program draws 3D molecule
models. Users can use the mouse to navigate the
3D model to different viewpoints.

2.3 ScrollText This program show a sentence on the
screen, and scroll it around.

2.4 Blink Several words are shown on the screen, and
their places and colors changes with time
randomly.

2.5 Fractal Calculate the fractal graph, and draw it on
the screen

2.6 DitherTest Choose two colors in the program, the
DitherTest will mix the two colors gradually, and
show the results.

3. Game
3.1 TicTacToe A little game program.
3.2 Tubes A puzzle game program.

4. Multi-Thread Program

4.1 BackgroundThread Two threads run
simuitaneously, and communicate with each other
to exchange their computed data.

4.2 ThreadX Three threads in the program, and users
can control when to start or stop the running of
any of the three threads.

5. Interactive Program
5.1 CardTest It is a GUI demonstration program. Users
can choose a layout by mouse, then the program
will show the layout demonstration to the users.
52 Maplnfo A simple geographic information
system. The map of University of British
Columbia is shown on the screen. Users can get
detailed information about any particular building
by clicking the position of the building on the
map. '
6. Simulation
6.1 TrafficSim The program simulates the effect of
the traffic lights on the traffic flow, and
demonstrates the simulation to users by graphics.
6.2 TuringMachine The program simulates the
operations of the Turing machine. Sample
programs can be loaded into the simulator, and
the execution process will be shown by graphics.
7. System

7.1 WebDraw A graphics editor. Users can draw
graphics and save/load them to/from the files.

7.2 DigSim A digital circuit editor ahd simulator.
Users can choose the build-in digital circuit
components, connect them, and simulate the
operations of the built digital circuits.

8. CPU Intensive program

8.1 LinpackJava It is an artificial benchmark to test

the CPU performance.

3.2 Discussions
3.2.] Method Size

The average method sizes of most of our benchmark
programs are between 30 and 40 bytes (in bytecode).
Except the Javac, the others are below 50 bytes. In the
Java compiler program, many codes are dealing with the
text parsing, bytecodes generation, there will be a lot of if-
then-else statements in a method. That is the reason the
average method size of Javac is bigger compared to other
programs.

From the aspect of the method size distribution we
observed that the sizes of most methods in Java programs
are small, and nearly half of them are between 0 and 20
bytes. This is one of the features of object-oriented
programming. It is recommended to access object
variables through methods. Methods for accessing object
variables are usually contain only one return statement.

-158-

Moreover, methods in object-oriented programs aren't very
complicated. Complicated methods are usually divided
into several simple methods. These are the reasons that
most methods are relatively small in our benchmark
programs.

Too many small methods induce frequent control
transfer during program execution. A control transfer is
very expensive compared to sequential execution. It has to
search the destination address, and prepare the execution
context of target method. Thus, the implication of small
method sizes is inefficiency of program execution.

3.2.2 Native Method

Though Java Virtual Machine can be implemented on a
chip, it doesn't contain any I/O instructions. Therefore,
when implementing the JVM by software on a platform,
all I/0 operations must be executed by the native codes of
that platform. Some of the methods of the JDK API are
written in C language, and compiled into native codes
rather than Java bytecodes.

By the analysis of our benchinark programs, we have
found that most of our benchmark programs, the execution
percentages of the native methods do not exceed 20%. The
native method execution percentages of TrafficSim and
TuringMachine are 25% and 32%, which are higher than
other programs. The reason is that the two programs
contain lots of /O operations. While the DitherTest and
LinpackJava programs involve many arithmetic operations,
so the native method execution percentages are relatively
very low.

It is believed that if a Java program execute more
native methods, then the execution speed of that program
will be faster. But execute more native methods contradict
the design philosophy of JVM, which is designed for
platform-independent execution. If the execution depends
heavily on the native methods, then the Java program
won't be platform-independent anymore.

3.2.3 Method Invocation Localities

The receiver class locality and the method class
locality are smaller than 0.1 or around 0.1. This means that
during the execution of a program, given a short period of
time, the accesses to classes are confined to a small subset
of classes rather than all of the classes in the program. A
very interesting phenomenon is the receiver class localities
are always smaller than the method class localities. That is
because a message to an object may cause the object to
execute the methods of its super classes. All of these
method localities are smaller than 0.07, which are slightly
better than the receiver class localities and method class
localities. The receiver class, method class, and method
localities of DitherTest program are much smaller

-159-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

compared to other programs. The reason is that there is a
very big loop which involves intensive computations.
Only several methods are involved in that loop.
Consequently, the localities of the DitherTest program are
much smaller. By the analysis of method invocation
localities during program execution, given a period of time,
the method invocation behaviors are confined to a small
set of classes or methods. Java Run-time System (object-
oriented run-time system) can make use of this feature to
support run-time method invocation prediction. With
accurate prediction, the performance of programs can be
improved.

3.2.4 Consecutive Patterns

The percentages of receiver class consecutive pattern and
method class consecutive pattern vary between different
programs. The percentages of DitherTest and LinpackJava
programs are very high compared to other programs. They
are computation intensive programs. The codes for
intensive computations are in one or several methods of a
particular class. As a result, the dynamic execution
behavior focuses on these methods or classes, and
produces high percentages of consecutive pattern. Except
the ThreadX program, the percentages of receiver class
consecutive pattern are always higher than the percentages
of method class consecutive pattern.

Compare with the percentages of class consecutive
patterns, the percentages of method consecutive pattern are
very low. Three programs with high percentages of
method consecutive pattern are worth to be mentioned.
They are DitherTest, LinpackJava and DigSim. The
reasons of DitherTest and LinpackJava with high
percentage of consecutive patterns have been discussed.
The DigSim program uses a lot of Vector objects to store
the circuit information. When simulating the circuits, these
Vector objects' sizes must be retrieved for simulation. As a
result, lots of the method consecutive patterns are from

100%
W
e
]
&%
%

A%
%
I%
pez
0%

TuringMuch

Butk ground Throad P

3 5 % P 3 2
R §2£2235¢2;
2 3 2z = 3 5 % g"gj
£z 3 2 3% 3 &8 3
< 3 # N = = g
3 =

3

=

Figure 3-1 Percentages of Receiver/Class Hierarchy
Consecutive Patterns

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

invoking the Vectorsize() method. There are four values
drawn in Figure 3-1. The percentages of receiver-
consecutive pattern and class-consecutive pattern are listed
here for comparing with the percentages of receiver-
hierarchy-consecutive pattern and class-hierarchy-
consecutive pattern.

o
O Shoielaxl
o !
T ORaialopt |
%
m .3
. A
p 2
o i
. L
- L
- i
o%agiégé;.yg-ij%%z%g%s
I Fre= iy 5 3
£33 “4:7§%335438°73

Figure 3-2 Percentages of Receiver Loop-2,3,4 Patterns
3.2.5 Loop-N Patterns

In Figure 3-2, four values are drawn for each program. The
first is the percentage of receiver-class-consecutive-pattern
that is listed here for comparison with other three values.
The second is the percentage of receiver-loop-2 pattern,
the third is the percentage of receiver-loop-3 pattern, and
the fourth is the percentage of receiver-loop-4 pattern. By
Figure 3-2, it is observed that programs with high
percentages of receiver-consecutive-pattern usually have
high percentages of receiver-loop-N-Pattern.
BackgroundThread program is the only one exception.
During the execution of BackgraoundThread program, the
percentages of receiver-consecutive-pattern, receiver-loop-
2 pattern, and receiver-loop-4 pattern are 16%, 12% and
13% respectively, but the percentage of receiver-loop-3
pattern is 75%. From this comparison, we can easily
conclude that during the execution of BackgroundThread
program, there are many method invocation destinations
are the same with its following third method invocation
destination. The behaviors and values of the class-loop-N
pattern are nearly the same with the receiver-loop-N
pattern. Compare with receiver-loop-N and class-loop-N
pattern, the percentages of method-loop-N pattern are
lower.

General speaking, the occurrence of the same consecutive
method invocation are rare. But the occurrence of the same
method invocation every two, three or four are more
frequent than consecutive situations. Take the Javac
program as an example, its percentage of method-
consecutive pattern is 7%. While the percentages of
method-loop-2, 3, 4 are 24%, 13%, and 24% respectively,

which is higher than the percentage of method-consecutive
pattern.

Except the consecutive pattern discussed in the previous
section, Loop-N pattern is another kind of control pattern.
By our analysis, we have found that these Loop-N patterns
do exist during the Java program execution, and the
percentages of these patterns of some Java programs are
high. This also provides another opportunity for compilers
or run-time systems to optimize the Java programs (object-
oriented programs) execution.

3.2.6 Receiver Class Versus Method Class

There are three kind of relationships between receiver
class and method class. When the receiver class and
method class are in the same inheritance path, but not the
same class, then there will be a distance along the
inheritance path between the two classes. In Figure 3-3,
the average distances between receiver class and method
class of each benchmark programs are shown (the situatior
that receiver class and method class are the same are not
included in the calculation of average distance). Most of
the average distances are between 1 and 2. This means that
more than half of the messages are sent to the receiver's
direct superclass, and others are sent to the superclasses of
receiver's direct superclass.

Use the methods defined in superclasses is a feature of
object-oriented programming paradigm. It let the
programmers reuse the programs that already written by
others. But this feature is also a source of run-time
overhead. When a method invocation occurs, the run-time
system has to search the applicable method upward along
the inheritance path. A solution of this overhead is to
gather all the applicable methods in a table, then there is
no need to search upward the inheritance path. But this
solution incurs excessive memory usage.

Aesge Osane
3
29
1 ~
/ 8 R
3
*dind 15 i
THHHHE
0
343 ; ij E
if 3 ce3:22z73% 3. R EE
S EREEETALEER
S EEITLREATCERSIZTA S
i34 Ex TF3F3zt=E}
H H § =2
H E =
-

Figure 3-3 Average Distance between Receiver Class
and Method Class
By our analysis of the relationships between receiver class
and method class, and their respective percentages during

-160-

execution, we have found that in most of our benchmark
programs, more than half of the method invocations are
that receiver class is the same class as method class. For
superclass-method invocations, the average search upward
levels are below 2. The result of these analysis hint us that
merging the searching upward method and table method
mentioned in the previous paragraph can improve the
performance of method lookup with acceptable increased
memory usage.

4. CONCLUSIONS

The behavior of an object-oriented program can be
characterized by their method invocation sequence
produced during program execution{7,8]. In this paper,
Java is chosen as our target programming language, and
run-time information is analyzed. The method invocation
sequence of a Java program execution is obtained by
running the Java program on the modified JVM software
implementation. The JVM software implementation of
Sun Microsystems is writtcn in C language. The major
parts of the implementation we modified are the dynamic
class loader and the execution engine. We also designed
and implemented an analyzer to analyze the run-time
information obtained by running Java programs on the
modified JVM software implementation.

We collect 18 Java programs as our benchmark programs.
These 18 Java programs is consisted of 8 application
domain categories. We expect these 18 programs can be
typical representatives of Java applications. After
obtaining the run-time information of these benchmark
programs, we use our analyzer to analyze the method sizes,
native method percentages, method invocation localities,
and control patterns.

Method sizes of Java programs are usually very short.
Above 50% of them are less than 20 bytes. This indicates
that inline these short methods will reduce many method
invocation overheads and improve the performance. JVM
does not define any /O instructions, so JVM software
implementation needs native codes to deal with program
I/O operations. By our analysis, less than 20% of the
method invocations are native method invocations in most
Java programs.

We evaluate whether exists locality of method invocation
during Java program execution. Our analysis reveals that
given a short period of time, the method invocations are
confined to a small set of classes and methods. The
immediate application of this analysis result is to help the
method invocation prediction. With more accurate method
invocation prediction during program execution, the
performance of object-oriented programs can be improved.
In this paper, we define two control patterns and evaluate
their percentages in the method invocation sequence of the

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

benchmark programs. These two control patterns are
consecutive pattern and loop-N pattern. Although the
percentages of these patterns vary between different
programs, they do exist in the method invocation sequence
during program execution. The existence of control
patterns provides opportunities to optimize the run-time
behaviors of object-oriented programs. Another result of
our analysis on the benchmark programs is that most of the
method classes of method invocations are the same class
with the receiver class rather than the superclasses of the
receiver class.

The contribution of this paper is that the run-time
behaviors of Java programs are analyzed, and the analysis
results provide directions for improving the execution
efficiency of object-oriented programs.

5. REFERENCES

[1] David F. Bacon and Peter F. Sweeney, Fast Static Analysis
of C++ Virtual Function Calls, OOPSLA'96, San Josz,
Calif., pp324-341, October 1996

[2] Jack Dongarra and Reed Wade, Linpack Benchmark -- Java
Version, http://www.netlib.org/benchmark/linpackjava/.

[3] Urs Hoizle, Craig Chambers and David Ungar, Optimizing
Dynamically-Typed Object-Oriented Languages With
Polymorphic Inline Caches, ECOOP'91, Geneva,
Switzerland, pp21-38, July 1991

{4] Shih-Kun Huang, Optimizing Run-Time Behaviors in
Object-Oriented Programming Systems, PhD Dissertation of
Institute of Computer Sicence and Information Engineering,
National Chiao-Tung University, HsinChu Taiwan. 1996

[5] Andreas Krall, Jan Vitek and Nigel Horspool, Near Optimal
Hierarchical Encoding of Types, ECOOP'97, Jyvaskyla,
Finland, pp128-145, June 1997

[6] Tim Lindholm, Frank Yellin, The Java Virtual Machine
Specification, Addison-Wesley, 1997

[7} Wim De Pauw, Doug Kimelman, John Vlisides, Modeling
Object-Oriented Program _ Execution, Proceedings of
ECOOP’94, Bologna, Italy, pp163-182, July 1994

[81 Wim De Pauw, Richard Helm, Doug Kimelman, and John
Vlissides, Visualizing the Behavior of Object-Oriented
Systems, OOPSLA'93, Washington, D.C., USA, pp326-337,
October 1993

[9] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, William Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall Inc., 1991

[10] David Ungar, Randall B. Smith, Craig Chambers and Urs
Holzle, Object, Message, and Performance: How They
Coexist in Self, Computer, pp33-64, October 1992

[11] David Ungar, Ricki Blau, Peter Foley, Dain Samples, and
David Patterson, Architecture of SOAR: Samlltalk on a

on Computer Architecture, pp188-197, 1984

[12] Jan Vitek, R. Nigel Horspool and Andreas Krall, Efficient
Type Inclusion Tests, OOPSLA'97, Atlantas, GA, USA,
pp142-157, October 1997.

-161-

	
	154
	155
	156
	157
	158
	159
	160
	161

