1998 Intemnational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

A HIGH LEVEL PROCESS MODELING TECHNIQUE BASED ON UML AND ACTION CASES

Shih-Chien Chou
Department of Information Management
Minghsin Institute of Technology
Hsinfong, Taiwan
E-mail: lvscchou@ms!5.hinet.net

Jen-Yen Jason Chen
Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan
E-mail: jychen@csie.nctu.edu.tw

ABSTRACT

This paper describes the high level process modeling
technique, which is composed of a high level process
model and a meta-process to represent processes in
that model. The high level model is designed based on
the class diagram gnd activity diagram of the unified
modeling language (UML). The meta-process is
designed based on action cases, which are similar to
use cases.

1. INTRODUCTION

Software processes (software development processes)
are becoming complicated. To facilitate their control,
process-centered software engineering environments
(PSEE) have been developed {1-16]. A PSEE provides
a process language to write process programs which
can be enacted (executed) in the PSEE.

To control software processes by a PSEE,
process programs should be developed first. Since
most current PSEEs do not well facilitate process
development, process programs are generally
implemented with few or no design work. This,
however, is not feasible for complicated processes,
because large-sized process programs are difficult to
implement without analysis and design work. To
remedy that, process programs, like software, can be
developed by following a software engineering
procedure, because software processes are also
software [17]. That is, processes can be analyzed and
designed before implementation [18]. To support that,
a PSEE should facilitate both high level and low level
process modeling. With high level modeling, a process
is analyzed, designed, and represented in a high level
process model. The high level process model is then
used in low level modeling, in which process
programs are implemented in a low level process
model.

We have developed a PSEE called CSPL
(concurrent software process language) environment
[4, 19-20] which provides an Ada-like CSPL process
language. The CSPL language is good at low level
process modeling. However, it is week at high level
modeling. To remedy that, we have designed a high
level modeling technique which includes: 1) a high
level process model and 2) a meta-process for
representing processes in that model. The model is
designed based on the class diagram and activity

diagram of the unified modeling language (UML) {21].

The meta-process is designed based on action cases,
which are similar to use cases {22]. See section 3.1 for
the action case definition. The CSPL high level

modeling technique offers the following features:

1) It provides constructs to model necessary process

components

Necessary ~ processes components
should be modeled so that they can be
controlled during process enactment.

Generally, a software process contains the
following necessary components: a) activities,
b) activity sequence and synchronization, c)
exceptions and their handlers, d) software
products, e) developers, f) tools, and g)
relationships among software products,
developers, and tools. All those components
can be modeled in the CSPL high level process
model.
2) It is expected to be easy to follow.

The meta-process of the technique is
designed based on action cases. Since action
cases are similar to the well known use cases,
the technique is expected to be easy to follow.

3) It facilitates process program maintenance.

Process programs, like software, need
to maintain. An easy-to-maintain process
program should be modular and easy to
understand. The CSPL high level process
model is based on the UML, which is object-
oriented (0-0). As agreed, O-O software is
modular and easy to understand. Therefore, the
CSPL high level process model facilitates
process program maintenance.

This paper describes high level process
modeling in CSPL environment. Section 2 describes
the CSPL high level process model. Section 3
describes the meta-process. Finally, section 4 gives
the conclusions.

2. CSPL HIGH LEVEL PROCESS MODEL

The high level process model is used to model process
components including: 1) activities, 2) activity
sequence and synchronization, 3) exceptions and their
handlers, 4) software products, 5) developers, 6) tools,
and 7) the relationships among software products,
developers, and tools. The model is designed based on
UML. Among the UML notations, the activity
diagram is slightly modified to model the first three
process components mentioned above, and the class
diagram is extended to model the other process
components. The modified class diagram is called the
CSPL class diagram and the extended activity
diagram is called the CSPL activity diagram. They are

-229-

- 1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

described in the following subsections.
2.1 CSPL class diagram

The CSPL class diagram models the following
process components: software products, developers,
tools, and roles. They are modeled as classes.
Moreover, relationships among the classes are also
modeled. Important relationships modeled are
described below:

1) Responsibility relationships between developers
and products.

Developers are responsible for the

products they developed. If a product needs be

modified, the responsible developers should be

consulted. Maintaining responsibility
relationships allows better control over
developers.

2) Binding relationships between préducts and tools.
A product developed by a specific tool
should be operated on by that tool, because
different software tools use different formats.
3) Decomposition relationships between software
products and their sub-products.
Software systems are often
decomposed into subsystems during
development. The decomposition relationships

should thus be modeled.
4) Dependency relationships among software
products.

Software products may depend on
others. For examnple, the design document of a
system depends on the system’s specification.
Managing dependency relationships facilitate
keeping consistency among software products.
For example, when a specification is changed,
its corresponding design document and
program code, which should also be changed,
can be identified by tracing the dependency
relationships.

5) Inheritance relationships among software products.

Inheritance relationships are important
in an O-O model. They should thus be
modeled.

Notations used in the CSPL class diagram are
depicted in Figure 1. Figure 1(a) sketches the
notations for classes. The left one displays only a class
name. It can be used when ciass attributes and
operations need not be shown. The right notation is
used when class- attributes and operations should be
shown. Class operations will be invoked by activities.
Figure 1(b) sketches an inheritance relationship,
where the super class is drawn on top of its subclasses.
Figure 1(c) depicts a composition relationship, where
the composite class is next to the diamond shape.
Figure 1(d) depicts relationships other than the
inheritance and composition relationships. The
relationship name is marked on the line. The arrow
head indicates source and sink classes of the
relationship. For example, Figure 2 sketches a
dependency relationship between the classes
“Specification” and “Design document”. The arrow
head indicates that “Design document” depends on
“Specification”. Figure 3 is an example CSPL class
diagram.

(b} Inheritance
() Class relationship
Class name
Class name Attrib
Openations
(¢) Composition nhﬁor;lhip (d) Other relationships

Composite nent B .
e —
name

Figure 1. CSPL class dlagram notations

Design Depend_on "
docugmem Specification

Figure 2. Dependency relationship

Function
model

modet
Dynamic
model

Figure 3. CSPL class diagram

Activity (a) Non-primitive | e {d) Activity
name activity synchronization

{b) Primitive | % (e) Multiple trigger

activity
{f) Connector

Condition {c) Activity

sequence

Exception {g) Exception

Figure 4. CSPL activity diagram notations

2.2 CSPL activity diagram

The CSPL activity diagram models the following
process components: 1) activities, 2) activity sequence
and synchronization, and 3) exceptions and their
handlers. It also shows the invoking relationships
between activities and class operations. Notations
used in the CSPL activity diagram are shown in
Figure 4. The notations are described below:

1) The notation in Figure 4(a) models non-primitive
activities. A non-primitive activity is a
complicated activity that can be decomposed
into more detailed ones.

2) The notation in Figure 4(b) models primitive
activities, which are normally easy to control
and need not be decomposed. Some primitive

-230-

1998 Inter.national Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.’

activities can be accomplished by invoking
class operations. Note that this notation is not
included in the UML activity diagram.

The notation in Figure 4(b) is
partitioned into two fields, where the first field
shows the activity name. If the activity is
accomplished by invoking a class operation,
the operation name is placed in the second
field. Placing class operations in primitive
activities shows the invoking relationships
between activities and class operations.

3) The notation in Figure 4(c) models activity

sequence. That is, for the activities connected
by arrow-headed lines, the successors can be

started only when the predecessors are finished.

Conditions can be associated with the line."For
example (see Figure 5), after the analysis
activity, if the specification verification passed,
the design activity can be started. Otherwise,
the analysis activity should be redone.

Specification

Analysis verifjcation failed

Specifidation verification pass

Design

Figure 5. Conditions

4) The notation in Figure 4 (d) models activity

synchronization. For example, in Figure 6,
after the specification verification passes, three
design activities, namely “Desigh subsystem
17, “Design subsystem 2”7, and “Design
subsystem 37, are started concurrently. After
the three activities are all finished, the activity
“Verify design” can be started.

5) The notation in Figure 4(e) models multiple

triggers. For example, in Figure 7, after the
specification verification passed, multiple
design activities are started concurrently,
where each activity designs a subsystem. After
the design activities are all finished, the
activity “Verify design” can be started.

6) The notation in Figure 4(f), which denotes a

connector, is used to connect CSPL activity
diagrams located in different sheets. It is also
used to show the decomposition relationships
among activities. For example, Figure 8 shows
the activity diagram obtained by decomposing
the activity “Analysis” in Figure 7. Naming
the starting connector as “Analysis” shows the
activity decomposition relationships. Note that
this notation is not included in the UML
activity diagram.

7) The notation in Figure 4(g) models exceptions.

Exception names are associated with the
notation. In addition, the arrow head points to
the handler of the exception, which can be a

-231-

sequence of activities or a connector
connecting to a CSPL activity diagram. For
example, in Figure 9, when the exception
“Requirement change” occurs, the activity
“Suspend design” is executed, then the
analysis activity is restarted. When the
exception “Schedule overrun” occurs, the
exception handler “Timeout handling” is
executed. Note that the notation for exceptions
is not included in the UML activity diagram.

Design Design Design
subsystem 1 subsystem 2 subsystem 3

Specification
verification failed

Analy

Specification|verification pass

/\

Verify design

Figure 6. Activity Synchronization

Specification
verification failed

Analy

Specification|verification pass

Desig
subsystem.

*| 23 [
IUI

Verify design

Figure 7. Multiple triggers

Specification
generation

Specification
verification

Figure 8. Activity decomposition

- 1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Specification verification failed

=

Specifi rification pass

Schedule

Requirement

Verify design l

Figure 9. Exceptions

A CSPL activity diagram can be constructed
using the notations shown in Figure 4. Figure 10 is an
example CSPL aetivity diagram.

verification tailed

Figure 10. CSPL activity diagram
3. META-PROCESS

To represent processes in a high level model, process
components as described in section 2 are identified
first. Then, the components are represented in the high
level model. For well defined processes, process
components can be easily identified from the process
descriptions. For example, activities, software
products, roles, and so on, can be easily identified
from chapter 11 of Rumbaugh’s book [23].
Accordingly, well-defined processes are relatively
easy to model. On the other hand, modeling a not-
well-defined process may be difficult. A meta-process
is thus needed.

The meta-process in the CSPL environment is
based on action cases, which are similar to the well-
known use cases. The action case concept is described
in section 3.1. The meta-process for CSPL high level
process modeling is described in section 3.2.

3.1 Action case

In CSPL environment, the widely accepted use case
concept [22] is adopted for high level process
modeling. A use case in a software system is an
interaction sequence between an actor and the system.
Since use cases carry out functions to satisfy user’s

requirements, system analysis can be accomplished by
analyzing use cases.

For a software process, the actors are
developers, which are modeled in various roles in a
process program. A role in a process accomplishes a
piece of work by doing some activities. For example,
an analyst accomplishes the analysis work by
gathering requirements, generating a specification,
verifying the specification, and so on. To apply the
use case concept, a role can be taken to be an actor
and a piece of work as a use case. However, the
followings should be noticed:

1) In a software system, actors are outside the system
[22]. On the other hand, roles are included in a
process.

2) In a software system, actors are those to be served.
That is, a system responses to an actor’s
request. On the other hand, in a process, roles
are these who provide services. For example,
in system analysis, analysts carry out the
analysis work.

Owing to the above differences, the term use
case is not used in the meta-process. Instead, the term
action case is used, which is a piece of work
accomplished by certain roles. For example,
“Requirement gathering” is an action case
accomplished by the roles “Analyst”, “Customer”, and
“Domain expert”. With the action case concept, a
process corresponds to a set of action cases. A process
can thus be analyzed by identifying and analyzing
action cases.

3.2 Meta-process

The meta-process for high level process modeling is
designed based on action cases and this observation:
most software processes are partitioned into phases.
For example, a typical waterfall model process is
composed of the following phases: analysis, design,
implementation, testing, and maintenance. With that
observation, a software process can be decomposed
into sub-processes (i.e., phases), then the sub-
processes are analyzed. This concept is similar to
decomposing software system into subsystems.

According to the above description, the meta-
process for high level process modeling is described
as follows:

Stepl. Decompose the process to be modeled into
sub-processes, and draw a top level CSPL
activity diagram for the process. Generally, a
sub-process corresponds to a phase of the
process. To draw a top level CSPL activity
diagram, each sub-process is taken as an
activity.

Having drawn the top level CSPL
activity diagram, the project manager should
be consulted to identify exceptions that should
be handled in each sub-process. The
exceptions and their handlers are then added to
the top level CSPL activity diagram. Figure 10
shows an example top level CSPL activity
diagram for the waterfall model process,
which is decomposed into these sub-processes:
“Analysis”, “Design”, “Implementation”, and

-232-

“Testing”. Note that the exception
“Requirement change” should be handled in
all the sub-processes.

Step2. For each sub-process and exception handler in
the top level CSPL activity diagram, do the
following work:

Step2.1 Identify action cases.

1998 International Computer Sympasium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

synchronization of the activities should
be identified. For example, the
activities identified from Figure 12 are
used to draw a CSPL activity diagram
as shown in Figure 13. Those activities
can be executed in parallel. Note that
the activities in the figure are all non-
primitive ones that will be decomposed

Action cases can be identified
by analyzing roles’ responsibilities,
because action cases are carried out by
roles. For example, the following roles
are in the analysis phase: analysts,
customers, and domain experts. The
customers provide requirements and
verify a specification with the analysts.
The experts is consulted to resolve
problems. And, the analysts analyze
the requircments, generate a
specification, and verify the
specification with the customers. From
the roles’ responsibilities described
above, the following action cases can
be identified: 1) requirement gathering,
2) specification generation, and 3)
specification verification.

Step2.2 Draw a CSPL activity diagram for the

sub-process.

This CSPL activity diagram is
composed of the action cases identified
from the sub-process, where each
action case is taken as an activity. Note
that exceptions and the sequence and
synchronization between action cases
should also be sketched. Figure 11
shows the CSPL activity diagram for
the sub-process “Analysis” which is
composed of the three action cases
mentioned above. It also shows an
exception “Schedule overrun”.

Step 2.3 Describe the action cases.

Action cases can be described
by informal strategy [24], structure
English [25], and so on. For example,
the upper part of Figure 12 is the
description of the action case
“Specification generation”, where the
specification is represented in
Rumbaugh’s model [23].

Step 2.4 Identify process components from the

action case descriptions; draw a CSPL
activity diagram for each action case;
and draw a CSPL class diagram for the
action cases.

Process components including
activities, software products, roles,
tools, and so on, can be identified from
the action case descriptions. For
example, the lower part of Figure 12
shows the process components
identified from the description in the
upper part.

The activities identified from
the description of an action case are
then used to draw a CSPL activity
diagram for that action case. To draw
that diagram, the sequence and

later.

Requirement
gathering

oveimun

Timeout
handling

Specification
generation

Specification errors

Figure 11. CSPL activity diagram for a sub-process

Action case: Specification generation

Description:

1. The analysts create an object model.
2. The analysts create a function model.
3. The anaiysts creats a dynamic modael.
4. The object model, ion model, and dy ic model
a specification of the system.
5. The specification is create ahd edited with a CASE tool.
L

Process components identified:

1. Activities: “Object model ion™, “Fi ion model ion”,
“Dynamic model creation”

2 Roles: “Analyst*

3. Tools: “CASE tool”

4. Software products: “Requirement”, “Specification”, “Object model”,

“Function model”, “Dynamic model” .

Relationships: “Responsibie_for” i ip b

“Specification”, “Depend_on" ip b P

and “Requirement”, “Bound_to™ relationship between “Specification™

and “CASE tool”, “Composition” relationships b pecification™

and the following products: “Object model”, “Function modal”,

and “Dynamic modei”)

5.

“Analyst” and

Figure 12. An action case description

The classes (including roles,
tools, and software products) and their
relationships identified from the action
cases are then used to draw a CSPL
class diagram. Figure 3 shows a class
diagram containing the classes and
relationships identified from the action
case “Specification generation”. Note
that a high level process model
contains only one CSPL class diagram.
It is composed of the classes and class
relationships identified from all the
action cases.

Step 3. Decompose the non-primitive activities.

Some activities in the CSPL activity
diagrams are primitive and others not. Non-
primitive ones should be decomposed. In
decomposing an activity, the activity is first

-233-

1998 Intemnational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

described in more details. From that
description, new activities, class, and class
relationships may be identified. The newly
identified activities are used to draw a CSPL
activity diagram, and the newly identified
classes and class relationships are used to
update the CSPL class diagram. Figure 14
shows the decomposition of the activity
“Object model creation” in Figure 13. The
newly identified activities are used to draw a
CSPL activity diagram as shown in Figure 15,
which is a more detailed representation of the
activity “Object model creation”.

Dynamic model
creation

/_
(omoasy (Gt moc)
T~

Exit

Figure 13. CSPL activity diagram for an action case

The meta-process described above results in a
high level process model that contains a CSPL class
diagram and multiple CSPL activity diagrams. To
trace the process model, the top level CSPL activity
diagram is browsed first. The CSPL activity diagrams
for the activities in the top level diagram are then
browsed. As the top-down browsing process proceeds,
more details are revealed and understood. Eventually,
primitive activities will be reached. They show the
invoking relationships between activities and class
operations. To understand the details of the primitive

-activities, the CSPL class diagram should be traced.

Activity: Object model creation

Description:

1. The analysts identify classes and
class relationships from the requirements.
2. The analysts create an object modef.

New process components identified:

Activities: “ldentify classes and class relationships”,
“Create object model”

Figure 14. Activity decomposition

4. CONCLUSIONS

This paper describes the high level process modeling
technique in the CSPL (concurrent software process
language) environment, which is composed of a high
level process model and a meta-process to represent

processes in that model. The high level model is
composed of the CSPL class diagram and activity
diagram, which are derived from the UML class
diagram and activity diagram, respectively. The meta-
process is based on action cases, which are similar to
the widely accepted use cases. The modeling
technique offers the following features:

Identify classes and
class relationships

Create object mode
Object_model.edit

Figure 15. Activity diagram after activity decomposition

1) The high level model provides constructs to model
Necessary process components.

Process components to be modeled
include: a) activities, b) activity sequence and
synchronization, c) exceptions and their
handlers, d) software products, e) developers, f)
tools, and g) the relationships among software
products, developers, and tools. The first three
can be modeled in the CSPL activity diagram
and the others can be modeled in the CSPL
class diagram.

2) The meta-process is expected to be easy to follow.

The meta-process is based on action
cases, which is similar to the well-known use

cases. Accordingly, the meta-process is
expected to be easy to follow.

3) The technique facilitates process program
maintenance.

As mentioned before, an easy-to-
maintain process program should be modular
and easy to understand. In CSPL, the high
level process model is based on the UML,
which is object-oriented (O-O). As agreed, O-
O software is modular and easy to understand.
Therefore, the CSPL process program
development technique facilitates process
program maintenance.

ACKNOWLEDGMENT

(’I:his riels'ear;h‘ is sponsored by the National Science
ounci. m faiwan under grant number NSC86.. -
E-009-025. i

REFERENCES

1. N. Belkhatir and W. L. Melo, “Supporting Software
Development Process in Adele 2,” The
Computer J., vol. 37, no. 2, pp. 621-628, 1994.

-034-

2. Maryse Bourdon, Process Weaver: Process
Modeling Experience Report, Cap Gemini
Innovation, 1992.

3. J.Y. Chen and P. Hsia, "MDL (Methodology
Definition Language): A Language for
Defining and Automating Software
Development Process,”
17, no. 3, pp. 199-211, Jul. 1992.

. Jen-Yen Jason Chen, “CSPL: An Ada95-like, Unix-
based Process Environment,” the [EEE
Transactions on Software Engineering, vol. 23,
no. 3, pp. 171 - 184, March 1997.

. Reidar Conradi et al, “Design, use and
implementation of SPELL, a language for
software process modeling and evolution,”
Proc. Second European Worlkshop on Sofiware
Process Technology, pp. 167-177, 1992.

6. John C. Doppke, Dennis Heimbigner, and
Alexander L. Wolf, “Software Process
Modeling and Execution within Virtual
Environments”, ACM Trans. on Software
Engineering and Methodology, vol. 7, no. 1
pp1-40, Jan. 1998.

7. Christer Fernstrom,"Process Weaver: Adding
Process Support to Unix," Proceedings of the
2 international conference on the software
process, IEEE Computer Society, pp.12-26,
1993.

8. Peter Heimann, Carl-Arndt Krapp, and Bemhard
Westfechtel, “Graph-Based Software Process
Management”, International J. Software Eng.
Knowledge Eng., Vol 7, No. 4, pp431-455,
1997.

9. B. Holtkamp and H. Weber, "Kernel/2r-A Software
Infrastructure for Building Distributed
Applications,” Proc. 4th Int’l Conf. on
Future Trends in Distributed Computing
Systems, Lisboa, Sept. 1993.

10. K.E. Huff, “Probing Limits to Automation:
Towards Deeper Process Models,” Proc. 4th
Int’l Software Process Workshop, New York,
NY, pp. 79-81, 1988.

11. Hajimu lida, Kei-ichi Mimura, Katsuro Inoue and
Koji Torij, "Hakoniwa: Monitor and
Navigation System for Cooperative
Development Based on Activity Sequence
Model,” Proceedings of the 2" international
conference on the software process, IEEE
Computer Society, pp. 64-74, 1993.

12. T. Katayama, “A Hierarchical and Functional
Approach to Software Process Description,”
Proc. 4th Int’] Software Process Workshop,
NewYork, NY, pp. 87-92, 1989.

=S

W

J. Comput. Lang, vol.

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

13. D. E. Perry, “Policy-Directed Coordination and

14

18

20.

21

22

Cooperation,” Proc. 7th Software Process
Workshop, Yountville, CA, pp. 111-113, Oct.
1991.
. D. E. Perry, “Enactment Control in
Interact/Intermediate,” Proc. 3rd European
Workshop on Software Process, EWSPT 94,
Villard de Lans, France, Feb. 1994. Ed. Brian
C. Warboys, Lecture Notes in Computer
Science, 772, Springer Verlag, 1994, pp. 107-
113.
. B. Peuschel and W. Schafer, "Concepts and
Implementation of Rule-based Process
Engine," Proc. 14th Int’l Conf. on Software
Engineering, pp. 262-279, 1992.
. S.M. Sutton Jr., D. Heimbigner and L.J. Osterweil ,
"APPL/A: A Language for Software Process
Programming,” ACM Trans. on Software
Engineering and Methodology, vol. 4, no. 3,
pp- 221-286, 1995.
. Leon Osterweil, “Software Processes Are
Software Too”, in Proc. 9th Int'l Conf.
Softawre Eng., pp2-13, New York, 1987
. Vincenzo Ambriola, Reidar Conadi, and Alfonso
Fuggetta, “Assessing Process-Centered
Software Engineering Environments”, 4ACM
Trans. on Software Engineering and
Methodology, Vol. 6, No. 3, pp 283-328, July
1997
Jen-Yen Chen and Chia-Ming Tu, "An Ada-Like
Software Process Language,” J. System and
Software, vol. 27, no. 1, pp. 17-25, Oct. 1994.

Jen-Yen Chen and Chia-Ming Ty, "CSPL: a
process-centered environment," Information
and Software Technology, vol. 36, no. 1, pp. 3-
10, 1994.

. Martin Fowler and Kendall Scott, UML Distilled:
Applying the Standard Object Modeling
Language, Addison-Wesley, 1997.

. Ivar Jacobson, Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

23. James Rumbaugh, Michael Blaha, William

Premerlani, Frederick Eddy, and William
Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, 1991.

24. Grady Booch, Object-Oriented Design with

Applications, The Bejamin/Cummings, 1991.

25. T. DeMarco, Structured Analysis and System

-235-

Specification, Prentice-Hall, 1979.

	
	229
	230
	231
	232
	233
	234
	235

