1998 International Computer Symposium
Workshop on Artificial Intelligence .
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

CHINESE TEXTUAL CLASSIFICATION BASED ON
MULTILAYER FEED FORWARD WITH BACK PROPAGATION

NEURAL NETWORK
Tyne Liang and Shyang-Tay Tseng

Department of Computer and Information Science,
National Chiao-Tung University, Hsinchu, Taiwan, R. O. C.
Email: {tliang, twoby}@cis.nctu.edu.tw

ABSTRACT

Due to the improvement of network technologies,
development of text classification methods becomes urgent
so as to provide an efficient retrieval in an increasing
growth of electronic documents. In this paper, textual
classifications based on a supervised neural network are
investigated. Since the performance of a neural-based
classifier is affected with selection of appropriate textual
descriptors, two extraction methods are proposed namely,
descriptor extending process and appending process.
Meanwhile a parallel classifier is implemented in order to
deal with overfitting problem. The performance of
proposed models are verified with real textual data.
Experimental results show that the parallel model is
superior to simple multi-layer feed-forward with back
propagation model and the model proposed by Kwok in
terms of classification accuracy. Besides, both extending
and appending processes indeed improve classification
accuracy and speedup training time when they are
implemented to different network classifiers.

1. INTRODUCTION

Textual classification reduces search space when an end
user enquires a huge textual database. There are two
classification approaches, traditional and neural-based
classification models. Traditional textual classification
models, such as vector space and probabilistic models, are
based on similarity computation between classes and
documents. Essentially vector space model is equivalent to
probabilistic model [3][4]. Though vector space model is
simple and easy for implementation, it has disadvantages
of the assumed independence between keywords, and the
lack of theoretical justification for an appropriate similarity
function [14].

On the other hand, neural-based models implement
classification with a feed-forward network and the network
is built as a parallel architecture with specified learning
algorithm. Multi-layer feed-forward (MLFF) neural
network with back propagation (BP) leaming algorithm is
a common supervised neural network and proved to be
suitable for classification [5].

Generally, a text can be viewed as a monolithic entity
described by a list of terms. When occurrence frequency of
a term within a text is ignored, each term can be treated

with Boolean values. In early age, traditional models are
implemented with Boolean vectors [2][9][10]. Relevance
feedback was added to these models to improve
classification accuracy [13][17]). Hierarchical clustering
methods were employed to improve retrieving speed

(6J[11].

Contrast to the above models that treat a text as an
monolithic entity, another kind of probabilistic model
based on component theory treats a text as many non-
monolithic but. composed of independent components
(such as sentences, phrases, or single terms) [7]. Though
each component is also described by a list of terms, this
model was added with self-learning capability and was
implemented as a feed-forward neural network [8].
Meanwhile, a vector space model could be implemented as
a simple three-layer neural network based on cosine
similarity function [16]. Although these network models
are similar to conventional neural-based models, they can
append or delete classes easily and the weights among
links are initialized by a specified weighting function
[8][16]. On the other hand, neural-based models require
new training process if classes are modified. Hence such
approaches are suitable only for static environments.

Ng [12] used perceptron neural network to classify huge
amount of news texts. Horng [1] used MLFF+BP and LVQ
(Learning Vector Quantization) neural models with
unweighted textual vectors and his experimental results
indicate that neural-based textual classification is better
than vector space and probabilistic models in terms of
classification accuracy.

Though neural network approaches have capabilities of
mapping, fault-tolerance, learning, and parallel processing,
there is a problem with simple neural-based classifier. This
problem occurs when the classifier deals with many
number of classes, it will take long learning time. Such
problem is called overfitting. In this paper, a parallel
MLFF+BP (P-MLFF+BP) model is proposed purposely for
the case when the number of classes are one hundred.
Experimental results show the proposed model yields
highest classification accuracy when compared to Kwok’s
model [8] and a simple MLFF+BP neural network.

Due to the fact that the performance of a neural-based
classifier is affected with selection of appropriate textual
descriptors, we also propose two different descriptor
extraction methods in this paper. One is keyword extending

62

process in order to reduce the total number of unique
descriptors which are used as a classifier’s input textual
vector. The other is appending process in order to find the
related descriptors and improve the similarity of texts in
the same class. Experimental results show that the
proposed approaches indeed. yield higher accuracy when
they are implemented to neural-based classification models

In following sections, textual classification with different
neural-based models, namely, Kwok’s model, MLFF+BP,
and P-MLFF+BP are described in Section 2. Two
descriptor extraction strategies, keyword extending and
descriptor appending, are proposed and the experiments are
analyzed in Section 3. Section 4 is the conclusion.

2. NEURAL-BASED TEXTUAL
CLASSIFICATION

Textual classification model based on neural networks
shown in Figure 1 has one processing for training state and
another for testing state. In training state, when a text
arrives, textual processing extracts its descriptors and
stores them into descriptor statistical information. Each
text will be represented by a list of weighted descriptors in
textual representation. These lists of descriptors will be the
input of proposed neural network model during
classification. If the computed output is not a target class,
then network parameters will be adjusted by its learning
algorithm,

Neural network models

Learning
l algorithm
\4
Textual —_— Textual Neural
processing [, | representation |, | . network o Classes

- Training Model

Descriptor
statistical
information

""" > Testing Model

Fig. 1. The flowchart of textual classification model based
on neural networks.

2.1 Kwok’s Model

Kwok [8]. proposed a network with self-learning approach
and it was based on probabilistic classification model. This
model is very similar to a three-layer feed-forward neural
network and can be treated as a semi-neural network. The
weights of network links are initialized by statistical
probabilistic function. This model also uses a different step
function as activation function. The network architecture is
shown in Figure 2.

63

1998 Intemational Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

C ”izk//@ “w'“'\

RSY ot A; O A
o\ |3+ A8

CA T\é/ D

Fig. 2. Three layers self-learning network approach [8]. ‘

In the initial stage, the weights of w, and W, are
initialized by the predefined probabilistic functions. S(x) is
a activation function. During self-learning stage, the
maximum output value (RSV) of document d; will be
computed for all documents. The RSV of the desired class
C, will be increased by adjusting the weight w,, for each
iteration. Self-learning process stops only when the RSV of
desired class C, is reached to a maximum for all
documents.

2.2 MLFF+BP Neural Network

MLFF+BP is a supervised neural network as shown in
Figure 3. When an input vector is present to this network,
the computed output will be compared with target output
and an error feedback will be determined. This error
feedback will be the input of back-propagation (BP)
training procedure.

The weights of MLFF+BP are initialized randomly and
adjusted by BP training procedure. In MLFF+BP network,
the error (energy) function is given by Equation (1) [5]:

E=(1/2)) (T;-0,), (M
J

where Tj is the computed output and O , is the target
output. Error function E cam be minimized by the partial
differential equation as Equation (2):

OF

AW, =—p. 2=
7 o,

)

@

where 77 is learning rate. If activation function is the
sigmoid function then the final formula for updating
weights matrix W;[d to be W™ will be like Equation
3

W™ =W + AW, ©)

g »

where AWij is computed as Equation (4):

1998 International Computer Symposium

" Workshop on Artificiat Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.
= 7 .n9-1
AW, =n-67-07", 4
and &7 is computed as Equation (5):

[&-0)0,-6-0)
)= (Zazu 'WIqJ'h/'(]_ h,) ,otherwise.
k

,if g is output layer

&)

Input Qutput
A
A
Weights adjustment
BP Error feedback
E Training Procedure
A
Target cbservation

Fig. 3. MLFF+BP neural network [15].

* - Under supervised learning strategy, BP algorithm is based

on gradient descent rule and weight matrix is adjusted by
error feedback. This error E can be determined by
comparing computed output with target output and be
minimized.
There are two main advantages of MLFF+BP neural
network model. One is the capability of parallel processing
as other neural networks, that is, all elements in the input
or output vectors with real values are computed in parallel.
The other is the design of hidden layers which can improve
the learning capability of MLFF+BP.

In fact, a MLFF+BP without hidden layer does not have
any learning capability. Its capability can be increased only
with one or two hidden layers; it cannot be increased with
more than two hidden layers [5]. Hence the following
proposed P-MLFF+BP model is based on a MLFF+BP
with one hidden layer.

2.3 P-MLFF+BP Neural Network Model

The proposed P-MLFF+BP model as shown in Figure 4 is
composed of ks (ie.Ny,...,N;,...,N;) three-layer
MLFF+BP networks for £’s classes. Each network N, has
only one output value with interval [0,1] and one hidden
layer, The output value C; can be seen as the similarity

value that reflects the relationship between a text and class
I

64

N r -
l 8 o~) i
N H /O-—--——*O
/ : ©

:i 9 .
2 | N
c 2 \
= [
= S O\O-————>C;
2 o \@
_g.. \ O y,
Q
= . .
§ .
§ M

-

Fig. 4. The Parallel-MLFF+BP neural network.

In P-MLFF+BPE model, each text will be represented with
a textual descriptor vector whose dimension is the total
number of unique descriptors in a corpus and will be input

to each network N, in parallel. Finally, a maximum
selector (MAX) is used to decide the final class for an
input text. Since each network N, learns only one class,

the overfitting problem' with a simple neural-based
classifier will be reduced at the expense of training time.

3. EXPERIMENTS AND ANALYSIS

The experimental flowchart is shown in Figure 5 in which
the textual corpus are extracted from National Chiao-Tung
University Online Chinese Textual Database
(http;//ovid.infospring.nctu.edu,tw). We collect total 20000
thesis abstracts as well as the corresponding titles and user-
keywords. User-keywords collection collects keywords
given by users. Descriptor correction will correct typing
errors and treat complex and simplified Chinese characters
to be the same. Keyword extending process extends a long
user-keyword to short basic grams as text descriptors.
Descriptor appending process appends those related
descriptors extracted from textual abstracts and titles in
order to improve textual similarity in the same class.
Finally, each descriptor will be weighted by descriptor
weight assignment and a list of weighted descriptors is
represented with a vector and is present to the proposed
classifier.

1998 international Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

User-keyword
collection
1
Descriptor
correction
Keyword extending
process
C__ [
Descriptor Descriptor appending
statistical process
information T
{ Descriptor weight 2:;:?:::: :
assignment textual classifier

Fig. 5. The experimental flowchart.

3.1 Keyword Extending Process

There are one to twelve Chinese user-keywords per text
and 43071 unique user-keywords for total 20000 texts.
When using such number of unique user-keywords as the
input to a neural-based classifter, it will make training
process difficult for present hardware. In order to reduce
the dimension of input vector the proposed keyword
extending process will cut longer user-keywords with four-
up Chinese characters into bigrams or trigrams which are
used as textual descriptors. Following is the Cutting Rule
employed in keyword extending process:

Long-Keyword Cutting Rule

Assume that S = {s,,sz,...,s,_}is an order set and
5, {1 <1 < L}isa Chinese character,

then

§'= {P,,PI,...,P,,, }is an extended set, if

P is an partial order sét of Sfori=1,...,mand,
min_length < |P,| < max _length,
RuPuU..UP, =8,

There may produce more than one extended set by the rule,
the set selection is based on descriptor occurrence
frequencies. For example, S = {&’, "k}, "', "&’, "4’}
and (min_length, max_length) = (2, 3), then S' ={ &k},
EERR }or { WRIE, RH }. If frequency(‘HRHE)
2 frequency(‘BLRA) then S’ = { “WHIEE, ‘B’).

Originally each text has 5.44 user-keywords in average and
each keyword contains- two to twenty-three Chinese
characters. After keyword extending process, the total
number of unique keywords is almost half reduced (shown
in Table 1). Meanwhile, the number of descriptors per text
will be increased from 5.44 to 7.93 and that will improve
the similarity among texts with the same class.

Total unigue|One More Ave number of|
descriptor |occurrence |occurrence |descriptors
per text
Original 143017 34416 8601 544
(80%) (20%)
Extending {25030 14963 10067 793
(59.7%) (40.3%)
Appending (24309 9157 15652 10
(36.9%) (63.1%)

Tab. 1. Frequency distribution.

3.2 Descriptor Appending Process

Since the number of descriptors in input vector will affect
textual classification and there is a large variation of
descriptor distribution as shown in Figure 6 (from one to
thirty-three descriptors per text), each text will be
represented with the same number (namely ‘ten’) of
descriptors in our experiments. In the corpus, there are
73.5% texts whose number of descriptors is less than ten
after keyword extending process, so descriptor appending
process is purposely designed to extract those related
descriptors from thesis title and abstracts.

30.‘0’-

g

number of texts

< §
=
ey
« Eormrmsers

5 7 9 m oo 17192123 25 21 29 31 03
number of descriptors per text

Fig. 6. Descriptor distribution after keyword extending

process.

Finding the related descriptors with respect to user-
keywords is based on the following similarity function.

APy q,)
P + P, ’ 6)

sim(g,,g,) =

where

F, : thenumber of texts includes descriptor g,,

Px, : the number of texts includes descriptor g T

P, g, - thenumber of textsincludesboth g, and g 4

Each related descriptor will be appended to the end of user-
given descriptor list in the order of the similarity value. As
a result, the percentage of textual descriptors which occur
once in the corpus is furtherly decreased from 59.7% to
36.9%. Consequently, the similarity value among texts in
the same class is increased.

65

1998 Intemational Computer Symposium
Workshop on Artificial intefligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

3.3 Descriptor Weight Assignment

After appending process, each ten descriptors will be
weighted by the following function:

N

= Nor| freg, - +1) >)
Wi r(f T (doc ﬁeqk))
where
Wy : weight of descriptor k in textd,,
Jfreq, :theoccurrence frequency of descriptor k£ in textd,,
docfreq, :number of texts containing descriptor k in corpus,
N :number of texts,
Nor(.) :normalization function.

and Nor(.) normalizes the real interval [0,]into[0,1] as
Equation (8):

1+z
=]l 8
Nor(x) =1 Gl ®

where X isrealin [0,0] and z is a normalization factor.

During weighting design, those descriptors extended from
user-keywords will have higher weight than those related
descriptors. If a descriptor is a user-keyword then its
weight will be computed directly by Equation (7). If it is a
related descriptor then its weight will be the product of its
weight computed by Equation (7) and the weight of its
extended user-keyword.

3.4 Model Comparisons

In this paper, models are compared in terms of
classification accuracy defined as Equation (9):

number of texts correctly classified)
accuracy = - .
number of texts in corpus

In order to verify that the proposed P-MLFF+BP model is
able to reduce the overfitting problem, comparisons
between this model and a simple MLFF+BP model are
made. One can find that P-MLFF+BP indeed outperforms
MLFF+BP with respect to different number of classes as
shown in Figure 7. Furthermore the decreasing slope of P-
MLFF+BP is less than that of MLFF+BP when number of
classes increases.

08

06

04 | b= Traiming texts i MLFF+BF
—3— Tenting texts in MLFF+BP
iz Trainiag texts in P-MLFF+8P
s Tomting taxte in P-MLFF +BP

Classification sccuracy

-0.2

20 40 60 30 100
Numberofclasses

Fig. 7. Classification accuracy w.r.t. different numbers of

classes.

Figures 8 and 9 show that the designed descriptor
appending process indeed yields higher classification
accuracy than keyword extending process when they are
applied to different models and the proposed P-MLFF+BP
model has the highest classification accuracy. Figure 10
shows that the classification accuracy of P-MLFF+BP
model with appending process is higher than P-MLFF+PP
with extending process in both weighted and unweighted
descriptor cases.

1r
09
08 r

0.7
06 55.9%
os | o.1% uTr-n 4 tee
; - 41.5% .'r-n-.um
04
03
02 F
ol r
0
[

MLFF+8P P-MLFF-BP
Modek

Classification accuracy

Fig. 8. Classification accuracy of three models after
keyword extending process.

»I%
[X4

26.3%
1.5%
08
69.5%
07 r 6as%
06 BN
os
04 F
0.3
02 r
0.1
0 —
Kwek

MLFFBP PMUFFeBP
Modeis

O Traming exs
W Teting texts

Classification accuracy

Fig. 9. Classification accuracy of three models after
descriptor appending process.

_.66-

60.4% 61.2%

Blunweighted
Dweighted

Classification accuracy

extending appending

Fig. 10. Extending vs. appending implemented with a P-
MLFF+BP.

4. CONCLUSION

In this paper we investigated the feasibility of applying
neural networks to textual classification. As an important
role of a neural-based classifier, textual descriptors are
extracted with two different strategies. One is keyword
extending processing which results in reduction of the
number of unique keywords and the other is appending
process which improve the similarity of the texts in the
same class. Experimental results show that both of these
strategies indeed improve classification accuracy and
speedup training time in terms of reduction of input vector
dimension. :

On the other hand a parallel neural-based classifier is

proposed in order to improve the accuracy when it has to |

deal with many number of classes during textual
classification. Experimental results show the proposed
model yields highest classification accuracy when
compared to Kwok’s model and a simple MLFF+BP neural
network.

5. REFERENCES

(1] SE308 (Homg) ~ FELE - (i A EMACRERE 2R 1ESC
HFEBIEZHR AN SR AR
IR » 1998 -

[2] H. Broko and M. Bernick., “Automatic Document
Classification,” Journal of the ACM, Vol. 10, No. 1, pp-
151-162, 1963.

[3] W. B. Croft.,, “A Comparison of Cosine Correlation
and the Modified Probabilistic Model,” Information
Technology, Vol. 3, No. 2, pp. 113-114, 1984,

[4] W. B. Croft,, “A Comparison of Text Retrieval
Models,” The Computer Journal, Vol. 35, No. 3, PpP-
279-290, 1992. .

(5] D. W. Patterson. “Artificial Neural Networks: Theory
and Applications,” MA: Prentice Hall, 1995.

[6] A. Griffiths, L. A. Robinson, and P. Willett,
“Hierarchical Clustering Methods for Automatic
Document Classification,” Journal of Documentation,
Vol. 40, No. 3, pp.175-205, 1984.

[7] K. L. Kwok., “Experiments with a Component Theory
of Probabilistic Information Retrieval Based on Single
Terms as Document Components,” ACM Transactions

1998 Intemational Computer Symposium
Workshop on Artificial Inteliigence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

on Information Systems, Vol. 8, No. 4, pp. 363-386,
1990.

[8] K. L. Kwok., “A Network Approach to Probabilistic
Information Retrieval,” ACM Transactions on
Information Systems, Vol. 13, No. 3, pp. 324-353,
1995.

[51 M. E. Maron and J. L. Kuhns., “On Relevance,
Probabilistic Indexing, and Information Retrieval,”
Journal of the ACM, Vol. 7, No. 3, pp. 216-244, 1960.

[10] M. E. Maron, “Automatic Indexing: An
Experimental Inquiry,” Journal of the ACM, Vol. 8, pp.
404-417, 1961.

[11] F. Murtagh.,, “A Survey of Recent Advances in
Hierarchical Clustering Algorithms,” The Computer
Journal, Vol. 26, No. 4, pp. 354-360, 1982.

[12] H. T. Ng, W. B. Goh, and K. L. Low., “Feature
Selection, Proceptron Learning, and a Usability Case
Study for Text Categorization,” Proceedings of the
20th Annual Interational ACM SIGIR Conference on
Research and Development in Information Retrieval,
Philadelphia, pp. 67-73, 1997.

{13] J. J. Rocchio., “Relevance Feedback in Information
Retrieval: The Smart System-Experiments in
Automatic Document Processing,” ed. Salton, G., MA:
Prentice-Hall, pp. 313-323, 1971.

[14] G. Salton, “Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information
by Computer,”, MA: Addison Wesley, 1989.

[15] R. J. Schalkoff,, “Artificial Neural Networks,” MA:
McGraw-Hill, 1997.

{16] Y. Yang., “Expert Network: Effective and Efficient
Learning from Human Decisions in Text
Categorization and Retrieval,” Proceedings of the 17th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
Ireland, pp. 1322, 1994.

[17] C.T. Yu, W.S. Luk, and T. Y. Cheung., “A Statistical
Model for Relevance Feedback in Information,”
Journal of the ACM, Vol. 23, No. 2, pp. 273-286, 1976.

67

	
	62
	63
	64
	65
	66
	67

