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Abstract—A  speech coding mechanism with fine granularity 
scalability is developed based on the low-rate coder of ITU-T 
G.723.1.  The availabe bit rates range from 3.9 kbps to 5.3 kbps 
with a granularity of as low as  0.13 kbps.  No extra overhead is 
added to the bitstream.  And the extra efforts required in the  
computation is little.  
 

A. INTRODUCTION 
 

The flexibility of bandwidth usage in a transmission 
channel has become a major issue in this multimedia era, 
where the amount of data and the number of users 
occupying the channel are often unknown at the time of 
encoding.  Multi-bit-rate stream source coding is one of 
the solutions.  In accordance with this type of coding, a 
scalable source coder with fine granularity scalability 
(FGS), which requires only one set of encoding 
algorithm while allowing the channel and the decoder 
the freedom of discarding various number of bits in the 
bit stream, has become favored in the next generation of 
communication standards. A scalable bit stream consists 
of a base layer followed by one or more enhancement 
layers.  The base layer is the minimum requirement and 
has to be received by the decoder in order to maintain an 
acceptable quality of the decoded contain of the stream.  
The enhancement layers, on the other hand, are used to 
improve the base-layer speech and may be ignored.  In 
the scalable coding layered scalability requires the 
enhancement layers to be discarded one layer at a time, 
which often times is more than needed. FGS 
outperforms layered scalability in that the enhancement 
layer can be discarded with finer granularity.  This 
feature of FGS provides the channel traffic supervisor a 
much easier and more flexible way to control the 
bandwidth used by each source stream.  

General audio and video coding algorithms with FGS 
have been adopted as part of MPEG-4 international 
standard [1].  On the other hand, an FGS speech coding 
technique based on the popular code excited linear 
prediction (CELP) algorithm has not yet been 
standardized.  The FGS algorithms used in MPEG-4 
general audio and video share a common strategy, in that 
the enhancement layers are distinguished by the 
different bit significance level at which a bit plane or a 
bit array is sliced from the spectral residual.  When a bit 

stream is to be shortened those bits at the end of the 
enhancement layer, i.e., with the least bit significance 
levels, will be discarded first.  This method, however, 
may not work well for a highly parametric coder such as 
CELP-based ITU-T G.729, ITU-T G.723.1, GSM, and 
3GPP [2][3][4][5].  The facts that all the above standard 
coders support multi-bit-rates, especially the Adaptive 
Multi-Rate (AMR) supported by GSM and 3GPP, 
indicates that speech coding needs a mechanism for easy 
bit rate adaptation as well.  The advantages of better and 
more flexible bit rate adaptation offered by FGS coding 
can be proved useful.  It is therefore the purpose of this 
article to develop a CELP based FGS speech coding 
process in order to extend the scope of FGS to speech 
applications.  For easy referencing and straight demon-
strating the low-rate coder of ITU-T G.723.1 will be 
used as the basis of such development.  

  
B. METHOD 

 
1) Basics of CELP 
In a CELP-based speech coder, a human vocal track is 
modeled as an all-pole filter by the technique of linear 
predictive coding (LPC) and is responsible for vowels.  
On the other hand, a glottal vibration is modeled as an 
periodic excitation vector for this LPC filer and is 
responsible for pitch.  Under this LPC model it is 
expected that if the pitch excitation vector and the LPC 
filter are well coded the signal obtained by filtering the 
pitch excitation vector through the LPC filter can 
symthesized any speech one demands.  However, this 
simple model always leaves errors between the 
synthesized speech and  the original one.  In the 
standards, the errors due to the imperfections of the 
model or the LPC/pitch coding are, to a great extent, 
compensated for with stochastic process.  The stochastic 
process is often time implemented by fixed-code pulses 
which are added to the pitch part of the excitation in 
order that when the combined excitation vector is 
filtered through the LPC filter the errors can be 
minimized.  Alternatively speaking, speech component 
generated by the fixed-code pulses is used to enhance 
the quality of that by the simple LPC speech synthisis 
model. 
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For each speech signal to be encoded, the stream is 
partitioned into frames and further into some even 
number of subframes.  During the encoding process the 
parameters associated with LPC filtering and the fixed-
code pulses are searched through an analysis-by-
synthesis method on a frame/subframe basis.  These 
parameters are then sent to the decoder in order for 
obtaining a synthesized speech best resembling the 
original one.  According to CHEN[6], the number of the 
fixed-code pulses, which occupies a big percentage of 
the total bit rate, can be cut in half by removing those 
pulses in the odd-numbered subframes.  Using the low-
rate coder of ITU-T G.723.1 as an example, the method 
leads to a 27% reduction in the bit rate with only 1 dB 
SEGSNR (segmental signal-to-noise ratio) deterioration 
in the decoded speech.  Based on this previous study, 
FGS of ITU-T G.723.1 can be achieved by delicately 
adding back the pulses of the odd-numbered subframes, 
in other words, by placing the information bits 
associated with the fixed-code pulses of the odd-
numbered subframes  in the enhancement layer.  The 
following sections described the details of the 
modifications involved in realizing this concept.  
 
2) Modifications on the algorithm 
The enhancement layer of an FGS bit stream  is allowed 
to be discarded as a whole or by part depending on the 
transmission environment.  Placing the odd-numbered 
subframe pulses in the enhancement layer implies that 
the number of those pulses received by the decoder is 
unknown at the encoder side.  This jeopardizes the 
analysis-by-synthesis method used in the standard coder 
for the following reasons: The purpose of the analysis-
by-synthesis method, by imbedding a decoder in the 
encoding process, is for the encoder to foresee the exact 
speech decoded by the decoder on the other end of the 
transmission line.  If the encoder has no knowledge 
about the number of odd-numbered subframe pulses 
actually used by the decoder it would have no base for 
constructing the best parameters to be sent to the 
decoder.  This is inevitable for a scalable coding.  One 
way to minimize this problem is to assume the worst 
case of the receiving condition, i.e., always assume that 
the decoder receives none of the information bits from 
the enhancement layer.  To be more precise in terms of 
implementation, the excitation vector and the memory 
states (of the LPC filtering) passed over from an odd-
numbered subframe to the next even-numbered 
subframe have to be constructed without any 
information from the odd-numbered subframe pulses 
(Fig. 1). The odd-numbered subframe pulses are still 
searched and generated, they, however,  are purely used 
for extra quality enhancement of that  subframe  
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Fig.1 The flow chart of the modified encoder�

 
and are never recycled in the future subframes. If the 
encoder is allowed to recycle any of the odd-numbered 
subframe pulses which are not received by the decoder 
then the codes selected for the next subframe might not 
be the right choice for the decoder and an error would 
occur.  The same rule applies to the decoder (Fig. 2). 
That  is,  when  updating  the  excitation  vectors  or  the 
memory states the components generated by any odd-
numbered subframe pulses have to be completely 
removed.  
The worst-case-assumption described above ensures the 
performance of the analysis-by-synthesis method used in 
the encoder, it, however, inevitably  introduces certain 
degree of subframe boundary discontinuity at the 
decoder side.  The problem is due to the fact that the 
odd-numbered subframe  pulses are not used for 
memory updating, meaning that the speech components 
generated by those pulses for extra enhancements are 
not fed back to the LPC synthesizer at the odd-
numbered/even-numbered subframe boundaries.   
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Fig.2 The flow chart of the modified decoder�
 
Obviously, one has to minimize this effects of the 
speech components generated by the non-recycled 
pulses on the following even-numbered subframe.  
Fortunately, since only ten speech samples from the 
previous subframe are needed in a tenth-order LPC 
synthesizer only the last ten samples of the subframe 
needs to be considered.  As a matter of fact it calls for 
only a minor change in the algorithm to serve this 
purpose as will be described right below.  Since the 
LPC-filtered pulses are chosen to best mimic a target 

signal, one way to reduce the effects of the pulses is, 
therefore, to linearly taper off the magnitude of the last 
ten samples of the target vector prior to the fixed code 
search for each odd-numbered subframe.  This simple 
modification on the target vector not only reduces the 
effects on the last ten samples of an odd-numbered 
subframe it, at the same time, prevents a daunting 
attempt of breaking up the integrity of the well-
established fixed codebook search algorithm.  
    
3) Modifications on the bit ordering 
A full-length bit stream contains a base layer and a full-
length enhancement layer. A full-length enhancement 
layer, according to the previous section, contains all the 
pulses in the odd-numbered subframes of a frame.  Since 
the basic structure of the coder remains the same even 
after the modifications, the number of total bits in a full-
length bit stream of a frame is the same as that of a 
standard coder.  The bit order, however, has to be 
modified in order to accommodate the ability of flexible 
bit rate transmission.  The criterion is to transmit those 
bits needed in the base layer before those for the 
enhancement layer.  Moreover, the bits for the pulses of 
one odd-numbered subframe are grouped together.  
Since all four pulses of each subframe share the same 
grid and gain the grid and gain bits will be placed before 
those of positions and signs.  The bits for positions and 
signs will be broken up and reassembled so that three 
position bits and one sign bit of each pulse will be put 
together.  With this ordering pulses are abandoned in the 
way that those in the same odd-numbered subframe are 
discarded first before those in the other odd-numbered 
subframe are affected.  Table 1 shows one example of 
the bit reordering of the low bit rate coder of ITU-T 
G.723.1. Note that, except for the bit order the bit fields 
and the total bit number remain the same as those 
defined in G.723.1. In other words, no extra overhead is 
introduced.  In this table only those bits in the dark 
shaded area are assembled in the same manner as that 
used in the standard.  The new order of the rest of the 
bits is such that those bits in the light shaded area, 
together with the bits in the  dark shaded area, constitute 
the base layer, and those 42 bits in the unshaded area 
constitute the enhancement layer.  With the modified 
encoding algorithm the encoder encodes and provides 
the full-length bitstream to a channel supervisor.  This 
supervisor can discard up to 42 bits from the end of the 
bitstream depending on the channel traffic.  Then, 
according to the number of the bits received, the decoder 
at the other end of the channel decodes the bitstream on 
the a pulse’s basis, meaning that if the number of the 
enhancement bits received is not enough to decode one 
specific pulse then that pulse will be abandoned.   



TABLE 1.�
Bit reordering table from the low-rate coder of ITU-T  
G.723.1  

Transmitted    
octets

Bit order

1 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

2 LPC_B13…,LPC_B6

3 LPC_B21…LPC_B14

4 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

5 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

6 GAIN0_B3…GAIN0_B0, 
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

7 GAIN0_B11…GAIN0_B4

8 GAIN1_B11…GAIN1_B4

9 GAIN2_B7…GAIN2_B0

10 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

11 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

12 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3, 
PSIG0_B2

13 POS0_B9…POS0_B2, 

14 POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-1 POS2_B11…POS2_B6

15-2 GAIN1_B1, GAIN1_B0

16 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0, 
GRID1_B0, GAIN1_B3, GAIN1_B2

17 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2, 
POS1_B5…POS1_B3, 

18 GRID3_B0,GAIN3_B3…GAIN3_B0, 
POS1_B11…POS1_B9

19 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0, 
PSIG3_B0,

20 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,   
PSIG3_B2,

Transmitted    
octets

Bit order

1 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

2 LPC_B13…,LPC_B6

3 LPC_B21…LPC_B14

4 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

5 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

6 GAIN0_B3…GAIN0_B0, 
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

7 GAIN0_B11…GAIN0_B4

8 GAIN1_B11…GAIN1_B4

9 GAIN2_B7…GAIN2_B0

10 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

11 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

12 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3, 
PSIG0_B2

13 POS0_B9…POS0_B2, 

14 POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-1 POS2_B11…POS2_B6

15-2 GAIN1_B1, GAIN1_B0

16 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0, 
GRID1_B0, GAIN1_B3, GAIN1_B2

17 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2, 
POS1_B5…POS1_B3, 

18 GRID3_B0,GAIN3_B3…GAIN3_B0, 
POS1_B11…POS1_B9

19 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0, 
PSIG3_B0,

20 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,   
PSIG3_B2,

Transmitted    
octets

Transmitted    
octets

Bit orderBit order

11 LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0LPC_B5…LPC_B0,VADFLAG_B0,RATEFLAG_B0

22 LPC_B13…,LPC_B6LPC_B13…,LPC_B6LPC_B13…,LPC_B6

33 LPC_B21…LPC_B14LPC_B21…LPC_B14LPC_B21…LPC_B14

44 ACL0_B5…ACL0_B0,LPC_B23,LPC_B22ACL0_B5…ACL0_B0,LPC_B23,LPC_B22ACL0_B5…ACL0_B0,LPC_B23,LPC_B22

55 ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6ACL2_B4…ACL2_B0,ACL1_B1,ACL1_B0,ACL0_B6

66 GAIN0_B3…GAIN0_B0, 
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5
GAIN0_B3…GAIN0_B0, 
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5
GAIN0_B3…GAIN0_B0, 
ACL3_B1,ACL3_B0,ACL2_B6,ACL2_B5

77 GAIN0_B11…GAIN0_B4GAIN0_B11…GAIN0_B4GAIN0_B11…GAIN0_B4

88 GAIN1_B11…GAIN1_B4GAIN1_B11…GAIN1_B4GAIN1_B11…GAIN1_B4

99 GAIN2_B7…GAIN2_B0GAIN2_B7…GAIN2_B0GAIN2_B7…GAIN2_B0

1010 GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8GAIN3_B7…GAIN3_B4,GAIN2_B11…GAIN2_B8

1111 PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8
PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8
PSIG0_B1, PSIG0_B0, GRID2_B0, GRID0_B0,
GAIN3_B11…GAIN3_B8

1212 POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3, 
PSIG0_B2
POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3, 
PSIG0_B2
POS0_B1, POS0_B0, PSIG2_B3…PSIG2_B0, PSIG0_B3, 
PSIG0_B2

1313 POS0_B9…POS0_B2, POS0_B9…POS0_B2, POS0_B9…POS0_B2, 

1414 POS2_B5…POS2_B0, POS0_B11, POS0_B10POS2_B5…POS2_B0, POS0_B11, POS0_B10POS2_B5…POS2_B0, POS0_B11, POS0_B10

15-115-1 POS2_B11…POS2_B6POS2_B11…POS2_B6POS2_B11…POS2_B6

15-215-2 GAIN1_B1, GAIN1_B0GAIN1_B1, GAIN1_B0

1616 PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0, 
GRID1_B0, GAIN1_B3, GAIN1_B2
PSIG1_B1,POS1_B2…POS1_B0, PSIG1_B0, 
GRID1_B0, GAIN1_B3, GAIN1_B2

1717 PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2, 
POS1_B5…POS1_B3, 
PSIG1_B3, POS1_B8…POS1_B6, PSIG1_B2, 
POS1_B5…POS1_B3, 

1818 GRID3_B0,GAIN3_B3…GAIN3_B0, 
POS1_B11…POS1_B9
GRID3_B0,GAIN3_B3…GAIN3_B0, 
POS1_B11…POS1_B9

1919 POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0, 
PSIG3_B0,
POS3_B5…POS3_B3, PSIG3_B1, POS3_B2…POS3_B0, 
PSIG3_B0,

2020 POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,   
PSIG3_B2,
POS3_B11…POS3_B9, PSIG3_B3, POS3_B8…POS3_B6,   
PSIG3_B2,  

 
Roughly speaking, this leads to a granularity  of 4  bits 
for the position and sign bits of the last three pulses in 
each odd-numbered subframe.  The granularity is 9 bit  
if the first pulse is to be discarded as well, since, when 
all four pulses are abandoned, there will be no need to 
retain the gain and the grid bits.  This is equivalent to a 
granularity of about 0.13 kbps/0.3 kbps within the bit 
rate range from 3.9 kbps to 5.3kbps. 
  

C. RESULTS 
 

An FSG speech coding technique designed from the  
method described in the previous sections involves only 
very little modifications from the standard methods. It 
takes almost the same computation load and generates 
exactly the same length of a bit stream.  Theoretically, 
the worst case of the speech quality decoded by such a 

FGS scalable coder is that with all 42 enhancement bits 
being discarded.  As pulses are added back the speech 
quality is expected to improve. To demonstrate this 
claim, a performance curve is shown in Fig. 3 where the 
SEGSNR values of each decoded speech with reference 
to that using the standard low-rate coder of the ITU-T 
G.723.1 are plotted.  The test input is the same 53-
second speech used in the reference of [6]. The abscissa 
of Fig. 3 represents the total number of pulses used in 
subframes 1 and 3 (the same for all frames.)  With each 
odd-numbered subframe being allowed four pulses in 
the standard and the manner the bits are assembled in 
table 1, if the total number of pulses is shy of eight but 
greater than four then the missing pulses are from 
subframe 3.  If the total number of odd-numbered 
subframe pulses are less than four then they are all from 
subframe 1.  In the worst case when the pulse number is 
zero it indicates that no pulses are used in any odd-
numbered subframe.  This graph clearly demonstrates 
that the speech quality depends on the number of 
enhancement bits available in the decoder.  This is 
exactly the behavior one expects from a scalable speech 
coder. 
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