1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Development and Application of Reverse Engineering Measures
in a Re-engineering Tool

S. Zhou, H. Yang and P. Luker
Department of Computer Science
De Montfort University
England

Abstract

If software metrics are useful in a forward software
engineering environment, they are vital in a reverse
engineering one. We are endeavouring to develop suitable
metrics for software engineers who urgently need them for
reverse engineering legacy systems. We propose that the
metrics for reverse engineering in our re-engineering tool,
the Re-engineering Assistant (RA), are developed under five
categories: complexity, abstractness, object orientation,
economics and reusability. The main task of reverse
engineering is to extract a representation of existing systems
at a high level of abstraction. This main characteristic is
reflected in our study. Complexity measures are used to
indicate how complex it is to reverse engineer a piece of
existing code. Abstractness measures indicate at what level
of abstraction the existing code is and whether the code is
abstract enough to understand. Object orientedness measures
indicate how object oriented the code is for those re-
engineers who are hoping to transform myriad conventional
procedural systems into object-oriented ones via reverse
engineering. Economics (cost estimation) measures indicate
the cost to reverse engineer the existing code. Reusability
measures indicate to what extent the reverse engineered
existing code can be reused. Several measures under each of
the above categories have been developed or adopted, and
“justified” in this study. Examples are also presented.

Keywords: metrics, measure, reverse engineering, re-
engineering, wide spectrum language.

1. Introduction
Metrics are fundamental to any engineering discipline, and
software engineering is no exception. Currently, there exists
a large number of systems which include many potentiaily
reusable components, most of which systems are in need of
refinement. For example, conventional procedural
languages are rapidly being replaced by object-oriented
languages, yet many of the existing systems referred to
above have been implemented in traditional procedural
languages. It would be desirable to convert these old
systems so that they exhibit object-oriented characteristics
and are, importantly, more maintainable. The
transformation from a conventional program to an object-
oriented one needs to contain the functionality of the old
one, which can be accomplished through reverse

William C. Chu
Department of Information Engineering
Tung Hai University
Taiwan

engineering and re-engineering. In our research, we
concentrate on developing reverse engineering metrics to
measure changes of these characteristics, in reverse
engineering in particular, changes through transformations
from existing programs to specifications. We then
implement these measures in a metrig tool (Metric Facility
in the Re-engineering Assistant) and develop this tool
simultaneously for practical use.

2. Reverse Engineering and Metrics
In this section, the definition and main characteristics of
reverse engineering will be described together with the main
concepts of relevant existing software metrics.

2.1 Characteristics of Reverse Engineering
Software reverse engineering is “the process of analysing a
subject system to: identify the system’s components and
their interrelationships, create representations of the system
at a higher level of abstraction” [Chikofsky90]. In short;-
reverse engineering supports the understanding of existing
systems through extracting its specifications. The main
incentive for reverse engineering can be attributed to six
goals: coping with complexity, generating alternate views,
recovering lost information, detecting side effects,
synthesising higher level abstraction and facilitating reuse.

2.2 Metrics Definition

Measurement is fundamental to the software engineering
discipline (which includes re-engineering) as a whole. Since
reverse engineering is an initial and essential part of re-
engineering, we are going to concentrate on measurement
for reverse engineering phase of re-engineering. Software
metrics refers to a broad range of tools for measuring
computer software. Within the software engineering context,
“a measure provides a quantitative indication of the extent,
amount, dimensions, capacity, or size of some attribute of a
product or process.” [Pressman97] “Measurement is the act
of determining a measure. Software metrics is a quantitative
measure of the degree to which a system, component, or
process possesses a given attribute.” [IEEE93] In fact,
measurement in the process of reverse engineering in
principle can be carried out in the same way as it is carried
out for other software engineering processes. Compared to
metrics for forward engineering, metrics for reverse
engineering must help engineers to understand an existing
system, because the focus of reverse engineering is always

-290-

existing systems. Moreover, an existing system normally
lacks necessary documents and there are few, if any records
about the existing system with which we want to reverse
engineer. So reverse engineering metrics are not only used
to measure products and procedures throughout the reverse
engineering process but are also used to gain necessary
knowledge of existing systems (resources of reverse
engineering) before the main reverse engineering process
begins. However, almost all existing software metrics
approaches, methods and models have been designed for
forward engineering. In the next section, a short overview of
developments in software metrics is given.

2.3 Relevant Existing Metrics

The history of software metrics is not a long one. The first
long-term software metrics research effort is described in
Halstead’s paper [Halstead72]. In fact, the earliest paper in
this field appears to be “Quantitative Measurement of
Program Quality” by Rubey and Hartwick. Other early
studies include Knuth’s study in which a sample program
was examined in order to capture quantitatively “What
programmers really do” [Knuth71], and Sammet’s work
related to measuring programming languages [Sammet71].
In the early 1970s, following Halstead’s foundation for the
new science, software science, much work was begun which
related to software metrics. Much of the early research was
focused on measuring software complexity. The most well-
known work based on control paths is the often-cited
complexity metric of McCabe [McCabe76]. Another major
effort was established at NASA’s Goddard Space Flight
Centre in co-operation with the University of Maryland by
Basili and Zelkowitz [Basili77]. Much of Basili’s early work
focused on examining relationships among various product

and process attributes. More work was subsequently done, .

such as Albrecht’s definition of function points [Albrecht79]
and McClure’s design complexity metric based on the
complexity of control variables and modules [McClure78],
Kemerer and Chidamber (KC)’s OO metrics suite
[Kemerer94]. Zuse’s book [Zuse91] gives an overview of all
the major complexity measures of the time.

As far as metrics for reverse engineering are concerned,
there are still very few measures specially designed for
reverse engineering. In his systematic treatments of software
metrics [Fenton91] [Fenton96], Fenton gives an explanation
of the whole metrics subject, but, again, mainly from a
forward engineering perspective. Boehm’s COCOMO
model is the typical cost estimation model of the software
metrics area, which is mainly designed for forward
engineering, but it must be remarked that he has proposed
estimating the effects of adapting existing software and
software maintenance estimation which refer to metrics for
reverse engineering [Boehm81]. Some other authors have
mentioned metrics in reverse engineering to a greater or
lesser extent. As Pfleeger said: “Measurement is essential
for understanding, managing and controlling the software
development and maintenance process.” [Melton96]. It’s
easy to see that reverse engineering metrics is still virgin
territory in the field of software metrics.

2.4 Summary

1998 Intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Although some authors have referred to metrics in reverse
engineering to a lesser or greater extent, we still have been
unable to find any systematic research for reverse
engineering metrics until now. In particular, software
metrics such as object-orientation and abstractness measures
for reverse engineering are almost non-existent. Therefore,
developing reverse engineering metrics will be very
meaningful work in the software engineering area.

Another problem is that reverse engineers always have to
find and adapt metrics from the forward engineering domain
by themselves so as to meet their need for assessing and
controlling a reverse engineering project from the beginning.
Meanwhile, they still can’t find powerful metrics tools that
support their measurement actions when reverse engineering.
Because re-engineering is more and more widely in demand,
there is no doubt that there is an urgent need to develop
suitable reverse engineering metrics for both process and
product management in re-engineering.

3. Development of

Reverse Engineering Metrics _

The main objectives of reverse engineering metrics are to
measure complexity, abstractness level, object-orientedness,
understandability, transportability and economic
characteristics (i.e. reverse engineering duration, effort and
productivity, etc.) Based on these facts, measures for reverse
engineering are classified into five different categories of
reverse engineering metrics. Reverse engineering metric
measures can be adapted, redefined from existing measures
and developed within each of the five categories. Because
when reverse engineering a large program or system,
engineers always decompose or slice it into several small
program or system segments (modules) and then reverse
engineer these segments or modules separately, this leads to
a feasible and economic way of reverse engineering existing
systems. As for applying the metrics themselves, it’s nearly
impossible to measure the whole system or program without
measuring segments or components of it one by one. As a
result, the essential characteristics of reverse engineering
and reverse engineering metrics decide that reverse
engineering metric measures must be simple measures,
which can be executed quickly. More complex measures can
only reduce the efficiency of reverse engineering and
increase the cost of the whole reverse engineering project.
Therefore, we try to use simple, yet effective and efficient
measures to occupy the five categories.

In the following parts of this section, five categories of
metrics and their application will be described separately.
Then all metric measures defined in the study will be
implemented in a re-engineering tool, Re-engineering
Assistant, thereby strengthening it considerably.

3.1 Complexity Measures

Complexity is one of the most pertinent characteristics of
computer software. Complexity measures are the
fundamental element of software metrics. Many existing
complexity measures can meet the need of reverse
engineering. In forward engineering, complexity measures
are mainly used for measuring how complex a system is. In
a reverse engineering process, people mainly want to

-291-

1998 International Computer Symposium
Workshop on Software Engineering and Data.base Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

understand the existing program through transforming the
original program to less complex specifications, because the
less complex a program is, the easier people can understand
it. Before those transformations, complexity measures can
help people to know the general complexity level of the
object program and predict how hard it will be to reverse
engineer this object program. Among transformations,
complexity measures can let reverse engineers control
transformation procedures with the direction of always
reducing complexity of the object program, but the main
usage of complexity measures is still to give an overview to
managers and engineers. Several complexity measures are
adopted for use for reverse engineering.

Metric 1: McCabe Complexity (MCCM)

Definition: The number of linearly independent circuits in a
program flowgraph [McCabe76]. It is calculated as the
number of predicates plus one.

Viewpoints: The bigger the MCCM number, the more
transformation steps will be required to extract
specifications. The more predicates the program comprises,
the more difficult to transform the object program.

Metric 2: Structural (STRUCT)

Definition: The sum of the weights of every construct in the
program. The construct is defined subjectively according to
experience gained by engineers and managers.

Viewpoints: In different systems, constructs always have
different weight levels. Those constructs with high weight
levels will let transformations become more difficult to
execute. In practice, high weight level constructs such as
loops are more difficult to transform than assignment
statements and other low weight level constructs.
Calculating the sum of the weights of every construct can
generally help engineers know the overall level of difficulty
of forthcoming transformations.

Metric 3: Lines of Code (I) (LOC)

Definition: The number of statements in the program.
Viewpoints: Simply, this measure crudely estimates the
overall size of the object program by relating to the scale of
the forthcoming transformations directly.

Metric 4: Control-Flow and Data-Flow Complexity
(CFDF)

Definition: The number of edges in the flowgraph plus the
number of times that variables are used (defined and
referenced). :

CFDF= Number of edges in the flowgraph + Number of
variables + Number of times that variables are referenced
This is a modification of the measure defined by Oviedo

[Zuse91].

Viewpoints: Through measuring CFDF, reverse engineers
can estimate the size of their forthcoming preliminary work,
because a great amount of the basic work in reverse
engineering procedures is to extract specifications to explain
every node and variable. The bigger the value of CFDF, the
more information will appear in specifications.

Metric 5: Branch-Loop Complexity (BL)
Definition: The number of non-loop predicates plus the
number of loops.

BL=%non-loop predicates + Xloops
This is a modification of the measure defined by Moawad
and Hassan [Zuse91].
Viewpoints: This measure is sensitive both to branches and
to loops. The bigger the value of BL, the more explanations
will be added to specifications for pointing out structured
and unstructured flowgraphs.

Metric 6: Function
Complexity (FPIC)
Definition: Summarises the weighted adjusting functions
which counts for the external interface files through which
data is stored elsewhere by another application. The function
complexity scores are simple, average and complex. This is
a modification of the functions points measure [Albrecht83)
[Banker94].

3
FPIC =7 % Interface Function x

c=1
Complexity Score ,

Viewpoints: The bigger the value of FPIC, the more work
will be done referring to other applications in reverse
engineering procedures. It’s more difficult to extract
specifications for explaining connections with other
applications. Sometimes, because of the lack of necessary
documentation of other applications, it will be impossible to
gain specifications about parts of interface files.

3.2 Abstractness Measures

Abstractness measures are also frequently used as important
measures in the five categories, because abstraction is a
significant notion in reverse engineering. Abstractness
measures are mainly used to measure the abstractness of an
object program. Moreover, abstractness measures can
measure both product attributes and process attributes
following reverse engineering procedures, abstraction
procedures especially. For understanding an existing
program, the main task in reverse engineering is to extract
the specification of source code via abstraction. Throughout
the whole abstraction process, engineers always want to
know how abstract the program- is and judge whether they
have omitted at the correct abstraction level depending on
the results of abstractness measurements and whether the
program is abstract enough to understand. In other words,
abstractness measures help engineers execute abstraction
actions more effectively. Another reason is that by using
abstractness measures, we can easily use other measures,
because the more abstract the program is, the easier it is to
measure [Yang97].

Metric 7: Abstractness based on MecCabe's
Cyclomatic Complexity Measure (ABST-MCCM)
Definition: The reciprocal of the number of linearly
independent circuits in a program flowgraph, which is
calculated based on McCabe's cyclomatic complexity
measure [McCabe76].

ABST-MCCM =

Points (FPs) Interface

1
Z predicates+1

Viewpoints: The fewer the branching statements, the more
abstract the program is. That is to say, the closer to 1 ABST-
MCCM is, the more abstract is the program.

-292-

Metric 8: Abstractness based on Lines of Code
(ABST-LOC)
Definition: The quotient of the number of statements (LOC)
over the number of nodes (NON) in the abstract syntax tree.
Z statements

Z nodes
Viewpoints: This reflects the simplicity of the statements in
the program and suggests that the fewer the nodes in each
statement, the more abstract is the program. Numerically,
the closer to 1 ABST-LOC is, the more abstract is the
program.

ABST - LOC =

Metric 9: Abstractness based on Control-Flow and
Data-Flow Complexity (ABST-CFDF)

Definition: The reciprocal of the number of edges in the
flowgraph plus the number of times that variables are used
(defined and referenced), which is a modification of the
measure defined by Oviedo [Zuse91].

Viewpoints: This suggests that the fewer the segments of
the program and the fewer the variables used, the more
abstract the program is. Consequently, the most abstract
program is a program with a single edge and no variables.
Once again, the closer to 1 ABST-CFDF is, the more
abstract is the program.

Metric 10: Abstractness based on Number of
Classes (ABST-NOC)

Definition: The reciprocal of the sum of the number of
classes plus one.

Viewpoints: When all classes have been transformed into
. specifications, the abstractness of the object-oriented
program must be at the highest abstraction level.

3.3 Object Orientation Measures

Following the strong trend towards object orientation, object
orientation measures have become an unavoidable subset of
software metrics required for reverse engineering.
Nowadays, many software managers and engineers want to
transform their huge number of conventional procedural
systems into object-oriented systems via re-engineering.
Object orientation measures for reverse engineering have
special meanings to those managers and engineers. Object
orientation measures can be used to measure characteristics
of source programs, transitional programs, specifications
and so on, which can help engineers transform procedural
systems effectively and efficiently in that they exhibit
object-oriented characteristics through measuring these
attributes. Here we adapt Kemerer and Chidamber (KC)’s
OO metrics suite for reverse engineering measures
[Kemerer94].

Metric 11: Weighted Methods per Class (WMCQC)
Definition: ClassC,, with methods

M, ... M, that are defined in the class. Let ¢,...c, be the

Consider a

n
complexity of the methods. Then: WMC= ZH C, . Ifal

method complexities are considered to be unity, then WMC
= n, the number of methods. Here the number of methods is
calculated as the summation of McCabe's cyclomatic
complexity of all local methods.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Viewpoints: The number of methods and the complexity of
methods involved is a predictor of how much time and effort
is required to reverse engineer the class. The larger the
number of methods in a class, the greater the potential
impact on children, since it will be difficult to extract
specifications from this class. Classes with large numbers of
methods are likely to be more application specific, which
limits the ease of reverse engingering.

Metric 12: Depth of Inheritance Tree (DIT)
Definition: Depth of inheritance of the class is the DIT
metric for the class. In cases involving multiple inheritance,
the DIT will be the maximum length from the node to the
root of the tree.

Viewpoints: The deeper a class is in the hierarchy, the
greater the number of methods it is likely to inherit, making
it more complex to gain specifications for it. Deeper trees
constitute greater design complexity, since more methods
and classes are involved which cause difficulty for reverse
engineering tasks. The deeper a particular class is in the
hijerarchy, the more reverse engineering steps will be
performed on it.

Metric 13: Number of Children (NOC)

Definition: Calculates the number of immediate sub-classes
subordinated to a class in the class hierarchy.

Viewpoints: The greater the number of children, the greater
the likelihood of improper abstraction of the parent class. If
a class has a large number of children, it may be a case of
misuse of sub-classing. Therefore, it’s easy to reverse
engineer those parent classes. The number of children gives
an idea of the potential influence a class has on the design. If
a class has a large number of children,it may require more
abstraction steps.

Metric 14: Coupling between Object classes (CBO)
Definition: As for a class, it is a count of the number of
other classes to which it is coupled. It relates to the notion
that two classes are coupled when methods in one class use
methods or instance variables defined by another class.
Viewpoints: The more independent a class is, the easier it is
to extract its object and specifications and to transform it.
The larger the number of couplings, the higher the
sensitivity to changes in other parts of the design, and
therefore transformation procedures will become more
difficult. The higher the inter-object class coupling, the more
rigorous specifications will be added.

Metric 15: Average Parameters per Method (APM)
Definition: Calculated as the number of method parameters
compared to the total number of methods.

APM = The Number of Method Parameters in the program

Total Number of Methods

Viewpoints: Parameters require more effort of clients.
Higher numbers of APM will put a heavier burden on
reverse engineers.

Metric 16: The weight of Input/Output Classes
Io<C)

Definition: Calculated as the number of classes referring to
external actions compared to the total number of classes.

-293-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

_ The Number of Class with 10 Methods

- NoC

Viewpoints: Because Input/Output classes refer to other
applications, more steps of reverse engineering will be used
to gain specifications for them.

oc

3.4 Economics (Cost Estimation) Measures
Economics (cost estimation) measures indicate the cost of
reverse engineering the existing code. For controlling the
reverse engineering process and reducing the cost of
obtaining specifications, engineers and managers must be
able to estimate relevant quantities. We present reverse
engineering estimation- metrics to address two kinds of
quantity: reverse engineering value measures and object
based measures. The first 4 measures listed below are
reverse engineering value measures, which are all based on
the number of thousands of transformed and merged source
code instructions (TSI). TSI is calculated as “TSI= Source
Lines of Code - Lines of Specifications.” The other
measures, being object-based, are mainly used to assess the
effort of transforming a procedural program into an object-
oriented one.

Metric 17: Effort Assessment based on Man-Days
(EMD)
Definition: This measure is a modification of the basic
COCOMO model defined by Boehm [Boehm81]. Nineteen
work days per month is used here.
2.4(TSI /1000)"

19
Viewpoints: Through this measure, engineers can obtain
how many man-days cost units they spend on all source
lines of code which have been transformed.

Metric 18: Reverse Engineering Duration (RET)
Definition: ~ RET(Days) = 2.5(EMD)"*

This measure is a modification of the COCOMO model
defined by Boehm [Boehm81].

Viewpoints: It can be used to estimate the duration of the

whole reverse engineering process. Clearly, the smaller the
value of RET, the shorter the duration.

Effort : ManDays =

Metric 19: Productivity of Reverse Engineering

(REP) 751
Definition: - —

REP = oip < 1000
This measure is another modification of the COCOMO
model [Boehm81] [Conte86].
Viewpoints: This measure gives engineers an overview the
efficiency of the reverse engineering process. Clearly, the
smaller the value of REP, the higher efficiency engineers
have realised.

Metric 20: The number of objects (NOO)

Definition: The number of objects is extracted from source
code in specifications.

Viewpoints: This is 2 meaningful measure when engineers
transform a procedural system into an object-oriented one.
Engineers can know how many objects they have extracted
form the old system in preparation for transforming the old

system to object-oriented code in the next step. It is a central
component of the measure that follows.

Metric 21: Effort: Man-Days of Obtaining Each
Object (OMD) '
Definition: This gives how many man-days cost units are
used to transform one object from source code.
EMD

OMD = NOO
Viewpoints: This measure gives a general view of the
reverse engineering process for transforming a procedural
program. It tells that how many man-days cost units were
used to extract one object from the raw program.

3.5 Reusability Measures

The last category of the five is reusability measures.
Managers and engineers always use them before other
processes begin. There are more risks in reverse engineering
than in forward engineering. As forward engineers begin
with detailed specifications, they have very helpful, distinct
directions together with necessary explanations. In contrast,
reverse engineers have to retrieve those “necessary things”.
They may have to work hard to obtain specifications of
programs with low reusability. Therefore, reusability
measures are classified as an isolated category. Also, reverse
engineering is the first stage of re-engineering. Therefore, it
can’t be avoided that the reusability of an object program
must be proved before every re-engineering project is begun.
Reverse engineering always occurs in a software reuse
domain. Reusability measures can help engineers and
managers know what makes software “reusable” and how it
is reusable.

Reusability includes many attributes, such as transportability,
understandability, readability, testability, correctness, and
confidence. In reverse engineering, we mainly measure the
transportability and understandability of object software.

Metric 22: The Weight of Interfaces based on Lines
of code (WOIL)
Definition: This is a measure calculated by lines of
interfaces compared to total lines of code.

WOIL = Lines of Interfaces

Source Lines of Code

Viewpoints: The lower the value of WOIL, the less
relationship the program has with its environment, since the
program is more easily transformed and reused.

Metric 23: Human interaction level referring to
Lines of code (HILL)
Definition: This calculates human action level by lines of
commands.
Lines of User's Commands

Source Lines of Code
Viewpoints: The lower the human interaction level is of the
program, the higher the portability of the program.

HILL =

Metric 24:Environment Independence Level (EIL)
Definition: This assesses the weight of parts which must run
under the old environment in the object program.

-294-

Lines _of System - Dependent Code + Lines of Hardware - Dependemt Code
- Source Lines of Code

Viewpoints: The less the program depends on features of its
environment, the more flexible it is.

Metric 25: Comments Density for Methods
(CDM)
Definition: This gives the weight of methods with
comments compared to all methods.
_ The Number of Methods with Comments

com = Total Number of Methods
Here the number of methods is calculated by McCabe's
cyclomatic measure [McCabe76].
Viewpoints: It is easier to analyse and transform those
methods with comments than those without.

Metric 26: The Weight of Reuse on Lines of code

(WORL)

Definition: This assesses the weight of reused parts of the

object program depending on documentation..

WORL = The Number of Rf:used Lines of Code

Source Lines of Code

Viewpoints: The greater the value of WORL, the more the

existing program contains “good” components, and the

higher the reusability of the old program. This measure is

normally used to measure procedural programs.

EIL

4. Metrics Application
4.1 The Re-engineering Assistant

RA (Re-engineering Assistant) is a tool designed for
covering aspects of reverse engineering, software
maintenance, reuse and re-development. More details can be
found in [Yang97].

Reverse engineering is first addressed in RA by extracting
high-level specifications of existing software from code
level. RA will take existing software written in low-level
procedural languages, through a process of successive
transformations, and turn it into an equivalent high-level
abstract specification expressed in terms of 2 non-procedural
abstract specification language (R-WSL), as the schematic
of the prototype of RA shows in Figure 1.

Figure 1: Prototype of Re-engineering Assistant

RA is designed to take the source code (in any language)
and translate it into its equivalent R-WSL. A user uses the
Browser Interface to control the whole tool, i.e. the Browser

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

calls each tool component and displays the results on the
interface. The Modulariser checks the program, chops it into
smaller programs, which are of manageable size, and saves
them in a database called Program Segments. Then, the user
will take a segment of code from the database to work on.
The Browser allows the user to look at and alter the code
under strict conditions and the user can also select
transformations to apply to the code. The program
transformer works in an interactive mode, presenting R-
WSL on screen in a pretty-printed format. Its main task is to
search a catalogue of proven transformations to find
applicable transformations for any selected piece of code.
Once a transformation has been selected it is automatically
applied. The code is then transformed to a form at a higher
level of abstraction.

The Semantic Interface Analyser then analyses information
in the Program Segments, in the high abstraction level form
(e.g., ERD) and in objects, gives them formal attributes and
saves them in the Reuse Libraries. When the engineering
process starts, the Synthesiser uses the requirements in the
NEW Design/Spec to make queries to the Reuse Libraries.
The Synthesiser will make best use of the reusable
components and invoke the Code Writer to generate the part
of code that was required by the new system but was not
available in the component libraries. The synthesised code
will be saved in New Code but still in R-WSL. Finally, this
R-WSL code is translated into the target code in the required
language. The Metric Facility of RA is described in more
detail in the next section.

4.2 Metric Facility Implementation

During the whole RA process mentioned in the last section,
a tool component called Metric Facility, was designed and
built to measure the object program, which the user is
working on. The Metric Facility can be invoked by the user
at any time to measure the object program, or a component
in particular.

By using the menu named “Metrics” in the interface of RA,
a user can calculate any one, or all of the metrics, applied
either to the current program item on which he or she is
working or to the whole program. During the process of
transforming a program, the metrics at each stage can be
recorded and the results can be plotted as and when required.

The objectives of using metrics in RA are to help the user to
select transformations (to help develop heuristics on what
the final form the measured component should be), to
measure the progress made in optimising the component and
to measure the resulting quality of the component being
transformed.

4.3 Experiment

One specific example has been selected from the many
programs with which we have experimented to illustrate the
use of the Metric Facility in RA. This example (main step 0)
is a short program in R-WSL shown below:

comment: “It's a program to calculate factorial and exponentiation™;
cal (x, y) { int: , y, exp, fac;

!pinput (x,y var std_in);

if (x<0)

then call proc exponentiation

-295-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

else call proc factorial;

fi; }
comment: “To calculate factorial”;

proc factorial(In y, Qut fac);.

{ fac:=1;

if (=0) or (y=1) then fac:=1 fi;

while (y>1) do fac:=fac*y; y=y-1 od;

if (y<0) then fac:=-100 fi;

!p print (fac yar std_out); }

comment; “To calculate exponentiation”;

proc exponentiation(In x, In y, Out exp);

{ <int: o, n:=1>; exp:=l;

if (y<0) then exp:=-100 fi;

if (y=0) then exp:=1 fi;

while (n<=y) da exp:=exp*x; n:=n+1 od;

!p print (exp yar std_out); }

We extract specifications from the raw program through
applying the elementary abstraction rule via a number of
transformations. Here we give the main abstract steps using
ITL [Moszkowski86, Cau%6, Zedan96]. Unimportant steps
are omitted, such as those to delete unnecessary comments.
Among them, the main program is defined as

@, procedure proc factorial is defined as @, and

procedure proc exponentiation is defined as CDcxp. These
definitions are all under the ITL rules.

Main step 1

@, >read (x,y)(xo 0AD L)v(x=0A0)

© o =y, foc}:fc =L y=0)v(y=1)a fac =1)
vy o 0)a(y< 1)

Cy>)a(fac = fac *yxy=y-1L0 N (y<0)a

Jac = - 100) pr i Jac)

®, > {x,y.ep} :n=1l;emp =01(y<0)rexp = ~100)
v ((y>= 0) :

Wy =0)aeap =1)v(y>0){n < y)a(xp = exp* x;
n=a+1;0)v ((n> y) pr intlexp))))

Main step 2

O, >(xo 0A0 __)v(x=0a0)

O L, iy fee}ifoe =L (y=0)v(y=1) A foc =1
(y>Dalfac = fac *yyy=y=-L)""1(y<0)A
Jac = ~100)

O, {x.y,ep} n=Lep =L{(y<0)aexp =~100)
{n<= yIaexp =exp* xn=n+1)"" v ((n>y)))
Main step 3

Q- (xo 0AD Iv(x=0a0d)

Q. ={y, fac}: fac =1,((y >1)A(fac = fac * y), y =
Yy-LD"N(y <0)A fao = ~100)

@ = {x,y.exp} {(y<0)Aaexp = -100)

o

(n<= yian(exp ==x")

Main step 4

© = > (r o 0 A @ =)v (120, 0 =)

® = > {y. foo)1l y > 0) A Jf = y!)wv (y < 0) A
Joc 2 - 100)

Main step 5

Dol (x> OADPw)v(x=0A0)

O > {y, fac}: fac = y!

r

N T2 7 =AYT
All the above transformations were executed using the RA
tool. Following these transformations, all measures were
used to control them and validated them simultaneously.
Results of the main metrics that are suitable for this sample
program are given in table 1. Throughout the table,
“COMP” means complexity measures, “ABST” means
abstractness measures, “O0” means Object Orientation

—exp—=x

measures, “ECONOM” means economics measures and
“RU” means reusability measures.

Table 1; Results of Measures for Six Main Steps

Measures Results of Measures
Name StepO | Stepl | Step2 | Step3 | Step4 | Step s
C| MCCM 7 1 1. 1 1 1
O STRUCT | 237 186 150 100 62 39
M LOC 25 12 10 6 3 3 .
P| CFDF 68 58 42 24 15 7
Al ABST- .143 1 1 1 1 1
MCCM
B| ABST- 298 333 .556 .600 750 1
LacC
S} ABST- .015 .017 .024 .042 067 .143
CFDF
T| ABST- 0 .692 700 | .833 1 1
STAT
WMC 2.3 - - - - -
O NOC 3 3 3 3- 3 -3
O CBO 2 2 2 2 2 2
RFC . 2 - - - - -
E| CRVL 1 2.09 2.50 4.17 8.33 8.33
C| EMD 0 0013 | .0015 -1 .0020 { .0023 { .0023
O RET 0 .200 211 236 249 249
N REP - 1.00 1.00 9.50 9.56 9.56
O] NOO - - - - - 2
M OMD - - - - - .0012
R} WOIL 0.04 - - - - -
HILL 0.04 - - - - 1 -
Ul WOM 3.57 - - - - -

Through analysing several results of the table, it’s easy to
conclude that those measures give us numeric evidence to
assess the reverse engineering process. As processing
proceeds, the values of the complexity measures generally
become smaller and smaller, which means that the object
program has become easier to understand and reverse
engineer. For example, after using specifications to
represent all possible situations of predicates, the McCabe
complexity became the smallest. In fact, transformations to
predicates are executed step by step and the McCabe
complexity level becomes lower and lower continuously. In
the table, we only give the main transformation steps, which
makes it seem that the McCabe complexity result becomes 1
suddenly. Other measures behave similarly.

By analysing abstractness measures, we can find that the
abstractness level of a program becomes higher and higher,
but it’s clear that sometimes we don’t need to transform the
program to gain the highest level of abstraction when it’s
enough to understand the program. Sometimes, we can’t get
the highest abstractness measure value as the ideal number,
or it is difficult for us to gain the ideal result, such as ABST-
VOC equal to 1. We have to use such measures in
combination with the results of other abstractness measures
so that we can gain the correct assessment of the reverse
engineering process. Moreover, those measures for which it
is difficult to arrive at the ideal value are still effective in
certain reverse engineering stages. This can be easily seen
from the table.

As for object orientation measures, we suppose the sample
program to be an object-oriented one in which every module
is a class, so that we can use OO measures to validate the
usefulness of these adapted and developing OO measures in

~296-

this sample experiment. Economics measures verify that the
sample program is a short one and that it’s easy to gain its
specifications in a short time and with low cost. Another
conclusion is that economics measures based on objects are
normally suitable for use at the final stages of reverse
engineering a procedural system.

ABSTLOC

o 020 040 aso0 0.0 100

*AUTOMATICALLY_PROCEDURLSE

Nawa of T tiorm Used!

Figure 2: Sample Plot of an Abstractness Measure

Only three reusability measures are used in the experiment,
because the program is designed to meet the need of this
experiment, more reusability measures are not suitable for
measuring the sample program. Through analysing the
results of the measures, we can find that the reusability of
the sample program is not good. In other words, the
reusability measures are valid and useful to measuring the
sample program. After deep validation using more, different
object programs in Re-engineering Assistant, several
measures will be added into the Metric Facility and used to
measure practical programs and systems in the reverse
engineering process. A sample plot of an experiment is
given in Figure 2 for a single metric.

5. Conclusions and Further Work

In this paper, the development of reverse engineering
metrics has been discussed. The contribution of this study is
to develop five categories of reverse engineering metrics and
to adapt and develop reverse engineering metrics based on
these five categories. The main objective of reverse
engineering metrics is to measure and help acquire
specifications from existing systems through abstraction so

as to understand them. In particular, we have tried to:

e attempt to classify several reverse engineering metrics into five
categories so as to meet different demands for individual reverse
engineering stages and the whole process.

o adapt and develop reverse engineering metrics in different categories.

e design an experiment to- implement five categories of reverse
engineering metrics in Re-engineering Assistant tool so as to validate
and refine them.

e develop the Re-engineering Assistant tool when implementing five
categories of metrics and adding them to the Metric Facility of the Re-
engineering Assistant. :

o develop a prototype and process for studying five categories and
several measures affiliated to them. This would allow researchers to
experiment with real examples and build upon the initial research
presented in this paper.

o develop more object orientation measures for reverse engineering,
thereby giving new meanings to reverse engineering metrics when
extracting objects from conventional procedural programs and
transforming them to object-oriented programs.

We will continue to improve our reverse engineering metrics.
For example, almost all key words in the current prototype
have a weight of 1 for abstractness. As more experiments
are carried out, we will be able to weigh the abstractness for

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

each key word in R-WSL more precisely. Meanwhile, we
will use further metrics, choose the most practical and
powerful metrics from existing metrics and develop new
metrics, then add them to the five categories and Metric
Facility of RA.

References

[Albrecht83] A. Albrecht and J. Gaffney. Software Function, Source Lines
of Code, and Development Effort Prediction - A Software Science
Y&l;i}daﬁon IEEE Transactions on Software Engineering , 9(6):639-648,

[Albrecht79] A. Albrecht. Measuring Application Development
Productivity. Technical report, Proc. of IBM Applic. Dev. Joint
SHARE/GUIDE Symposium, Monterey,CA, 1979.

El;gclzthl] B. Boehm. Software Engineering Economics. Prentice-Hall,Inc.,

[Banker94] R. Banker, R. Kauffiman and C. Wright. Automating Output
Size and Reuse Metrics in a Repository Based Computer-aided Software
Iligggineeﬁng. IEEE Transactions on So%vare Engineering, 20(3):169-187,

[Basili77] V. Basili and M. Zclkowitz. The Software Engineering
Laboratory Objectives. In S5th Annual Computer Personnel Research
Conference, pages 256-269. ACM, 1977.

[Chikofsky90] E. Chikofsky and J. Crossll. Reverse Engineering and
Design Recovery: A Taxonomy. IEEE Software, 7(1):13-17, Jan 1990.

{Conte86] H. Conte, S. Dunsmroe and V. Shen. Software Engineering
%eggics and Models. The Benjamin/Cummings Publishing Company, Inc,

[Cau96] A. Cau, H. Zedan, N. Coleman, and B. Moszkowski. Using ITL
and Tempura for Large Scale Specification and Simulation. In Proceedings
of 4th EUROMICRO Workshop on Parailel and Distributed Processing,
[EEE, pages 493-500, Braga, Portugal, 1996.

I[{F:lrlltoggl] N. Fenton. Software Metrics—A rigorous approach. Chapman-
, 1991.

[Fenton96] N. Fenton and S. Pfleeger. Software Metrics—d rigorous
appgoach. International Thomson Computer Press, London, 2nd edition,
1996.

[Halstead72] M. Halstead. Natural Laws Controlling Algorithm Structure.
ACM SIGPLAN Notices, 7, 1972. .

[Kemerer94] C. Kemerer and S. Chidamber. A Metrics Suite for Object-
Oriented Design. [EEE Trans. Soft. Eng., 20((6)):476-493, June 1994,

[Knuth71] D. Knuth. An Empirical Study of Fortran Programs. Software
Practice and Experience, 1971.

[McCabe76] T. McCabe. A Complexity Measure. JEEE Transactions on
Software Engineering, SE-2(4):308-320, Dec 1976.

[McClure78] R. McClure and W. Edward. A Model for Program
Complexity Analysis. In Proc. 3rd International Conference on Software
Engineering, pages 149-157, 1978.

[Melton96] A. Melton. Software Measurement, chapter 5, page 53.
Thomson Computer Press, 1996.

[Moszkowski86] B. Moszkowski. Executing Temporal Logic Programs.
Cambridge University Press, Cambridge UK, 1986.

[Pressman97] R. Pressman. Software Engineering: A Practitioner’s
approach. McGraw-Hill Book Company, 4th edition, 1997.

[Sammet71] J. Sammet. Problems in, and a Pragmatic Approach to,
Programming Language Measurement. In AFIPS Conference Proc. (Proc.
of FICC), volume 39, 1971.

[IEEE93] [EEE Software Engineering Standards, Std.610.12-1990, 1993.

[Yang97] H. Yang and P. Luker. Measuring Abstractness for Reverse
Engineering in a Re-enginecrin% Tool. In IEEE International Conference
on Software Maintenance, Ban, Italy, October 1997.

£Zedan96] H. Zedan and H. Heping. An Executabie Specification Language
Z%r lFaisg I(’)rlotlogtggm_g Parallel Responsive Systems. Computer Language,

[Zuse91] H. Zuse. Software Complexity-Measures and Methods. Walter de
Gruyter, New York, 1991,

-297-

	
	290
	291
	292
	293
	294
	295
	296
	297

