

1) Name of the workshop : Workshop on Multimedia Technologies

2) Title of the paper : Speech Coding with Fine Granularity Scalability Based on

ITU-T G.723.1

3) A short abstract : A speech coding mechanism with fine granularity scalability is

developed baesd on the low-rate coder of ITU-T G.723.1. The availabe bit rates

range from 3.9 kbps to 5.3 kbps with a granularity of as low as 0.13 kbps. No

extra overhead is added to the bitstream. And the extra efforts required in the

computation is little.

4) Authors:
 Name : Fang-Chu Chen, fcchen@itri.org.tw

 I-Hsien Lee

 Affiliation : Industrial Technology Research Institute

 Computer & Communications Research Laboratories

 Address : Bldg. 11, 195-11 Sec. 4, Chung Hsing Rd.

 Chutung, Hsinchu, Taiwan 310, R.O.C.

 Tel : 886-3-5914782

 Fax : 886-3-5829731

 Name of the contact person: Fang-Chu Chen , fcchen@itri.org.tw

 5) Keywords: speech coding, fine granularity scalability, scalable coding

Abstract—A speech coding mechanism with fine granularity
scalability is developed based on the low-rate coder of ITU-T
G.723.1. The availabe bit rates range from 3.9 kbps to 5.3 kbps
with a granularity of as low as 0.13 kbps. No extra overhead is
added to the bitstream. And the extra efforts required in the
computation is little.

A. INTRODUCTION

The flexibility of bandwidth usage in a transmission
channel has become a major issue in this multimedia era,
where the amount of data and the number of users
occupying the channel are often unknown at the time of
encoding. Multi-bit-rate stream source coding is one of
the solutions. In accordance with this type of coding, a
scalable source coder with fine granularity scalability
(FGS), which requires only one set of encoding
algorithm while allowing the channel and the decoder
the freedom of discarding various number of bits in the
bit stream, has become favored in the next generation of
communication standards. A scalable bit stream consists
of a base layer followed by one or more enhancement
layers. The base layer is the minimum requirement and
has to be received by the decoder in order to maintain an
acceptable quality of the decoded contain of the stream.
The enhancement layers, on the other hand, are used to
improve the base-layer speech and may be ignored. In
the scalable coding layered scalability requires the
enhancement layers to be discarded one layer at a time,
which often times is more than needed. FGS
outperforms layered scalability in that the enhancement
layer can be discarded with finer granularity. This
feature of FGS provides the channel traffic supervisor a
much easier and more flexible way to control the
bandwidth used by each source stream.

General audio and video coding algorithms with FGS
have been adopted as part of MPEG-4 international
standard [1]. On the other hand, an FGS speech coding
technique based on the popular code excited linear
prediction (CELP) algorithm has not yet been
standardized. The FGS algorithms used in MPEG-4
general audio and video share a common strategy, in that
the enhancement layers are distinguished by the
different bit significance level at which a bit plane or a
bit array is sliced from the spectral residual. When a bit

stream is to be shortened those bits at the end of the
enhancement layer, i.e., with the least bit significance
levels, will be discarded first. This method, however,
may not work well for a highly parametric coder such as
CELP-based ITU-T G.729, ITU-T G.723.1, GSM, and
3GPP [2][3][4][5]. The facts that all the above standard
coders support multi-bit-rates, especially the Adaptive
Multi-Rate (AMR) supported by GSM and 3GPP,
indicates that speech coding needs a mechanism for easy
bit rate adaptation as well. The advantages of better and
more flexible bit rate adaptation offered by FGS coding
can be proved useful. It is therefore the purpose of this
article to develop a CELP based FGS speech coding
process in order to extend the scope of FGS to speech
applications. For easy referencing and straight demon-
strating the low-rate coder of ITU-T G.723.1 will be
used as the basis of such development.

B. METHOD

1) Basics of CELP
In a CELP-based speech coder, a human vocal track is
modeled as an all-pole filter by the technique of linear
predictive coding (LPC) and is responsible for vowels.
On the other hand, a glottal vibration is modeled as an
periodic excitation vector for this LPC filer and is
responsible for pitch. Under this LPC model it is
expected that if the pitch excitation vector and the LPC
filter are well coded the signal obtained by filtering the
pitch excitation vector through the LPC filter can
symthesized any speech one demands. However, this
simple model always leaves errors between the
synthesized speech and the original one. In the
standards, the errors due to the imperfections of the
model or the LPC/pitch coding are, to a great extent,
compensated for with stochastic process. The stochastic
process is often time implemented by fixed-code pulses
which are added to the pitch part of the excitation in
order that when the combined excitation vector is
filtered through the LPC filter the errors can be
minimized. Alternatively speaking, speech component
generated by the fixed-code pulses is used to enhance
the quality of that by the simple LPC speech synthisis
model.

Speech Coding with Fine Granularity Scalability Based on ITU-T G.723.1

Fang-Chu Chen and I-Hsien Lee

Computer & Communications Research Laboratories
Industrial Technology Research Institute

Bldg. 11 195-11 Sec.4 Chung Hsing Rd., Chutung, Hsinchu, Taiwan 310

For each speech signal to be encoded, the stream is
partitioned into frames and further into some even
number of subframes. During the encoding process the
parameters associated with LPC filtering and the fixed-
code pulses are searched through an analysis-by-
synthesis method on a frame/subframe basis. These
parameters are then sent to the decoder in order for
obtaining a synthesized speech best resembling the
original one. According to CHEN[6], the number of the
fixed-code pulses, which occupies a big percentage of
the total bit rate, can be cut in half by removing those
pulses in the odd-numbered subframes. Using the low-
rate coder of ITU-T G.723.1 as an example, the method
leads to a 27% reduction in the bit rate with only 1 dB
SEGSNR (segmental signal-to-noise ratio) deterioration
in the decoded speech. Based on this previous study,
FGS of ITU-T G.723.1 can be achieved by delicately
adding back the pulses of the odd-numbered subframes,
in other words, by placing the information bits
associated with the fixed-code pulses of the odd-
numbered subframes in the enhancement layer. The
following sections described the details of the
modifications involved in realizing this concept.

2) Modifications on the algorithm
The enhancement layer of an FGS bit stream is allowed
to be discarded as a whole or by part depending on the
transmission environment. Placing the odd-numbered
subframe pulses in the enhancement layer implies that
the number of those pulses received by the decoder is
unknown at the encoder side. This jeopardizes the
analysis-by-synthesis method used in the standard coder
for the following reasons: The purpose of the analysis-
by-synthesis method, by imbedding a decoder in the
encoding process, is for the encoder to foresee the exact
speech decoded by the decoder on the other end of the
transmission line. If the encoder has no knowledge
about the number of odd-numbered subframe pulses
actually used by the decoder it would have no base for
constructing the best parameters to be sent to the
decoder. This is inevitable for a scalable coding. One
way to minimize this problem is to assume the worst
case of the receiving condition, i.e., always assume that
the decoder receives none of the information bits from
the enhancement layer. To be more precise in terms of
implementation, the excitation vector and the memory
states (of the LPC filtering) passed over from an odd-
numbered subframe to the next even-numbered
subframe have to be constructed without any
information from the odd-numbered subframe pulses
(Fig. 1). The odd-numbered subframe pulses are still
searched and generated, they, however, are purely used
for extra quality enhancement of that subframe

calculate the LPC coefficient

generate the pitch component of
the excitation of the current

subframe

perform the
standard

fixed code
book search

perform the
fixed code

book search
with the
modified

target vector
generate the
excitation by

adding the
pitch and the

fixed code
components pack the

parameters

update
memory

update
memory

if even if odd

output bit stream

input one frame of speech

Fig.1 The flow chart of the modified encoder�

and are never recycled in the future subframes. If the
encoder is allowed to recycle any of the odd-numbered
subframe pulses which are not received by the decoder
then the codes selected for the next subframe might not
be the right choice for the decoder and an error would
occur. The same rule applies to the decoder (Fig. 2).
That is, when updating the excitation vectors or the
memory states the components generated by any odd-
numbered subframe pulses have to be completely
removed.
The worst-case-assumption described above ensures the
performance of the analysis-by-synthesis method used in
the encoder, it, however, inevitably introduces certain
degree of subframe boundary discontinuity at the
decoder side. The problem is due to the fact that the
odd-numbered subframe pulses are not used for
memory updating, meaning that the speech components
generated by those pulses for extra enhancements are
not fed back to the LPC synthesizer at the odd-
numbered/even-numbered subframe boundaries.

decode the LPC coefficients

decode the pitch component
of the excitation of the

current subframe

decode all
the fixed

code pulses

generate the
excitation by
adding the

pitch and the
fixed code

components

unpack the
parameters

update
memory

update
memory

if even if odd

input one frame of bit stream

decode the
available
fixed code

pulses

synthesize speech

generate the
excitation by
adding the

pitch and the
fixed code

components

output decoded speech

Fig.2 The flow chart of the modified decoder�

Obviously, one has to minimize this effects of the
speech components generated by the non-recycled
pulses on the following even-numbered subframe.
Fortunately, since only ten speech samples from the
previous subframe are needed in a tenth-order LPC
synthesizer only the last ten samples of the subframe
needs to be considered. As a matter of fact it calls for
only a minor change in the algorithm to serve this
purpose as will be described right below. Since the
LPC-filtered pulses are chosen to best mimic a target

signal, one way to reduce the effects of the pulses is,
therefore, to linearly taper off the magnitude of the last
ten samples of the target vector prior to the fixed code
search for each odd-numbered subframe. This simple
modification on the target vector not only reduces the
effects on the last ten samples of an odd-numbered
subframe it, at the same time, prevents a daunting
attempt of breaking up the integrity of the well-
established fixed codebook search algorithm.

3) Modifications on the bit ordering
A full-length bit stream contains a base layer and a full-
length enhancement layer. A full-length enhancement
layer, according to the previous section, contains all the
pulses in the odd-numbered subframes of a frame. Since
the basic structure of the coder remains the same even
after the modifications, the number of total bits in a full-
length bit stream of a frame is the same as that of a
standard coder. The bit order, however, has to be
modified in order to accommodate the ability of flexible
bit rate transmission. The criterion is to transmit those
bits needed in the base layer before those for the
enhancement layer. Moreover, the bits for the pulses of
one odd-numbered subframe are grouped together.
Since all four pulses of each subframe share the same
grid and gain the grid and gain bits will be placed before
those of positions and signs. The bits for positions and
signs will be broken up and reassembled so that three
position bits and one sign bit of each pulse will be put
together. With this ordering pulses are abandoned in the
way that those in the same odd-numbered subframe are
discarded first before those in the other odd-numbered
subframe are affected. Table 1 shows one example of
the bit reordering of the low bit rate coder of ITU-T
G.723.1. Note that, except for the bit order the bit fields
and the total bit number remain the same as those
defined in G.723.1. In other words, no extra overhead is
introduced. In this table only those bits in the dark
shaded area are assembled in the same manner as that
used in the standard. The new order of the rest of the
bits is such that those bits in the light shaded area,
together with the bits in the dark shaded area, constitute
the base layer, and those 42 bits in the unshaded area
constitute the enhancement layer. With the modified
encoding algorithm the encoder encodes and provides
the full-length bitstream to a channel supervisor. This
supervisor can discard up to 42 bits from the end of the
bitstream depending on the channel traffic. Then,
according to the number of the bits received, the decoder
at the other end of the channel decodes the bitstream on
the a pulse’s basis, meaning that if the number of the
enhancement bits received is not enough to decode one
specific pulse then that pulse will be abandoned.

TABLE 1.�
Bit reordering table from the low-rate coder of ITU-T
G.723.1

Transmitted
octets

Bit order

1 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

2 LPC_B13…,LPC_B6

3 LPC_B21…LPC_B14

4 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

5 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

6 GAIN0_B3…GAIN0_B0,
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

7 GAIN0_B11…GAIN0_B4

8 GAIN1_B11…GAIN1_B4

9 GAIN2_B7…GAIN2_B0

10 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

11 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

12 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3,
PSIG0_B2

13 POS0_B9…POS0_B2,

14 POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-1 POS2_B11…POS2_B6

15-2 GAIN1_B1, GAIN1_B0

16 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0,
GRID1_B0, GAIN1_B3, GAIN1_B2

17 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2,
POS1_B5…POS1_B3,

18 GRID3_B0,GAIN3_B3…GAIN3_B0,
POS1_B11…POS1_B9

19 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0,
PSIG3_B0,

20 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,
PSIG3_B2,

Transmitted
octets

Bit order

1 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

2 LPC_B13…,LPC_B6

3 LPC_B21…LPC_B14

4 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

5 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

6 GAIN0_B3…GAIN0_B0,
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

7 GAIN0_B11…GAIN0_B4

8 GAIN1_B11…GAIN1_B4

9 GAIN2_B7…GAIN2_B0

10 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

11 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

12 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3,
PSIG0_B2

13 POS0_B9…POS0_B2,

14 POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-1 POS2_B11…POS2_B6

15-2 GAIN1_B1, GAIN1_B0

16 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0,
GRID1_B0, GAIN1_B3, GAIN1_B2

17 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2,
POS1_B5…POS1_B3,

18 GRID3_B0,GAIN3_B3…GAIN3_B0,
POS1_B11…POS1_B9

19 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0,
PSIG3_B0,

20 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,
PSIG3_B2,

Transmitted
octets

Transmitted
octets

Bit orderBit order

11 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

22 LPC_B13…,LPC_B6LPC_B13…,LPC_B6LPC_B13…,LPC_B6

33 LPC_B21…LPC_B14LPC_B21…LPC_B14LPC_B21…LPC_B14

44 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22ACL0_B5…ACL0_B0,LPC_B23,LPC_B22ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

55 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

66 GAIN0_B3…GAIN0_B0,
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5
GAIN0_B3…GAIN0_B0,
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5
GAIN0_B3…GAIN0_B0,
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

77 GAIN0_B11…GAIN0_B4GAIN0_B11…GAIN0_B4GAIN0_B11…GAIN0_B4

88 GAIN1_B11…GAIN1_B4GAIN1_B11…GAIN1_B4GAIN1_B11…GAIN1_B4

99 GAIN2_B7…GAIN2_B0GAIN2_B7…GAIN2_B0GAIN2_B7…GAIN2_B0

1010 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

1111 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8
PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8
PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

1212 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3,
PSIG0_B2
POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3,
PSIG0_B2
POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3,
PSIG0_B2

1313 POS0_B9…POS0_B2, POS0_B9…POS0_B2, POS0_B9…POS0_B2,

1414 POS2_B5…POS2_B0, POS0_B11, POS0_B10POS2_B5…POS2_B0, POS0_B11, POS0_B10POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-115-1 POS2_B11…POS2_B6POS2_B11…POS2_B6POS2_B11…POS2_B6

15-215-2 GAIN1_B1, GAIN1_B0GAIN1_B1, GAIN1_B0

1616 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0,
GRID1_B0, GAIN1_B3, GAIN1_B2
PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0,
GRID1_B0, GAIN1_B3, GAIN1_B2

1717 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2,
POS1_B5…POS1_B3,
PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2,
POS1_B5…POS1_B3,

1818 GRID3_B0,GAIN3_B3…GAIN3_B0,
POS1_B11…POS1_B9
GRID3_B0,GAIN3_B3…GAIN3_B0,
POS1_B11…POS1_B9

1919 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0,
PSIG3_B0,
POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0,
PSIG3_B0,

2020 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,
PSIG3_B2,
POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,
PSIG3_B2,

Roughly speaking, this leads to a granularity of 4 bits
for the position and sign bits of the last three pulses in
each odd-numbered subframe. The granularity is 9 bit
if the first pulse is to be discarded as well, since, when
all four pulses are abandoned, there will be no need to
retain the gain and the grid bits. This is equivalent to a
granularity of about 0.13 kbps/0.3 kbps within the bit
rate range from 3.9 kbps to 5.3kbps.

C. RESULTS

An FSG speech coding technique designed from the
method described in the previous sections involves only
very little modifications from the standard methods. It
takes almost the same computation load and generates
exactly the same length of a bit stream. Theoretically,
the worst case of the speech quality decoded by such a

FGS scalable coder is that with all 42 enhancement bits
being discarded. As pulses are added back the speech
quality is expected to improve. To demonstrate this
claim, a performance curve is shown in Fig. 3 where the
SEGSNR values of each decoded speech with reference
to that using the standard low-rate coder of the ITU-T
G.723.1 are plotted. The test input is the same 53-
second speech used in the reference of [6]. The abscissa
of Fig. 3 represents the total number of pulses used in
subframes 1 and 3 (the same for all frames.) With each
odd-numbered subframe being allowed four pulses in
the standard and the manner the bits are assembled in
table 1, if the total number of pulses is shy of eight but
greater than four then the missing pulses are from
subframe 3. If the total number of odd-numbered
subframe pulses are less than four then they are all from
subframe 1. In the worst case when the pulse number is
zero it indicates that no pulses are used in any odd-
numbered subframe. This graph clearly demonstrates
that the speech quality depends on the number of
enhancement bits available in the decoder. This is
exactly the behavior one expects from a scalable speech
coder.

0 1 2 3 4 5 6 7 8 9
9

9.5

10

10.5

11

number of odd subframe pulses

SE
G

SN
R

 in
 d

B

Fig. 3 Performances among difference numbers of odd-
 numbered subframes pulses used in the decoder.�

REFERENCES

[1] ISO/IEC 14496, the MPEG-4 standard.
[2] ITU-T Recommendation G.723.1: ’Dual rate speech

coder for multimedia communications transmitting
at 5.3 and 6.3 kbit/s.’

[3] ITU-T Recommendation G.729: ’Coding of speech
at 8 kbit/s using conjugate-structure algebraic-code-
excited linear-prediction (CS-ACLEP),’ Annex D
‘6.4 kbit/s CS-ACELP speech coding algorithm,’
Annex E ’11.8 kbit/s CS-ACELP speech coding
algorithm.’

[4] ETS EN 301 704, ‘Digital cellular telecom-
munications system; Adaptive Multi-Rate (AMR)
speech transcoding.’

[5] 3GPP TS 26.190, ‘Speech Codec speech
processing functions; AMR Wideband speech
codec; Transcoding functions (Release 5).’

[6] Chen, Fang-Chu ,“Suggested new bit rates for ITU-
T G.723.1”, Electronics Letters Vol. 35 No.18 p.
1523, 1999.

