1998 Intemational Computer Symposium
Workshop on Software Engineering and Datqbase Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

A UNIFIED MODEL FOR SOFTWARE COMPONENT
CLASSIFICATION

Yuen-Chang Sun and Chin-Laung Lei

Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan ROC
E-mail: sun@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

ABSTRACT

This paper introduces a unified software component
classification model. It unifies four widely used re-
trieval methods, namely faceted methods, free-text
methods, enumerative methods, and keyword-based
methods, making them special cases. Users can choose
and combine the most appropriate method or methods
when searching for components so that the accuracy
in component retrieval can be improved. The internal
classification structure is described. The components
in a repository can be retrieval with both query and
browse mechanisms. The query algorithm incorporates
techniques such as thesauri and degradation functions
to maximize the coverage of query results. A simple
component identification and version control scheme is
also introduced. With this scheme, unique identifiers
can be assigned to components without a cataloging
service, and component corruptions can be detected
easily.

1 INTRODUCTION

Software repositories play a central role in component-
oriented software reuse. For a repository that cotains
a none trivial collection of software components, the
importance of an efficient, accurate and easy to use
retrieval method cannot be over-emphasized. Various
types of retrieval methods have been proposed, includ-
ing those surveyed in [1, 2}, and, since each of them has
advantages and disadvantages, it is not uncommon for
repositries to incorporate multiple methods simultane-
ously. The incorporated methods, however, are usually
treated as parallel and independent facilities, increasing
the complexity in repository management, and exclud-
ing the possibility of sharing classification information
and resources between methods.

This paper introduces a classification model which
unifies all the major types of retrieval methods. All the
classification information are kept in a unified abstract
data structure. The whole classification scheme is op-
erated with one unified user interface, and communi-
cations between repositories are done with one unified

protocol, no matter which types of retrieval methods
are being used. With this unified model, repository
management can be simplified, and classification infor-
mation can be utilized more effectively. Furthermore,
using a unified communication protocol makes it possi-
ble for repositories to cooperate: a query can be passed
from one repository to another automatically when ap-
propriate.

The proposed model only defines the abstract be-
havior of a repository. It is flexible in that a reposi-
tory can choose to support a subset of the methods the
model supports, and in the meantime the user inter-
face and the communication protocol behave the same
way. Also, the repository can choose any implementa-
tion that is suitable to the chosen retrieval methods so
that system performance can be optimized, as long as
the abstract requirements of the model are fulfilled.

Also introduced as part of the model is a compo-
nent identification and version control scheme. Unlike
schemes that are based on centralized cataloging ser-
vices, the scheme proposed in this paper is based on
content-derived naming techniques, and has the ad-
vantages that (1) a unique identifier can be derived
purely from the contents of a component, eliminating
the need for a networked or centralized service; (2) it is
extremely difficult to produce a component that has a
given identifier, protecting the contents of components
from accidental or malicious alteration.

The following begins with a brief surveyv of existing
retrieval methods. Then in Section 3 and Section 4
the basic structure of the proposed model is shown.
Section 5 describes how components can be retrieved.
Finally we conclude in Section 6.

2 RETRIEVAL METHODS

Before a retrieval method can work, the components
in a repository must be arranged in a classification
structure so that a component meeting certain criteria
can be found efficiently. In the classification processa
component may need to be assigned an indez that de-
scribes its characteristics. Existing retrieval methods
fall roughly into five categories, namely enumerative

-268-

methods, keyword-based methods, faceted methods,
text-based methods, and specification-based methods.
They are summarized in Table 1.

The classification structure of enumerative methods
is a tree, like a directory tree found in a file system.
Enumerative classifications are easy to understand and
use because of their highly structured nature. An-
other advantage, which is missing in other methods,
is that the user can traverse the whole classification
structure, making them not only able to locate com-
ponents without intimate knowledge about the vocab-
ulary and structure of the repository, but also able to
acquire this knowledge during the traversing process.
One disadvantage of enumerative methods is inflexi-
bility. Once the classification structure is determined,
only one viewpoint is allowed. A common solution to
this problem is providing two or more classifications
simultaneously, but this increases maintenance cost.

Keyword-based methods, text-based methods and
specification methods all have a linear classification
structure; they differ in how they index components.
In the keyword-based case, components are indexed
with a number of keywords. Keyword-based systems
are easy to implement and thus are widely used. The
disadvantages are (1) the keywords must be manually
assigned, a quite labor-intensive and time-consuming
job; (2) the user must be familiar with the vocabulary
of the repository, or the desired components may be
missed.

The classification structure of faceted methods is
similar to a relational database table. The columns are
facets, and the cells are filled with terms. Each column
identifies one attribute of components, like their func-
tions, or the data structures they manipulate. Each
row corresponds to a component, and the index of the
component is then composed of the terms in the row. In
contrast to enumerative methods, faceted methods are
flexible in the viewpoint problem: the user can switch
from one view to another at any time, as long as there
are facets form the views. Furthermore, facets are as-
sumed to be independent attributes of components, so
modifying a facet does not affect other facets, making
it easy to change the classification structure. Faceted
methods also suffer from the difficulty in indexing com-
ponents, like keyword-based methods. Besides, faceted
methods are not suitable for collections that cover mul-
tiple application domains because two domains usually
need two different facet sets.

With text-based methods, the text part of a compo-
nent is used as its index. The text part usually includes
the comments in the source files and the documents,
and thus can be automatically extracted from the com-
ponent, so the text-based approach is very low-cost.
On the other hand, text-based methods are less effec-
tive for software component retrieval. The reasons are
(1) false alarms happen frequently because the presence
or absence of a term in a document may not mean its
relevance or irrelevance to that document; (2) the com-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.Q.C.

ponent may under-documented or even undocumented,
or the documentation quality is poor, especially when
non-descriptive or non-standard terms are used. An
empirical study [11] shows that it costs more time to
locate components with text-based methods than with
keyword-based or faceted methods.

3 COMPONENTS
3.1 Component ID

Components are identified by component IDs. A com-
ponent ID is an MD5 [15, 16] code derived from the
contents of the component. The MD5 code of a docu-
ment is derived purely from the document contents by
applying a one-way hashing function to map the con-
tents to a code in a 128-bit code space. Due to the
hugeness of the code space, it is extremely unlikely to
have two distinct documents mapping to the same MD35
code. In case there are 10'% documents, the probabil-
ity that any two of them being mapped to the same
MD5 code is about 10~?, which can be neglected for
practical use.

A component is assigned a component ID once it is
released. Since the ID is content-derived, a new com-
ponent ID must be generated whenever the component
is changed. One advantage of using MD5 codes as com-
ponent IDs is that it is virtually certain that two com-
ponents are identical if and only if their component IDs
are identical, making MD5 codes more reliable in iden-
tifying components than traditional name-plus-version-
number scheme, because name conflicts are more likely
to happen than MD5 code conflicts. Of course, with a
cataloging service ID conflicts can be totally avoided,
but the content-derived scheme can works without such
a service. An additional advantage is that corruption
of component contents can be detected, no matter the
corruption is caused incidentally or maliciously (e.g.
infected by a virus), by checking if the contents and
the ID matches.

3.2 Version Control

The component IDs of two distinct components are
completely unrelated. In order to identify the rela-
tionship between related components, three more IDs,
namely the species ID, the family ID, and the parent
ID, plus a version number, are introduced as the ver-
sion control scheme.

Two components should have the same fundamental
functionality and purposes to be in the same species
and to have the same species ID. Inn a species, compo-
nents that work in different environments should be-
long to different families and have different family IDs.
Environmental differences include the differences in
software, hardware, programming language, and even
culture (such as language, time format, number repre-
sentation, currency, and so on). If one component is
a modification of another, the latter is said to be the

-269-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
Decemnber 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

category || index structure | examples _
enumerative — tree RSL (3], IMSL [4]
keyword-based || keywords flat RSL (3], REUSE [5]
faceted || term tuple | rel. table | Prieto-Diaz and Freeman (6, 7], Poulin [3]
text-based text flat Practitioner [9], GURU [10
spec.-based || specification flat Zaremski and Wing (12, 13}, Mili et al. [14]

Table 1: Categories of retrieval methods.

parent of the former, and the parent ID of the former
is the component ID of the latter. Finally, in a family a
newer component should have a version number larger
than that of an older component.

The rules for setting version information of a com-
ponent under various circumstances are summarized in
Table 2. Note how the first component in a species or a
family is treated differently from its descendants. Also
note that the “MDS5 of contents” is not the component
ID; this is explained in Section 3.3. With the version
information the family tree of a species can be estab-
lished. Although the version control scheme can work
without any cataloging service, such a service is needed
if the user is interested in constructing a family tree.
Building such a service is a simple matter and is not
covered in this research.

3.3 Component Structure

The data contained in a component are organized as
parts and fields. A component has four parts, namely
the header, the subheader, the body, and the appendiz.
Each part contains a number of fields. The parts of a
component and the fields they can contain are summa-
rized in Table 3. An entry in this table indicates the
number of occurrences of a field allowed in a part.

The body is the most crucial part of a component. It
contains fields that should never be modified once the
component is released. If changes have to be made to
those fields, a new component must be released. The
appendiz part contains information that may vary. The
fields in the appendix can be translations of the fields
in the body part (such as document and abstract) to a
regional language, or referential information that can
vary in the future (such as links), or the data dedicated
to component classification (the index field). Informa-
tion in the appendix can be altered whenever needed,
and multiple variations of a component (with the same
component ID) can coexist. The subheader contains
version information.

The code field contains all the code needed for the
component to be utilized. There can be binary code
and/or source code. If binary code presents, it must
be stored in the code field of the body part. If the
source code presents and it is essential for using the
component, it must also be placed in the body part,
otherwise it should be stored in the code field of the ap-
pendix part. The code field of the body part is special
in that it can be removed when needed. For example,

the repository can choose not to expose the code field
until the user has assessed the component (by studying
the documentation) and decided to pay for it, if it is a
commercial product.

The documentation is stored in the document field,
and the abstract field should be briefed from the docu-
ment. They are textual data, suitable for a text-based
search. The name, author, and company fields iden-
tify the name, developer, and owning organization of
the component, respectively. The link fields contain
URLs pointing to locations related to the component.
The indez field contains the component index, which is
described in Section 4.1. The component time and ap-
pendiz time fields record the time the component is re-
leased and the time the current appendix is composed,
respectively.

When a component is to be released, first the body
and the appendix are constructed, then the fields in
the subheader is assigned values according to Table 2.
Finally the appendix ID is derived from the appendix
part, the component ID is computed as the MD5 code
of the concatenation of the subheader and the body,
and the header part is then composed of the compo-
nent ID and the appendix ID. If a specific variation of
a component is needed, the repository can be searched
with both the component ID and the appendix ID spec-
ified. Otherwise, the component ID alone can be used
as the search key.

4 CLASSIFICATION STRUCTURE

4.1 Indices

An indez is composed of a set of terms. A term can
be accompanied by a facet, and such a term is called a
factor. In their textual form, a term is merely a string,
and a factor is a pair of strings separated by a “=" sign,
the latter string being the term and the former string
being its accompanying facet. Factors are allowed to
share a facet. The order of terms is immaterial.

4.2 Domains and Classes

A class is a collection of components. Each component
is assigned an index to describe it. The components
in a class may have different indices, but they must
have some common characteristics to be classified in
one class. A component can reside in multiple classes.

-210-

| first in species |

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

first in family

otherwise

species ID || MD5 of contents species ID of parent species ID of parent

family ID || MD5 of contents MD?5 of contents family ID of parent

parent ID 0 component ID of parent | component ID of parent
version arbitrary arbitrary > version of parent

Table 2: Rules for setting version information.

| header | subheader | body | appendix

component 1D 1
appendix ID 1
species ID 1
family ID 1
parent ID 1
version 1
code 1" 0~1
name 1 0~1
abstract 1 0~1
document 1 0~1
author 0~n 0~n
company O0~n 0~n
component time 1
link O0~n
index 1
appendix time 1

Table 3: Parts and fields of a component.

A domain is a collection of classes. Each class is as-
signed an index that is composed of factors only. Fur-
thermore, the indices of the classes in a domain share a
common set of facets, and the indices must be distinct.
The domain thus forms a traditional faceted classifica-
tion structure, and its facet set is the facet set of the
class indices. The facet set of domain may be empty,
in which case at most one class with an empty index
can be in that domain. A class must reside in exactly
one domain.

Domains are organized as a tree hierarchy. Each do-
main in this hierarchy is assigned a name, and siblings
must have distinct names. In addition to a name a do-
main is also assigned an index. The whole classification
structure is demonstrated in Figure 1.

4.3 Other Issues

The introduced classification structure smoothly uni-
fies all the common classification methods, making
them special cases. More specifically, this structure
is degenerated to

e an enumerative structure if all domains are un-
faceted and all indices (of any kind) are empty;

o a text-based classification structure if there is only
one unfaceted domain, all indices are empty, and
component documents are used as the search tar-
get (this is explained in Section 5);

o a keyword-based classification structure if there is

only one unfaceted domain, all domain indices and
class indices are empty, and all component indices
contain terms only;

¢ a faceted structure if there is only one faceted do-
main and all indices but class indices are empty.

In general, the classification structure of a repository
can be any combination of these traditional structures.
It is important to note here that the proposed model
only defines the logical classification structure a repos-
itory should present to the client so that a client can
communicate with different repositories using the same
protocol and user interface. A repository implementa-
tion can choose any appropriate internal representation
according to which combination of classification struc-
tures is supported.

Component indices, class indices and domain indices
are independent to each other. When trying to match
a component in a class in a domain with a query, all
three indices are combined andcompared to the query.
Having more than one index associated to a compo-
nent is important to effective component classification.
Component indices are supposed to describe the gen-
eral functionality and purposes of components. On the
other hand, domain indices and class indices are sup-
posed to describe specific problem or application do-
mains. If a general-purpose component can be utilized
in several application or problem domains, it can be
classified accordingly by placing it in multiple classes.
This solves the problem that whether the computa-

-211-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

facetl | facet2

termla| term2a | o

Domainl

[termlb | term2b | o

termlic | term2c | +

CelasstD

facet3 | facetd | facet5

term3a | termda | termia| ~—>

Domain2
Domain3

term3b | term4b | term5b | e4—>

Figure 1: An example classification structure. Domainl is the root domain and has two facets. Domain3 has three
facets, and Domain2 is unfaceted. Note that a component can be shared by multiple classes.

tional semantics, as in “this component finds the high-
est value in a list,” or the application semantics, as
in “this component finds the highest paid employee,”
should be described by the index of a component. The
answer here is both: the former can be described by the
component index, and the latter can be described by
the class index and the domain index.

5 COMPONENT RETRIEVAL

5.1 Syntax of Query Statements

The syntax of query statements is listed in Figure 2. In
QueryStat a “+” stands for a union operation, a “#”
an intersection, and a “~” a difference. In Queryltem a
«” stands for an AND operation. The type of a Const
and the kind of Op allowed depend on the type of Facet
and the Func applied, if they present.

When a Const is accompanied by a Facet (possibly
with a Func applied) and an Op, that constant is com-
pared to the specified facet. Otherwise, that constant
is compared to all the facets and terms of the same
type in the component.

5.2 Thesauri

When using string-based methods such as keyword-
based and faceted methods, a major problem is the
difference between the user vocabulary and the reposi-
tory vocabulary. For example, a window may be called
a “form” in some field, and, though not identical, it
has a high correlation with a “dialog box.” Listing
all equivalent or similar terms in an index is out of
question. The best solution to this problem is a the-
saurus mechanism, with which the correlation between
two strings can be found. Such a thesaurus mechanism
can define the correlation between general terms, gen-
eral terms and special terms such as abbreviations and
acronyms, or terms from different languages such as
Chinese and English.

A thesaurus is defined as a function 6{w;,ws) —
[0..1], where 8 is the thesaurus and w;, w» are strings.
The larger the function value, the higher the correla-
tion between the strings. A correlation 1 means the
two strings are equivalent, while a 0 means irrelevance.
f(wy,w,) can also be denoted as |w;,w2|. In practice
several thesauri may be used simultaneously, but it is
feasible to view them as a single thesaurus.

A thesaurus can be implemented in many ways. The
simplest way is adopting an existing thesaurus (such
as ones used in some word processors) and restrict the
function value to either 0 or 1, hence a binary the-
saurus. More complicated techniques such as concep-
tual graphs introduced in [6] can also be used. Besides,
language specific procedures such as suffix elimination
can also be incorporated. Establishing a thesaurus is
not easy, and automatic or adaptive methods can be of
great help. This paper does not cover this topic.

5.3 Relevance Evaluation

Executing a query involves comparing the query state-
ment to the indices of components in the repository to
find the correlations, and then present to the user the
most highly relevant ones for further assessment. The
index of a component is the union of the component in-
dex, class index and domain index of that component.
More specifically, if a component has component index
d., class index d;, and domain index d,, then its index
used in a query session is d, U d; U d,. The class in-
dex and domain index of a component is the indices of
the class and domain, respectively, which that compo-
nent is residing in. If a component resides in multiple
classes, it is considered as multiple instances and will
have multiple indices during a query.

Now suppose an index d = (r1,7r9,... ,r,) is com-
pared to a query item q = (s1,82,...,5n,), wherer; isa
term or a factor, and s; is a query element (QueryElem
in 2). Then the correlation between q and d, also called

-212-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Queryltem | QueryStat’ “+” QueryStat’ |

QueryStat’ “#” QueryStat’ | QueryStat’ “~" QueryStat'

QueryStat =
QueryStat’ = “(” QueryStat “)”
Queryltem = QueryElem *)”
QueryElem =

Op _—_> “:11’

Queryltem
Const | Facet Op Const | Func(Facet) Op Const
“#777 “>77’ “<’77 (‘27” CLS!?

Figure 2: Syntax of Query Statements

the relevance of d against ¢, is defined as

n
(ma.xlsi,r,-|> .
=1

|si,7;] is evaluated according to what kinds of elements
are involved:

m

lg,dl =[]

i=1

e |t1,ta], where t; and t2 are strings, is evaluated by
consulting the thesaurus;

. lfl =t1,ta] = ‘tg,f1 = t1| = Itl,tgl for string-type
facet fi;

. ,fl =ty,fa = tzl = 4/ lfl,f2| . ltl,tzl for string-
type facets f1 and f;

. lfl op t1, f2 = t2| = (tl op tz) Ifl,f2| for facets
f1 and f» of the same non-string type that is suit-
able for op;

o |F(f1) op t1, f2 = ta] = V(F(t1) op t2) [f1, fol;

o otherwise |s;,r;| = 0.

The value range of the expression “a op b” depends on
op. Usually it is {0, 1}, but for the text type, frac-
tion values are possible if partial matching techniques
are used. After the relevance of each query items are
found, the relevance of the whole combined index can
be found: '

|g, d| is evaluated as the above if g is a query item;
if ¢ = q1 + ¢2, where ¢; and go are sub-queries of
g, then |q,d| = max(lg1,d],]2, dl};

o if ¢ = q1#¢, then |¢,d| = min (|q1,d|,|g2,d]);

e if g = q1 ~ g2, then |g,d] = |q1,d| — |2, d}.

Note that during the evaluation process, due to the
subtraction operation there can appear values out of
the [0..1] range. Out-of-range values should be trun-
cated after the evaluation, but allowing them to appear
during evaluation has its positive effects. For example,
consider a query ¢ = @1 ~ (g2 — g3), where g1, g2 and
gs are query items. If a combined index d does not
match ¢; and g2, then no matter d matches gz or not, d
will not match ¢ if the traditional binary set operation
(which is equivalent to truncating out-of-range values
as soon as they appear during an evaluation process)
is used. On the other hand, |g,d| depends on |g3,d|
if truncation only takes place after evaluation. Since
lg,d| is an evaluation of analog correlation, not sim-
ple binary “contained-in” relation, our approach seems
more practical. Of course, the traditional semantics
can also be used if the user prefers it.

G (x)

Figure 3: Degradation Functions

5.4 Degradation Functions

One way [6] of broadening a query is dropping fac-
tors and terms one by one from the tail of the original
query statement and reissuing the shortened queries af-
ter confirmed by the user. In this paper an advanced
broadening method is introduced. The original algo-
rithm for finding the correlation between a query item
and an index is changed to

m
d| = G, $ Lo
=11 (gl

where G; is the ith order degradation function defined
as

Gi(z)=1-D"1(1-1)

where 0 < D < 1 is the degradation constant. See
Figure 3, this function has the following characteristics:

e Gi(z) = z for all z, that is, the first element in
the query is not affected;

e G;(1) = 1 for all ¢, that is, an exact match is not
affected;

e G;{(0) > 0 for all ¢ > 1, and the larger the value
i, the larger the function value, that is, when el-
ements in a query item do not match the index
exactly, an element arranged closer to the tail has
less effect over the whole relevance value than an
element arranged farther to the tail.

This method has the following advantages compared
to the method proposed in [6]:

¢ The query has to be issued only once, rather than
multiple times as is-done in {6].

¢ It is automatically done without user intervention.

¢ The relevance of a component after broadening is
proportional to its relevance before broadening, so
a more matching component receives a higher rel-
evance value even when broadening is performed.

-213-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

The last point needs further explanation. Suppose the
relevance threshold is 0.25. Since merge sort is close
to quick sort in efficiency, let |quick sort, merge sort|
be 0.2. Without degradation functions applied the rel-
evance values of bubble sort and merge sort are 0 and
0.2, respectively, so both are dismissed. With degrada-
tion functions applied, their relevance values become
0.3 and 0.44, respectively. Note that although both are
now included in the result set, the merge sort compo-
nent has a higher relevance, thus the system can ar-
range it closer to the top in the list of located com-
ponents so that it can more easily be retrieved by the
user. On the other hand, the method in [6] will give a
relevance value of 1 to both of them since the second
factor is dropped, and the system will not be able to
tell which one is more matching.

5.5 Browsing

In addition to the query mechanism, components can
also be retrieved with a browse mechanism. The browse
starts with the root domain. The user can traverse the
tree of domains to locate the desired domain. Then
the located domain can be surveyed and classes in the
domain can be selected. Finally components can be
retrieved from the classes. This way the user can enu-
merate through each component in a repository. The
browse mechanism also offers the user an opportunity
to get familiar with the vocabulary and classification
structure of the repository.

A domain is a faceted classification structure, which
has a natural representation of a table. Under certain
circumstances, however, it is more convenient for users
to represent the faceted structure as a tree. A retrieval
system implementing the proposed model should pro-
vide both representations, and the user should be al-
lowed to switch representation with ease.

Representing a domain A with facets f;, ..., fpasa
tree is a straightforward task. The domain can first be
expanded with f; by performing appropriate relational
operations against the domain table to yield several
sub-domains with f; excluded from their facet sets.
The expanded domain A becomes the tree root, and
the sub-domains become its child nodes. Those sub-
domains can then be expanded with f». This process
continues until facets are exhausted, as illustrated in
Figure 4.

FEach node in the tree stands for a subset of the whole
domain. More specifically, if a node is derived from A
by the operation series (fi = t1, ..., fm = tm), then it
contains all the classes having class indices of the form
(fi=ti, oy fm = tm, fme1 =%, ..., fn = x), where
“x” stands for immaterial. In other words, the class
set of a node is the union of the classes sets of its child
nodes, and the root node stands for all the classes in
the domain. For example, the node edit in Figure 4
stands for all the classes that are assigned the term
“edit” to their “task” facet, that is, classes C; and Cs.

Facets can be expanded in any order. For example,

(root) | rarget

[DBﬁIes]mk [taxtﬁles]usk [Web]!ask

[edit J [browse] [edit J [browse]
} } ! !
(o Cs C, Cy

Figure 5: The domain in Figure 4 is expanded in an-
other facet order.

source

Lsumem [yes]!ask[no]lask

(e J(_mo_]

Figure 6: Expanding different facets at the same level.
The domain is partially expanded.

in Figure 5 the same domain as shown in Figure 4 is
expanded with “target” first. Nodes at the same level
may be expanded with different facets, as shown in
Figure 6.

Some repository manipulation tasks can also be done
with this tree representation. Locating a class (and the
components in it} can be done by expanding part of
the tree, and assigning or changing the class index of a
component can be as simple as moving the component
around the tree structure. Certain operations, espe-
cially those involving facets, are better performed with
the table representation, though.

6 CONCLUSION

This paper introduces a software component classifi-
cation model that unifies four major retrieval meth-
ods. Repositories incorporating this unified model can
be accessed using a common protocol and user inter-
face, and cooperation between repositories can he en-
couraged. When searching for components. a user can
choose the access method that is most appropriate to
the situation, reducing the possibility that the desired
components cannot be found. The user can also use
a mixture of methods, increasing the expressiveness of
a query statement, and thus improving the accuracy
of query results. A query can be understood and per-
formed simultaneously by multiple repositories so that
more components can be found.

Different repositories can choose to support differ-
ent subsets of the four retrieval methods, and different
internal data structures can be chosen to optimize per-

-214-

A

task target
edit | DB files|C,
edit |text files|C
browse | DB files | Cs

~

iy

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

browse | arget

browse | Web | Ca (DB files) (Textfiles) (DB files) {_ Web]

!

Cl CZ C3 C4

Figure 4: Representing a Domain as a Tree

formance. The query and browse mechanisms are de-
signed so that they can work with various combinations
of retrieval methods.

In addition to component classification, a simple
yet effective version control method is also introduced.
With this method, components can be assigned quasi-
unique identifiers without a centralized catalog service,
and relationship between versions of a component can
be easily determined. Because of the encoding scheme
used, it is extremely difficult to break the integrity of
a component.

REFERENCES

[1] H. Mili, F. Mili and A. Mili, “Reusing Software: Is-
sues and Research Directions,” IEEE Trans. Soft-
ware Engineering, vol. 21, no. 6, pp. 528-562,
1995.

[2] S.Henninger, “An Evolutionary Approach to Con-
structing Effective Software Reuse Repositories,”
ACM Trans. Software Engineering and Methodol-
ogy, vol. 6, no. 2, pp. 111-140, 1997.

[3] B. A. Burton, R. W. Aragon, S. A. Bailey, K. D.
Koehler and L. A. Mayes, “The Reusable Software
Library,” IEEE Software, vol. 4, no. 7, pp. 25-33,
1987.

[4] IMSL Math/Library User’s Manual, Houston,
Texas, 1987.

[5] S. P. Arnold and S. L. Stepoway, “The Reuse Sys-
tem: Cataloging and Retrieval of Reusable Soft-
ware,” Proceedings of COMPCON §°87, pp. 376-
379, 1987.

[6] R. Prieto-Diaz and P. Freeman, “Classifying Soft-
ware for Reusability,” IEEE Software, vol. 4, no.
1, pp. 6-16, 1987.

71 R. Prieto-Diaz, “Implementing Faceted Classifica-
tion for Software Reuse,” Communications of the
ACM, vol. 4, no. 5, pp. 88-97, 1991.

(8] J. S. Poulin, “Populating Software Repositories:
Incentives and Domain-Specific Software,” Jour-
nal of Systems Software, vol. 30, pp. 187-199,
1995.

[9] H. Mili, R. Radai, W. Wang, K. Strickland, C.
Boldyreff, L. Olsen, J. Witt, J. Heger, W. Scherr
and P. Elzer, “Practitioner and SoftClass: A
Comparative Study of Two Software Research
Projects,” Journal of Systems Software, vol. 25,
pp. 147-170, 1994.

[10] Y. S. Maarek, D. M. Berry and G. E. Kaiser, “An
Information Retrieval Approach for Automatically
Constructing Software Libraries,” IEEE Transac-
tions on Software Engineering, vol. 17, no. 8, pp.
800-813, 1991.

[11] W.B. Frakes and T. P. Pole, “An Empirical Study
of Representation Methods for Reusable Software
Components,” IEEE Trans. Software Engineering,
vol. 20, no. 8, pp. 617-630, 1994.

[12] A. M. Zaremski and J. M. Wing, “Signature
Matching: A Tool for Using Software Libraries,”
ACM Trans. Software Engineering and Methodol-
ogy, vol. 4, no. 2, pp. 146-170, 1995.

[13] A. M. Zaremski and J. M. Wing, “Specification
Matching of Software Components,” ACM Trans.
Software Engineering and Methodology, vol. 6, no.
4, pp. 333-369, 1997.

[14] R. Mili, A. Mili and R. T. Mittermeir, “Storing
and Retrieving Software Components: A Refine-
ment Based System,” IEEE Trans. Software En-
gineering, vol. 23, no. 7, pp. 445460, 1997.

[15] R. L. Rivest, The MD5 Message-Digest Algorithm.
RFC 1321, Network Working Group, April 1992.

[16] J. K. Hollingsworth and E. L. Aliller. “Using
Content-Derived Names for Configuration Man-
agement,” ACM Symposium on Software Reusabil-
ity, pp. 104-109, MA, USA, April 1997.

-275-

	
	268
	269
	270
	271
	272
	273
	274
	275

