1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

REUSE LINUX DEVICE DRIVERS IN EMBEDDED SYSTEMS'
Chi-Wei Yang", Paul C. H. Lee*, and Ruei-Chuan Chang *

Department of Computer and Information Science”

National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
Email: chiwei@os.nctu.edu.tw, rc@cc.nctu.edu.tw

Institute of Information Science?®

Academia Sinica, Nankang, Taiwan, R.O.C.
Email: paul@iis.sinica.edu.tw

ABSTRACT

Device driver is one component that is usually ignored by
research community in operating systems. Their design
mechanisms, accessing semantics, operating behaviors and
runtime performance are crucial to operating system ar-
chitecture and total system performance. In this paper, an
I/O package to reuse Linux device drivers in embedded
system is introduced. Via this package, the whole Linux
device-driver source tree can be reused without any modi-
fications. The motivations why to do this work and the de-
tailed design and implementation issues are addressed. This
/O package was also quantitatively evaluated. The empiri-
cal results show that the incorporated drivers’ performance
is comparable with those operated under Linux, and those
native drivers under Vega kernel.

1. INTRODUCTION

For those who work with operating systems, they know
that their biggest troubles mostly come from the fact that
there always exist devices waiting for new drivers. And so
do the existing drivers waiting for maintenance. Only the
commercial systems can get supports from device venders
in supplying and maintaining device drivers. For academic
systems, driver writing is always a major burden in system
researches, because academic community neither has
enough human resources in developing device drivers nor
various proprietary device specifications for driver writing
[Lee 95]. For running any system projects and experiments,
it is important to find a way to escape from the curse of
driver writing.

Another phenomenon about device drivers is the long-term
ignorance in system researches [Rawson 97)]. Since the
primary mission of operating system is to manage the
hardware resources, the device drivers should get more at-

tentions in system researches. Their software architecture,
accessing semantics, operating behaviors and runtime per-
formance will decide the total system performance and op-
erating patterns. To do such kind of researches, however,
needs firstly to build a system testbed for further experi-
ments. This kind of environment setup needs a lot of hu-
man resources, which is usually beyond the ability of aca-
demic research community. It costs too much to develop
device drivers just for trying some research ideas, and that
is why the device drivers receive little attentions in system
researches. This motivates us to build a testbed with
bundles of device drivers, which should be separated from
complex operating system internal semantics

The solution we suggest here is to reuse shareware device
driver codes. In our work, the Linux operating system,
[Beck 961 is selected as the device driver source pool be-
cause it is the biggest shareware pool in the world and all
its sources are free and opened to those who are interested.
A software package, which is named as the wrapper-socket
in this paper, is implemented to emulate the original Linux
kernel semantics. So that users can reuse the Linux device
drivers by accessing the exported interface of that package.
We implemented this package in the GNU programming
environment and integrated this package into our Vega ker-
nel [Lee 98.b] for evaluations and experiments.

The design goals of this package are briefly described as
follows. First, this package can incorporate the whole Li-
nux device driver source trees without any modifications.
New Linux device drivers and future upgraded drivers can
also be easily incorporated into the package without evi-
dent porting efforts. Second, this package should perform
as well as those drivers operated under Linux, and the na-
tive drivers running under Vega kernel. Third, this package
should isolate the Linux device driver semantics that users
can easily use this package and port to their specific ker-
nels without needing to know the Linux kemnel internals
first.

' This work is a part of the RAMOS project in 1IS, which aims at developing system software for real-time and multimedia
applications. RAMOS is sponsored by NSC in part under the granted number NSC 88-2213-E-001-016.

-260-

l System Call Interface 4]
I> VF¢S } Socket
| File Systems \ !
Buffer Network Protocol
Cache I
Block Character Network
Device Driver|Device Driver Device Driver
Hardware J

Figure 1: An overview of Linux l/O system.

This paper is organized as follows. Section 2 shows the
design and implementation of the wrapper-socket for in-
corporating Linux device drivers. System evaluations are
given in Section 3. Section 4 is about the related work of
the world. This paper is concluded in Section 5.

2. DESIGN AND IMPLEMENTATION

In this section, we first briefly describe the Linux device
driver architecture, the Vega kernel and the overall system
overview. Followed are the design approaches and the en-
countered problems and experiences.

2.1 Linux Device Driver Architecture

The basic Linux I/O system architecture is illustrated in
Figure 1. The block, character and network are three main
device driver types classified in Linux. Character devices
are those which handle data in serialized byte streams.
Data handled by character devices does not need to be ca-
ched by buffer cache and usually cannot be randomly ac-
cessed. Block devices, on the contrary, access data in units
of block. Since direct writing or reading to the block de-
vices is costly in just modifying a small portion of block,
buffer cache is applied in IO subsystems to reduce latency
time. Usually block devices permit randomly accessing
data. Network devices are mainly composed of network
cards. Ethernet cards and FDDI adapters are examples.

Character and block devices are abstracted as special files
in Linux file systems. For each device, a pair of major and
minor number is associated with this device. Major num-
bers are assigned to different types of devices, and minor
numbers are used to distinguish devices of the same type.
Character and block device drivers both export the
file_operations interface. Figure 2 lists this interface. Linux
uses two arrays, one for character devices and the other for
block devices, to record the address of each device’s
file_operations structure. Major numbers are used as in-
dexes into the array. The interface between buffer cache
and block device driver is a request function, which the
buffer cache uses to access block devices.

Unlike block and character devices which have pre-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

int Iseek(struct inode *, struct file *, off t, int);

int read(struct inode *, struct file *, char *, int);

int write(struct inode *, struct file *, const char *, int);

int readdir(struct inode *, struct file *, void *, filldir t);
int select(struct inode *, struct file *, int, select_table *);
int ioctl(struct inode *, struct file *, unsigned int, unsigned
long);

int mmap(struct inode *, struct file *, struct vin_area_struct *);
int open(struct inode *, struct file *);

void release(struct inode *, struct file *);

int fsync(struct inode *, struct file *);

int fasync(struct inode *, struct file *, int);

int check_media_change (kdev_t dev);

int revalidate (kdev_t dev);

Figure 2: Linux file_operations interface.
assigned major numbers, names of network devices repre-
sented the type of device that they are. These names are
dynamically allocated. Unlike block and character devices,
network devices typically do not appear in the file systems,
since applications use Berkley sockets to send/receive data.

The network device driver’s interface routines are shown
in Figure 3. The hard_start_xmit function is used to trans-
mit packets. User applications send data through Berkley
socket interface. These data are passed down layer by layer.

int open(struct device *dev)

int stop(struct device *dev)

int hard_start_xmit{struct sk_buff *skb, struct device *dev)

int hard_header(struct sk_buff *skb, struct device *dev,
unsigned short type, void *daddr, void *saddr, unsigned len)
int rebuild_header(void *eth, struct device *dev, unsigned long
raddr, struct sk_buff *skb)

void set_multicast_list(struct device *dev)

int set_mac_address(struct device *dev, void *addr)

int do_ioctl(struct device *dev, struct ifreq *ifr, int cmd);

int set_config(struct device *dev, struct ifmap *map)

void header_cache_bind(struct hh_cache **hhp, siruct device
*dev, unsigned short htype, __u32 daddr)

void header_cache_update (struct hh_cache *hh, struct de-
vice *dev, unsigned char * haddr)

int change_mtu(struct device *dev, int new_mtu)

struct iw_statistics* get_wireless_stats (struct device *dev)

Figure 3: The network device driver interface.

-261-

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

When network protocols had added all the required headers,
the sk_buff structure, which is used for packet processing,
is passed to network device drivers. Then the drivers send
packets to the network. Most network cards are interrupt-
driven with an interrupt handler associated with each de-
vice driver. The interrupt handler is used to process events
such as transmitting done, receiving a packet and handling
error conditions.

2.2 Vega Kernel

User Application

Core L Library]

[ccru][cFru |

1/0 System

[C-Memoryl l C-SwitchJ

[Cotmterrupt] [C-Cache] | Native ||| WrepperSocket
Device Linux
lC—Conﬂ” C-Clock J Drivers Device Drivers

k-ObjParsell] C-LocoreJ

Figure 4: System building blocks.

Vega kernel is the core component of Lyra operating sys-
tem built in IIS, which aims at supplying execution envi-
ronment for real-time and multimedia applications. Vega is
a set of well-designed, well-documented and clear-
interface kernel-level software components. It is designed
to abstract the hardware resources of general computer
systems. For example, the clock core component is soft-
ware that handles the Intel 8259 chip. The advantage of
this design is to isolate low-level machine dependent codes
from higher-level system semantics.

The functionality of Vega, however, is very simple. This
means the complex and specific system services are left to
the operating system personality, the Lyra Because Vega
has simple functionality, Vega creates little interference to
the wrapper-socket package. Figure 4 shows the building
blocks of the system.

2.3 Design and Implementation of the Wrap-
per-Socket

There are two main considerations in designing the wrap-
per-socket to incorporate unmodified Linux device drivers.
One is about compiling and the other is about semantic. To
compile unmodified Linux device driver sources needs all
the referenced variables and functions present. For exam-
ple, the block device driver needs a function named
block_read, which is the buffer cache read function. This
function is not necessary to all systems but it is referenced
in the device driver sources. In such case, a dummy func-
tion should be created for passing the compiling checks.

void init (kdev_t dev, int * retval)

void open (kdev_t dev, int * retval)
void close (kdev_t dev, int * retval)

void read (kdev_t dev, void * parms, int * retval)
void write (kdev_t dev, void * parms, int * retval)

void ioctl (kdev_t dev, void * parms, int * retval

Figure 5: The wrapper-sockét exported interface.

For semantic considerations, we need to provide the same
executing environment as that in Linux in order to emulate
and separate the Linux kernel semantics.

2.3.1 Wrapper-Socket Exported Interface

The exported wrapper-socket interface is listed in Figure 5.
It exports raw read/write interface. The init() function is
called during system initialization. It is used to set up driv-
er specific data structures, probe for devices, register inter-
rupt handling routines and request for I/O regions. The
open() function is called when I/O request for this device is
expected. If the open() function returns a success value, the
/O services can be operated by read()/write() functions. A
device driver may implement access controls in the openy)
function. When an I/O service finishes, the close() function
is invoked. The ioctl() function is device-specific. It is used
to pass special commands to devices or to do configura-
tions.

2.3.2 Device Name Space Emulation

In Linux, character and block devices appear as special
files in the file systems. A special file contains a major and
minor number for identifying the devices. In order not to
modify the source codes, we use the same assigned ma-
jor/minor numbers in our system to identify devices. Net-
work devices, however, does not appear in file systems in
Linux, hence, no major and minor numbers are assigned
for networking devices. Since we prefer a uniform inter-
face for each class of devices, we assign major numbers to
network devices according to network types. Thus, they are
accessed in the same way as other classes of devices.

2.3.3 Synchronization Semantics Emulation

Different kernel execution semantics are used in Linux and
Vega. When Linux kernel service is executed, it is not pre-
empted unless it voluntarily relinquishes CPU. In em-
bedded systems, there is no difference for kernel services
and applications. This will cause synchronization problems,
since Linux device drivers are part of Linux kernel, they
assume they have full control over the executing sequence.
This means that when executing device driver codes, ex-
cept the device driver explicitly calls scheduling function,
the device driver will run without preemption. We solve
this problem by letting the wrapper-socket set a flag before
entering Linux device driver codes, either in interrupt han-
dling or in ordinary service execution. The scheduling
component is aware of the existence of this flag. If this flag
is set, no preemption should be taken. Otherwise, error
conditions may occur. For example, if commands are sent
to devices on the way and other 1/O requests are accepted.

-262-

Another command may be sent to the same device. The
behavior of this device is unpredictable since commands
may need to be issued in a predefined order.

2.3.4 Emulation for Time, Timer, IRQ and /O
Management

Most time and timer related functions are defined as inline
functions or macros in Linux header files. Since we incor-
porate these header files without modifications, we don’t
need to pay attentions to these functions. However, there
are variables and mechanisms these functions rely on, whi-
ch our system must provide. A global variable jiffies is
maintained by the Linux kernel and is extensively used by
Linux device drivers. This variable is initialized to zero on
system startup and continues to increment by one per ten-
milliseconds. This variable is used to provide a global view
of the system time. The wrapper-socket uses the Vega time
management component to maintain this variable. Another
time-related variable, the loops_per_second, records how
many decrement instructions this machine can do in a sec-
ond. We port the codes from Linux, and this value is cal-
culated by the wrapper-socket before Linux device drivers
are initialized in our system.

The emulation of timer functions consists mainly of ma-
nipulation a linear list, which is composed of timeout val-
ues in ascending order and their corresponding timeout
functions to be called. On each timer interrupt, this list is
checked to see if any timeout occurs. If there is one, the
registered function is invoked. Functions for add-
ing/deleting timer functions are also provided by the wrap-
per-socket. While maintaining the linear list, interrupts are
disabled, such that the modifications of the list entries are
atomic.

The wrapper-socket provides functions for Linux interrupt-
driven device drivers to register/de-register interrupt han-
dling routines, which are based on the Vega interrupt man-
agement component. Since Linux interrupt-driven device
drivers are classified into fast and slow interrupts [Lee
98.a], the wrapper-socket must provide mechanisms to
support these two kinds of interrupts. Interrupts are dis-
abled when calling fast interrupt handling routines and en-
abled for slow interrupt handling routines. On return of
slow interrupts, the wrapper-socket checks whether there
are pending bottom-halves. The wrapper-socket calls these
functions if any flag is set. Since the timer interrupt in Li-
nux is also a slow interrupt, we added bottom-halves
checking for the timer interrupt. The wrapper-socket also
provides routines for automatic IRQ detection, to auto-
matically detect the interrupt numbers of devices. The
design is based on the allocated IRQ value, which is re-
turned by the Vega interrupt core component.

1/0 ports are used for communicating between CPU and
devices. Before using some device-specific /O regions,
Linux device drivers must register the range of 1/O regions
this device uses. We port /O management routines from
Linux to our wrapper-socket.

2.3.5 Emulation for Addressing and Privilege
Checking

1998 Internationali Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Linux is a multi-tasking and multi-user operating system.
User applications run in user mode and device drivers run
in kernel mode. In order to move data between user space
and kernel space, device drivers call data movement rou-
tines. In Vega, the kemel segment and user segment is the
same, but in Linux the addresses for these two segments
are not the same. Hence, these address translation and data
movement routines are modified. The memory read/write
privilege and user permissions checking are removed since
we didn’t use this kind of information in our system.

2.3.6 Wrapper-Socket for Linux Block Device
Drivers

The init() function for block device drivers consists mainly
three steps. First, an array to record device-driver request-
functions and a linked list of all general disk data structures
are initialized. Second, the initialization routine of each Li-
nux device driver is invoked. Finally, the wrapper-socket
records some block device information, such as device
sizes.

There are no access control mechanisms in open()/close()
functions because the wrapper-socket queues all requests
and services them in turn.

/O reads/writes are synchronous in our design, which is
similar to Linux. The wrapper-socket implements these
read()/write() functions as raw device I/O. The main work
done in read()/write() functions is to fill adequate values in
request/buffer_head structures and then calls the request
functions of block device drivers if no current request is
processing. The buffer_head structure represents one block
size data, and the request structure contains a linked list of
buffer_head structures. If there are requests queued already,
the wrapper-socket just adds this request to the end of list.
The wrapper-socket then waits for /O completion and
blocks there. When actual data transfer is done, the one that
requests for 1/O is waked up.

2.3.7 Wrapper-Socket for Linux Network Device
Drivers

The init() function has three steps. First, a queue for re-
ceiving network packets is initialized. Second, the wrap-
per-socket calls the initialization and device-open routines
of Linux network device drivers. Third, the network bot-
tom half handler is initialized. No access control mecha-
nisms are implemented in the open()/close() functions be-
cause the wrapper-socket queues these requests.

Read()/write() functions are designed as asynchronous /0.
In the read() case, the wrapper-socket maintains a queue
for received network packets. The read() function will re-
turn the first packet in the queue if there exists one or more
packets in the queue. In the write() case, the wrapper-
socket first allocates a sk_buff structure and fills required
fields of the structure such as packet length. The wrapper-
socket will set the field arp of sk_buff structure to one in
order to prevent invoking of the address resolution protocol.
The caller must provide a buffer that contains data to be
transmitted, which already contains link layer MAC (Me-
dia Access Control) addresses. The wrapper-socket then
checks whether the transmitting queue is too long. If the

-263-

1998 Intermational Computer Symposium
Workshop on Software Engineering and Datapase Systems
December 17-19, 1988, N.C.K.U., Tainan, Taiwan, R.O.C.

IDE Disk Read Bandwidth Experiment

!

|
Native Device | ¢
Driver i

Bandwidih (Mb/Sev)

512 1024 2048 4096 8192 16384 32768 65536
Block Size (Bytes)

Figure 6: IDE disk read bandwidth experiment.

queue exceeds some limit value, the packet is dropped. If
there exists room for the packet, the wrapper-socket calls
Linux device driver’s transmitting routine, the
hard_start_xmit.

The I/O control function currently has 2 command that gets
the MAC address of the network card.

3. SYSTEM EVLULATIONS

We evaluate the performance of the wrapper-socket plus
Linux device drivers. The bandwidth and latency time of
Linux device drivers is of interest. Experimental environ-
ment includes an Intel Pentium 100MHz CPU, 16MB
RAM, a 540MB hard disk and a 3COM 3¢509 Ethernet
card.

3.1 Device Driver Bandwidth

In this experiment, we compare the bandwidth of devices
operated in Linux and in Vega, which are further divided
into wrapper-socket plus Linux device drivers and custom
designed native device drivers. For block device drivers,
we take IDE (Integrated Device Electronics) device driver
for example. We don’t measure the bandwidth of network
cards, since the network driver implementation in Linux is
asynchronous and each packet received in the device driver
may or may not be transmitted immediately. The imple-
mentation of the wrapper-socket also suffers from this
problem.

For the wrapper-socket plus Linux IDE driver and the na-
tive driver, we use a thread that reads physically continu-
ous 20MB data sequentially. The read/write block size is
ranged from 512 bytes to 65536 bytes. In Linux, we
opened /dev/hdb file for access. The read bandwidth results
are shown in Figure 6. In our test platform, the disk band-
width increases with block size. The reason is that, with a
larger block size, the Linux device driver issues fewer
commands to the disk drive. Issuing fewer commands to
the disk drive saves commands latency and disk heads
seek/rotational time. As can be seen from the figure, the
bandwidth is competitive with Linux. The disk write
bandwidth is shown in Figure 7. In our test platform, the
bandwidth increases with block size. In Linux, due to ef-

i
i IDE Disk Write Bandwidth Experiment ;

—e— Wrapper-Socket |

[

|4 , ;

= —#— Linux (with buffer

t £ : cache) :
é Native Device |
3 Driver

: 512 1024 2048 4096 B192 16384 32768 65536
| Block Size (Bries) i

Figure 7: IDE disk write bandwidth experiment 1.

IDE Disk Write Bandwidih Experiment

L g —e— Wrapper-Socket | ©
4 y
gk | —#— Linux

[5 ‘ ;i
| é Native Device | |
‘ 2 Driver !

512 1024 2048 4096 8192 16384 32768 65536 !
Block Size (Byies)

Figure 8: IDE disk write bandwidth experiment 2.

fects of the buffer cache that disk writes may be collected
and issued together, the bandwidth does not increase with
block sizes. We opened the /dev/hdb file with O_SYNC flag
set, which means synchronous write, and do the experi-
ment again. The results are shown in Figure 8. We noticed
that our test platform performs better than Linux in the last
few block sizes. The reason is that, in Linux, user/kernel
memory copy for the request data is needed and in our test
platform, no memory copy is needed. In Linux, there are
system call overheads. In our test platform, since user ap-
plication resides in the same address space with system
components, there is no such overhead. In these experi-
ments, we found that the native device driver performs
better than other combinations. However, the difference
between the wrapper-socket plus Linux IDE driver and the
native driver is small.

3.2 Device Driver Latency

In order to use unmodified Linux device drivers, the wrap-
per-socket must fill data structures that are used in Linux
device drivers. We don’t define new common data struc-
tures and do translations in between. On the contrary, we
use data structures already defined in Linux for designing
the wrapper-socket. The advantage is the minimal overhead
being-induced since the wrapper-socket does all the neces-
sary parts. We do several experiments to measure the
wrapper-socket as well as Linux device drive processing
time in this section.

-264-

1998 Internationai Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Table 1: The read/write latency time of IDE device driver (in microseconds).

Read/write | Wrapper-socket | Device driver time |wrapper-socket time| Device driver time for write
size (bytes) | time for read for read for write
512 4.98 17.71 5.38 16.77
1024 5.1 21.02 547 19.37
2048 6.66 28.82 7.2 25.71
4096 10.13 42.94 10.72 38.95
8192 18.75 71.25 20.89 64.76
16384 40.14 128.11 47.15 116.55
32768 104.57 241.19 123.23 220.27

Table 2: The latency time for sending/receiving network packets (in microseconds).

Packet size (bytes) | Wrapper-socket | device driver time |wrapper-socket time| Device driver time
time (send) (send) (receive) (receive)
100 6.81 2.19 0.79 3.74
200 7.26 2.16 0.79 3.72
300 8.86 2.1 0.79 3.73
400 9.96 2.11 0.79 3.90
500 10.54 2.1 . 0.79 3.91
600 12.22 2.1 0.79 3.90
700 12.48 2.1 0.79 3.89
800 12.66 2.09 0.79 3.89
900 15.21 2.11 0.79 4.29
1000 15.52 2.1 0.79 4.30
1100 17.72 2.1 0.79 4.29
1200 18.21 2.1 0.79 4.33
1300 18.7 2.1 0.79 4.29
1400 19.26 2.1 0.79 4.29
1500 19.51 2.1 0.79 4.34

Wrapper-Socket

Device Driver

Actual /O
Data Transfer

Device Driver Interrupt

Sleep/Wakeup

Figure 9: Split time for block device driver accessing.

Wrapper-Socket

Device Driver

Actual /0
Data Transfer

Device Driver
Allocate Buffer

Actual I/O
Data Transfer

Wrapper-Socket
Queue the Packet

Network Send Latency

Network Receive Latency

Figure 10: Network send/receive latency time.

The split latency time of IDE device driver and the net-
work device driver is measured. In the IDE case, the time
for serving an I/O request is split into wrapper-socket, de-
vice driver, actual I/O data transfer, and sleep/wakeup time
as shown in Figure 9. The wrapper-socket latency time
mainly comes from constituting of data request and
buffer head structures, which is needed in the device driv-
ers. We use a block size of 512 bytes in the 512-byte case
and 1024 bytes block size in other case.

As illustrated in Table 1, the processing time generally in-
creases with read/write size because with larger requested
data size, more data structures must be allocated and proc-
essed. The sleep/wakeup time is not shown in the table.
Each I/O request needs at most one sleep plus one wakeup
time. In our test platform, one sleep plus one wakeup takes
about 6.59 microseconds.

The split latency time for network packet sending/receiving
can be illustrated in Figure 10 and the measured latency
time in Table 2. In the network sending case, the latency
time for wrapper-socket comes mainly from allocating a
sk_buff data structure and time for copying data from ap-
plication to the wrapper-socket. The wrappei-socket proc-
essing time increases with the size of data. After the wrap-
per-socket hands this sk_buff structure to the network de-
vice driver, the device driver outputs this packet and then
frees the sk_buff memory. The processing time for the de-
vice driver is almost the same for all sizes of packet be-
cause we don’t count the actual I/O transfer time, such that

-265-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

the time comes mainly from the freeing of sk_buff structure
time. In the network receiving case, the time for device
driver mainly consists of allocating a sk_bu/f data structure
and the wrapper-socket just put this packet in queues. The
processing time for the device driver and wrapper-socket
almost has the same value for all packets since actions ta-
ken by different sizes of packets are almost the same.
Again, actual /O transfer time is not counted.

4. RELATED WORK

A work to incorporate unmodified Linux device drivers
into Mach 4.0 is most related to ours [Goe! 96]. Several
aspects of Mach are modified. For example, the in-kernel
device independent layer of Mach is modified to recognize
the possibility of Linux device driver emulation and the
address mapping method is also modified.

The work to reuse existing shareware operating system
codes is done [Ford 97]. A toolkit named OSKit is built to
be a substrate for kernel and language research. Via the
toolkit, a customized system can be built using software
components provided by the OSKit. The OSKit consists of
Linux and FreeBSD device drivers, NetBSD and FreeBSD
networking protocol stacks, NetBSD file systems and other
parts such as bootstrapping codes and standard C libraries.
For solving the problem of different presentations for one
type of data in different operating systems, e.g. Linux uses
skbuffs while FreeBSD uses mbufs to represent network
packets, the OSKit defines an internal common data struc-
ture and does the translation in each component “glues.”
Thus, the function of these glues is to emulate the original
operating system environment, which is similar to our
wrapper-socket.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our work for reusing Linux
device drivers in embedded systems. A software package is
designed and implemented to incorporate Linux device
driver sources. Embedded systems can use this package
without suffering implementing a lot of device drivers
when their systems are in developing.stages. After the de-
veloping stages, the system designers can change the driv-
ers to their specific ones on their wish. So far, this work is
verified on Vega kernel and works well for embedded sys-
tems. We plan to use this package in larger systems and
believe that it can perform as well as in embedded kernels.

The contributions of this paper are clear. First, this work
supports a good research platform for device driver re-
searches, because it contains a bundle of device drivers and
the operating system interference is isolated. Second, few
human resources are further needed for driver implementa-
tion and maintenance. There exist a lot of hackers in the
cyber space in maintaining the Linux operating system,
their efforts plus our work can contribute to any system re-
searches if driver stuff is needed in the projects. Third, our
design permits to incorporate new device drivers and up-
graded device drivers. What needed to do is to move the

new version driver source tree into the building environ-
ment and build it. So far, we found what we need to modify
is only to change a Linux version number in the source tree.
Linux device drivers will check this version number that is
emulated by the wrapper-socket. Except this number, all
driver upgrade is easy and does not need any modification
to the source tree.

Except the X86 version, Linux also supports different
processors. We plan to enhance the wrapper-socket to in-
corporate device drivers for different platforms. Beside, we
are interested at topics about QoS (quality of service) sup-
ports in operating systems. We plan to use this package to
explore resource reservation schemes for guaranteed sys-
tem services. The work presented in this paper is a good
experimental platform for this kind of researches.

REFERENCES

[Barabanov 97] Michael Barabanov, ‘A Linux-based Real-
Time Operating System’, Master Thesis, New Mexico In-
stitute of Mining and Technology, June 1997.

[Beck 96] Michael Beck, Harald Bohme, Mirko Dziadzka,
Ulrich Kunitz, Robert Magnus and Dirk Verworner, Linux
Kernel Internals, Addison-Wesley Publishing Company
Inc., September 1996.

[Ford 97} Bryan Ford, Godmar Back, Greg Benson, Jay
Lepreau, Albert Lin and Olin Shivers, ‘The Flux OSKit: A
Substrate for Kemel and Language Research’, Proceedings
of the 16" ACM Symposium on Operating Systems Princi-
ples, Saint-Malo, France, October 1997.

[C;oel 96] Shantanu Goel and Dan Duchamp, ‘Linux De-
vice Driver Emulation in Mach’, Proceedings of the Annu-
al USENIX 1996 Technical Conference, San Diego, CA,
USA, January 1996, pp. 65-73.

[Lee 95] Paul C. H. Lee, Mei-Ling Chiang, Shang-Te Shu,
Ta-Chuan Liu, Wu-Yang Chung and Ruei-Chuan Chang,
‘Experiences in Porting u -Kernel Operating System to
the CONVEX Supercomputer’, Journal of Information
Science and Engineering. 12, 1995, p.p. 167-192.

[Lee 98.a] Paul C. H. Lee, Chi-Wei Yang and Ruei-Chuan
Chang, ‘An Integrated Core-Work for Fast Information-
Appliance Buildup’, Technical Report TR-11S-98-006, In-
stitute of Information Science, Acamedia Sinica, Taiwan,

R.O.C,, 1998.

-266-

1998 international Computer Symposium
Workshep on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C. ~

[Lee 98.b] Paul C. H. Lee, ‘From Micro Kenrels to Micro
Cores’, Technical Report, Institute of Information Science,

Acamedia Sinica, Taiwan, R.O.C., 1998.

[Rawson 97] Freeman Rawson, ‘Experiences with the De-
velopment of a Microkernel-based, Multiserver Operating
System’, In Proceedings of the Sixth Workshop on Hot
Topics in Operating Systems (HotOS-VI), Cape Cod, Mas-
sachusetts, USA, May 1997.

-267-

	
	260
	261
	262
	263
	264
	265
	266
	267

