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Abstract 

  In this paper a method for rapidly SoC IP interface design called hierarchical interface design 

method and models is proposed. The method is an interface design scheme that can be used to 

integrate different IPs easily. The main concept is to design IP and its interface separately. It 

introduces a virtual interface concept to simplify interface design. To verify the practicability, we 

use the hierarchical interface design model to implementation a real- time MP3 codec system. 

Finally a software /hardware co-simulation is done to verify the entire MP3 real-time codec system.  

Experiments show that the hierarchical interface design methodology results in minor hardware 

overhead on the original design. Different IPs can integrate in this scheme to reduce time to market.  
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1. Introduction 

In recent years SoC complexity grows rapidly, different IPs with different functions need to be 

integrated into a chip. Due to reducing time to market, interface design between different IPs plays 

an important role. Interface can be a dedicated line or a shared bus. Different IPs communicate with 

interface, thus interface influences system performance, area, and power. 

Hierarchical interface design method and models[2] is an interface design scheme that can be 

used to integrate different IPs easily. The hierarchical interface design method and models 

describes interface from system behavior to physical architecture. Without consider the function of 

components which system connects, designer can integrate different IPs easily into single chip. 

The MPEG1 audio layer III (MP3)[1] is a lossy audio compression method, which provides high 

quality audio under high compression ratio. The MP3 codec sys tem includes different blocks such 

as subband filter bank (includes analysis and synthesis), MDCT/IMDCT, Huffman coder/decoder, 

quanitzation/invert quantization. The hierarchical interface design method is used to design 

interfaces between different blocks. Finally a FPGA verification is done to verify the practicability. 

The organization of this paper is as follows. Section 2 describes the hierarchical interface design 

methodology.  MP3 encoder and decoder analysis and their interface design are described in Section 

3 and Section 4, respectively. Synthesis and verification results are shown in Section 5. Finally,  

conclusions are presented in Section 6. 

 

2. Hierarchical interface design methodology 

The hierarchical interface design methodology describes IP interface using four levels and 2 

domains. The four levels are application level, functional level, virtual component level, and state 

transition level. The two domains are behavior domain and structure domain. 

2.1 Application level  

Application level describes data supply and demand between components on system. A data flow 
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network is adopted to represent the behavior of system, and a node represents data processing 

component. System designer hasn’t to take real transfer behavior into account. Thus system 

designer can focus on system performance estimation and functiona l verification. An example of 

application level is shown in Fig.2-2, which is an invert quantization of MP3 decoding. Input 

stream pass through a bitstream unpacket to separate it into scalefactor stream and Huffman code 

stream. The scalefactor stream and Huffman code stream then input the corresponding decoder. 

After decoding, the decoded scalefactor and decoded code input an invert quantization to re-build 

original values. 

 

 

 

 

Fig.1 An example of application level 

 

2.2 Functional level: 

The functional level describes information of data transfer path. The abstract interface name, I/O 

port name, interface lifetime are listed to describe the data transfer path.  The functional description 

of data producer and consumer can use high level description language such as C, verilog, or 

VHDL. Implementation and communication protocol is not sure in this level, thus the interface is 

still an abstract interface. An example of functional level is shown in Fig.2. Module 1 transfers data 

by a send procedure through port A, while module 2 gets data by a receive procedure through port 

B. The send and receive procedures are described in C language.  
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Fig.2 An example of functional level 

      

2.3 Virtual component level  

The traditional interface design method design interface of hardware after the definition of 

functional level is present. Designer designs interface according to the specification between 

modules described in the functional level. The disadvantage of the traditional method is that if 

module changes, the interface must be re-design. The hierarchical interface design method maps 

every module as a virtual component with fixed virtual interface protocol. Thus, when module 

changes, we only need to adjust virtual interface slightly. The virtual component means a RTL 

component with a virtual component interface. The virtual component interface converts 

component original protocol to virtual component interface protocol. The virtual components 

communicate with virtual component interface. Since they have the same virtual component 

interface protocol, the wrapper between them can be easily designed. When a module changes, the 

only part that needed to be adjusted is the wrapper. The relationship of virtual component and 

virtual interface is shown in Fig. 3.  

 

 

 

 

Fig.3 Relation of virtual interface and virtual component 
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The real implementation and communication protocol is still not sure in this level, but the 

input/output specification, such as data width, data length, control lines and address lines are 

known in this level. Thus we use register transfer language to describe data transfer and high level 

description language such as C, verilog, or VHDL to describe communication between virtual 

components. The transfer property, such as blocking or non-blocking is also described. Examples of 

virtual component level on behavior domain and on structure domain are shown in Fig.4(a) and 

Fig4(b). 

 

 

 

 

 

Fig4(a)Examples of virtual component level on behavior domain   Fig4(b)Examples of virtual component level on structure domain 

  

2.4 State transition level  

  In this level, we design protocol wrapper from data transfer behavior in the functional level and 

virtual interface protocol in the virtual component level. Real behavior between virtual component 

interface protocol such as synchronization and timing constrains are also described in this level.  

Graphs of state transition level on behavior domain and on structure domain are shown in Fig.5(a) 

and Fig.5(b). 

 

 

 

 

 

Fig5(a)Examples of state transition level on behavior domain        Fig5(b)Examples of state transition level on structure domain 
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3. MP3 encoder Analysis and Design  

The MP3 encoder block diagram is as shown in Fig.6. The input PCM audio samples pass 

through a poly-phase filter bank, and at the same time the audio samples input a psychoacoustic 

model. The main function of psychoacoustic model is to calculate the energy transition of input 

audio samples, and determines block type for MDCT. Finally it finds the signal- to-mask ratio 

(SMR) for every subband. On the other side, the poly-phase filter bank divides the input audio 

samples into 32 subbands. The 32 subbands pass through the MDCT and stereo processing. Then 

we use a loop to find the quantization step. The loop includes quantization and Huffman coding. 

The main function of the loop is to find a quantization step, such that the quantization distortion is 

minimum to find the optimized Huffman code. Finally the Huffman codes, quantization scale 

factors, side information, and header compose a frame. Statistics shows that the subband analysis 

filter bank and MDCT operation represented 60% of the total encoding time. Thus we use hardware 

to implement these two parts. The MDCT, reordering and alias reducing are combined into a block. 

 

 

 

 

 

 

 

 

Fig.6 MP3 encoder system block diagram 

 

3.1 Application level analysis 

  As shown in Fig.7, we use data flow network to describe entire encoder system. The node 
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represents processing block and the edge represents input/output data. The gray block (poly phase 

analysis filter bank, MDCT, alias reduction) shows the hardware part of system, and other nodes 

represent software part. We only list the hardware part edges in Table.1. Because we only use long 

block of MDCT, psychoacoustic model and reordering are not needed. 

 

 

 

 

 

 

Fig.7 Application level of MP3 encoder 

 

 

 

 

Table.1 Edge properties of poly phase filter bank and MDCT 

 

3.2 Functional level analysis 

In this level the simplified algorithms are chosen to process poly phase analysis filter bank and 

MDCT. According to the symmetry of DCT coefficients[4], the following relation can be derived: 

The MDCT cosine coefficient is calculated as: 

 

  We can derive: 
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  The poly phase analysis filter bank coefficient is: 

 

 

It can also be simplified by the DCT coefficients symmetry as: 

Symmetry on i direction: 

 

 

for any i 

  Symmetry on k direction: 

 

 

for any k 

  Fig.8 shows the partition of MP3 encoder. We choose bus architecture to implement interface 1 

and a point-to-point connect to implement interface 2. 

 

 

 

 

 

 

 

Fig.8 Functional level of MP3 encoder 

 

3.3 Virtual component level analysis 

  We choose PVCI[3] to complete the interface 1 design, and the interface 2 is point-to-point 
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connecting. The data IO port properties are valid on this level, the hand shaking signals and control 

signal will be considered on state transition level, thus we only have to focus on data signals, start, 

and done signals. A START and DONE signals are added to indicate block start and done, thus we 

can get IO of poly phase filter bank and MDCT, which is shown in Fig.9. 

 

 

 

 

 

 

 

Fig.9 Interface between poly phase filter bank, MDCT and system PVCI 

 

3.4 State transition level design 

The architecture of the interface 1 is shown in Fig.10. The PVCI has a read port rDATA and a 

write port wData, thus we need input buffer and output buffer to store temporary input and output 

until the store data reaches the processing unit (576 samples in this example).  

 

 

 

 

 

 

 

Fig.10 The architecture of the interface 1 
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The VCI controller is a simple FSM that controls data read and write when PVCI data valid 

signal VAL is high. We use a flexible clock architecture that can be select from system clock or 

custom external clock. 

Because a static architecture is chosen for interface 2, and the packet length of poly phase 

analysis filter bank output is 32, packet length of MDCT input is 36 from 18 current and 18 

previous outputs of poly phase analysis filter bank, a buffer is required for data format converting. 

The architecture of interface 2 is shown in Fig.12. 

 

 

 

 

 

Fig.11 Data format converting between port 7 and port 9              Fig.12 Architecture of interface 2 

 

4. MP3 decoder Analysis and Design 

  The block diagram of MP3 decoder is as shown in Fig.13. The input MP3 bitstream passes the 

synchronization and CRC check block, header decoder, and side information decoder. These blocks 

get CRC, header, and side information and store them to buffers for later use. The main data then 

pass through a scalefactor decoder to decode scalefactor for inverting quantization. Then the 

scalefactor and the values from Huffman decoder input the invert quantizer together to re-build the 

original spectrums. Finally the stereo processing, reordering, alias reduction, IMDCT, and poly 

phase synthesis filter bank is synthesized to the PCM samples. Same as encoder, the 

software/hardware interface and poly phase synthesis filter bank /IMDCT interface are designed by 

hierarchical interface design method and models. The same PVCI protocol is also used as the 

decoder IP interface protocol, and the decode IP can be easily integrated into any type of bus. 
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Fig.13 MP3 decoder system 

 

4.1 Application level analysis  

 As shown in Fig.14, we use data flow network to describe entire decoder system. Gray block 

(IMDCT, frequency inverse, and poly phase synthesis filter bank) shows the hardware part of 

system, and other nodes represent software part. We only show the edge between 

hardware/software, and hardware/hardware. 

 

 

 

. 

 

 

 

 

Fig.14 Application level of MP3 decoder 
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Table.2 Edge properties of IMDCT and poly phase filter bank 

 

4.2 Functional level analysis 

The bottleneck of computing complexity still lies on the poly phase synthesis filter bank and 

IMDCT, thus we use hardware to implement them. The same symmetry simplification of DCT is 

done for poly phase synthesis filter bank and IMDCT cosine coefficients. The Functional level of 

MP3 decoder is shown in Fig.14. 

 

 

 

 

 

 

Fig.14 Functional level of MP3 decoder 

 

4.3 Virtual component level analysis 

  We also choose PVCI to complete the interface 1 design, and the interface 2 is point-to-point 

connecting. Like the encoder, the data IO port properties are valid on this level, and we only have 

to focus on data signals, start, and done signals. A START and DONE signals are added to indicate 

block start and done, thus we can get IO of poly phase filter bank and IMDCT, which is shown in 

Fig.15. 



 14 

 

 

 

 

 

 

 

 

Fig.15 Interface between IMDCT, poly phase synthesis filter bank and system PVCI 

 

4.4 State transition level design 

  The architecture of the interface 1 is shown in Fig.16. The decoder needs several parameters to 

decode, such as maxb, block_type, mix_block_flag, because PVCI protocol is chosen, these 

parameters are transferred like normal data on write data bus wData and are stored in the same 

buffer for later use. 

 

 

 

 

 

 

 

Fig.16 Architecture of interface 1 

As shown in Fig.17, packet length of the IMDCT output is 18, while packet length of the poly 

phase synthesis filter bank input is 32, a buffer is needed to convert different data format. Thus the 
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architecture of interface 2 is shown in Fig.18. Because the parameters maxb[4:0], block_type[1:0], 

mix_block_flag are not required for synthesis filter bank processing, only channel is transferred to 

poly phase synthesis filter bank. 

 

 

 

 

 

Fig.17 Data format converting between port 13 and port 15          Fig.18 Architecture of interface 2 

 

5. Verification and synthesis results  

5-1 Verification strategy 

    As shown in Fig.19, the verification strategy of encoder and decoder is done by a 

bottom-to-top scheme.  

 

 

 

 

 

Fig.19 Verification strategy 

 

� Functional block verification: The basic functional blocks (poly phase analysis/synthesis filter 

bank, MDCT/IMDCT) are verified with bit-by-bit comparing to software result. 

� Encoder/decoder verification: After functional block verification, we can integrate functional 

blocks to encoder or decoder. The decoder is then tested by standard test pattern (Layer  I II  

tes t  bi ts t ream package v2.2 M.Dietz  FhG/IIS/Inel  24.04.1994 ) .  The encoder and 
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decoder are verified using software/hardware co-simulation scheme. The verification module of 

encoder is shown in Fig.20. The software part of encoder verification platform is Pentium 

II-300 with 128 MB RAM, while the hardware target is Xilinx VirtexE-2000 FG680. The real 

environment of encoder platform is shown in Fig.21. 

 

 

 

 

 

Fig.20 Verification module of encoder 

 

 

 

 

 

 

 

 

Fig.21 Verification module of encoder 

 

The verification module of decoder is shown in Fig.22. The software part of decoder verification 

platform is Pentium III-450 with 256MB RAM, while the hardware target is Xilinx Virtex-1000 

BG560. The interface between software and hardware is ISA bus. The real environment of decoder 

platform is shown in Fig.23. 
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Fig.22 Verification module of decoder 

 

 

 

 

 

 

 

 

Fig.23 Real FPGA environment of decoder 

� System verification: The system verification is done by using human listening tests. The 

verification on this level can test coding and decoding distortion. 

 

5-2 Synthesis result of encoder 

The synthesis result and resource using is shown in Table.3, we can find that the maximum 

frequency can reach about 20MHz. For an audio with maximum available sampling frequency 

48kHz and dual channels, the encoder must processing 41.67 frames in a second. In other words, 

one frame must been encoded in about 24ms. In out design, one frame can be processed in 
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68653*20=3.43ms without interface communication time, thus real time coding can be reached. 

The FPGA layout of encoder is shown in Fig.24. 

 

 

 

 

 

 

 

Table.3 Resource using of encoder 

 

 

 

 

 

 

 

 

Fig.24 FPGA layout of encoder(Target: VirtexE-2000 FG680) 

 

5-3 Synthesis result of decoder  

The synthesis result and resource using is shown in Table.4, we can find that the maximum 

frequency can reach about 20MHz, thus real time decoding can be reached. The FPGA layout of 

encoder is shown in Fig.25. 
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Table.4. Resource using of decoder 

 

 

 

 

 

 

 

 

 

Fig.25 FPGA layout of decoder (Target: Virtex-1000 BG560) 
 

6. Conclusions  

In this paper we presents a method for rapidly SoC IP interface design. A real-time MP3 codec 

system is used as an example to verify the practicability. Since a standard PVCI is used to 

implement the interface of MP3 codec system, system designer can easily integrate the MP3 codec 

into any bus architecture. Experiments show that the hierarchical interface design methodology 

results in minor performance overhead on the original design. Different IPs can be integrated by 

this scheme to reduce time to market. 
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