Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

An Efficient Access Method for Spatial Databases *

Anthony J.T. Lee

Department of Information Management
National Taiwan University
Taipei, Taiwan R.O.C.
jtlee@im.ntu.edu.tw

Abstract

We present a new spatial access method that allows
the directory to grow almost linearly with the num-
ber of insertions, irrespective of the data distribution.
Our method can be seen as a comprise of the Quad tree
and the grid file. Because the grid file decreases the
performance for highly correlated data, our method is
designed to organize such data very efficiently. Such
robustness in the design is achieved through the use of
a hierarchical directory tree. In our method, the num-
ber of disk accesses required to reconstruct the whole
directory tree is bounded by O(N x log(N)), where
N is the number of points in the database. Report-
ing on experiments conducted according to the stan-
dardized testbed designed by Kriegel et al. to compare
multidimensional access methods under arbitrary data
distributions and various types of queries, we found
that our method outperformed the other method un-
der most conditions.

1 Introduction

In non-standard database applications, such as ge-
ographic and CAD applications as well as VLSI de-
sign, access methods are required to support efficient
manipulation of multidimensional objects (data) on
secondary storage. Typical manipulations are the re-
trieval, insertion and deletion of an object by using
the values of its attributes. Also important are so-
called range queries, where all object inside of a spec-
ified region are selected for further manipulation or
display.

In order to handle multidimensional objects effi-
ciently, a database system needs an access method
that will help it retrieve, insert and delete objects
quickly according to their specified values of at-
tributes. A classical approach is to successively divide
the data space into smaller and smaller subspaces.
Multidimensional access methods based on this idea
include the K-d tree [Ben75], Quad tree [FB74], MD
tree [NAOS88], GBD tree [0S90], multidimensional
linear hashing [HSW88a)], k-d-B tree [Rob81], mul-
tidimensional extensible hashing [Tam82], grid file
[NH84], BANG file [Fre87], twin grid file [HSW88b],
HB-tree [LS89] and buddy-tree [SK90]. All of the

*'This work was supported by National Science Council, Re-
public of China, under Grant NSC85-2213-E-002-022

33

methods referenced above are point-based methods,
in that objects are in some way represented by single
points. For example, in some methods, each object
of non-zero size such as lines, regions, and solids, is
stored according to its bounding box, i.e., its smallest
enclosing multidimensional interval, and then mapped
to a point in a higher dimensional space. They parti-
tion the data space into small regions so that all points
in one region can fit in a disk page. The data space
may be divided either into pairwise nonoverlapping
subspaces or into overlapping subspaces.

Most of the access methods are rather efficient for
uniform and uncorrelated data but not for highly cor-
related data. According to the results in [KSSS89],
the buddy-tree is one of the best access methods; it
is robust and efficient for queries on "ugly” data, in
which data distributions are strongly correlated and
nonuniform. However, the buddy-tree is not a bal-
anced tree and only guarantees that a page in disk
contain at least one entry. In the worst case, most
of the pages in disk contain only one entry, which
substantially increases the space requirement. Perfor-
mance is also degraded in this case because the height
of the tree increases; that is, the search path is longer.

We propose an access method which uses a concept
similar to Quad trees for point data, but differs from
the Quad trees by partitioning the data space into S
(> 4) subspaces, rather than four, so that each sub-
space has about equal number of points. Because the
buddy tree was superior to the HB-tree, the BANG-
file, and the grid file in the performance comparison
conducted by Kriegel et al. [KSSS89], we ran per-
formance comparisons to compare our method with
the buddy tree. The performance comparisons were
conducted according to the standardized testbed de-
signed by Kriegel et al. [KSSS89] to compare multidi-
mensional access methods under arbitrary data distri-
butions and various types of queries. We found that
our methods outperformed the buddy tree under most
conditions.

In the next section, we introduce the main ideas of
the proposed access method. Section 3 contains a de-
tailed description of the algorithms for constructing,
updating, and searching for a database system storing
points. A performance comparison is given in Section
4. Conclusions are in Section 5.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

2 Main Ideas

For simplicity, we will first discuss the two-
dimensional (2D) case. Assume that an x-y coordi-
nate system has been imposed on a 2D map. The
origin is at the lower left corner of the map. The ac-
cess method organizes point data using a tree-based
directory in which points are stored in -leaf nodes
and non-leaf nodes store representations of bound-
ing rectangles (bounding rectangles for brevity) that
contain all points or bounding rectangles in the child
nodes’ entries. Because all points (data) are stored
in leaf nodes and all bounding rectangles (index en-
tries) are stored in non-leaf nodes, we call leaf nodes
data nodes and non-leaf nodes index nodes in the later
sections. One data or index node in the tree-based di-
rectory corresponds to one page in disk. Assume that
a data node can store P points and an index node
can store R bounding rectangles. Suppose that there
are N points in the map. For simplicity, assume that
N = P x R¥ k > 0. There are two algorithms to
build a directory tree: Construct and Insert. The
Construct algorithm can be outlined as follows.

(1) Partition the data space into R rectangular re-
gions, in such a way that each pair of rectangular
regions overlap only at the boundaries and each
rectangular region has the same number of data
points.

(2) Continue to partition the rectangular regions as

in step (1) until the number of points in a rect-

angular region is less than or equal to P, so that
the points in one rectangular region fit in a data
node.

If N = P x RF,k > 0, k levels of partitions are
needed. The first level generates R rectangular re-
gions, each containing P x R*~! points. For each
rectangular region, store its bounding rectangle into
one entry of the root node. At the second level, each
bounding rectangle stored in the root node is further
partitioned into R rectangular regions. Similarly, for
each rectangular region, store its bounding rectangle
into an entry of a child node of the root. The root
has R children; each child contains R rectangular re-
gions. There are then R? rectangular regions at the
second level. At the k-th level, there are R* rectan-
gular regions, each containing P points. The points
in one rectangular region are stored into a data node.
For example, Figure 1 shows a set of 27 points and
the corresponding tree-based directory for P=3 and
R=9.

Now let’s consider how much storage is needed.
There is one node at the root node level (level 0).
At the first level, there are R nodes. At the sec-
ond level, there are R? nodes, and so on. At the
k-th level, there are R* nodes. Therefore, there are

1+R+R2+ .-+Rk — Rk+1—1 Rk+l NXR

R-1 R—1 — Px(R-1)

7 nodes in the directory tree. That is, we need
approximately % pages in disk to store the directory
tree.

If N is not of the form of P x R¥, say, P x R*~1 <
N < Px Rk (k > 1), the data space is first partitioned

o~
~

34

(2)

P o 7,
. to .
L By
B e P .
By . By
.
P
R:Y Py
o .
R P,
.
Psy Po
g
o B, P
0 4 B
R R . & ¥
. B, |Ps B
. . .
B | P Py

(a) The partition of the data space

(b) The tree-based directory for (a)

Figure 1: A set of points and the corresponding tree-
based directory

into M subspaces, where M is fﬁm] .

(Note that
M > 2 because —}5——%’,:— > 1.) Then we can apply the

above algorlthm to partition each subspace. Because
Mis [m‘r—-l we have

M:‘l <ng)€1 SM
= (M-1)xP <—Nk— <MxP
= M—XP <-—X—Rk——“ SP

A—,I;J—VEE:T is the average number of points in a
data node after the partitions. Because M > 2,
M—X%m > %. That is, the average number of points
in a data node is greater than g.

Now let’s consider how much storage is needed in
this case. For each subspace, we have an R-ary full
directory tree of k levels. That is, the directory tree

contains 1+ R+R?*+...+RF1 = R}tf;“ll ~ }f—k nodes
There are M subspaces soweneed 1+ M x g5 =1

R* NxR ~
+ [pxre=t | XR—l N pRRET X By = Px(R-D) ° P

nodes for the directory tree of the whole data space.
That is, we need approx1ma,tely pages in disk to
store the directory tree.

The detailed steps of the Construct algorithm is
given in Section 3.1. We here summarize the proper-
ties of the directory tree created by the Construct
algorithm.

(1)

The number of nodes in the directory grows lin-
early with £, and hence with N.

The height of the directory tree is [logr(%)].

All data nodes are at the same level.

(3)
(4)

The average number of points in a data node is
greater than %.

(5)

Every index node except the root node contains
R entries (bounding rectangles). The root node

contains M entries, where M is [F;(%—k_—l] if P x
RF1 < N < P xRk

(6) Each index node contains bounding rectangles
which contain all points or bounding rectangles
in its child nodes’ entries. ’

(7) The bounding rectangles at the same level of the
directory tree overlap only at their boundaries.

The Imsert algorithm can be outlined as follows.
Assume that a new point, p, is being inserted into the
directory tree.

(1) Search down the directory tree to decide where
to insert p and then insert p to the directory tree.

(2) For each node S on the searching path, check
whether the number of points stored in the sub-
tree rooted at S is of the form of P x R*,¢7 > 1.

(8) If yes, invoke the Construct algorithm to recon-
struct the directory tree.

The Construct algorithm can be applied with the
Insert algorithm to rebalance the directory tree. In
addition, if the database will not be changed for a pe-
riod of time after a large amount of data are inserted,
the Construct algorithm can be used to reconstruct
the directory tree. :

3 Constructing, Updating and Search-
ing the Directory Tree

In the following sections, assume that each index
node in the directory tree contains at most R bound-
ing rectangles and each data node has at most P
points. Each index node and data node in the di-
rectory tree contains two variables: numberOfPoints
and parent.. All points in the database are assumed
to be distinct.

3.1 Construction

Algorithm Construct. Given N points in 2D
space, construct the corresponding directory tree. Let
N/P = R*, R = r2, for some integer r. Let numbery,
be the number of points in Y, and numberx, , be the
number of points in X;,. (These sets will be defined
below.) ‘

(1) Sort the N points (x, y) on x (primary sort on x
and secondary sort on y). Store the sorted points
as an array, X.

(2) Sort the N points (x, y) on y (primary sort on y
and secondary sort on x). Store the sorted points
as an array, Y.

(3) Recursively execute steps (3.1) to (3.6) until the

number of points in each partition is equal to or

less than P.

(8.1) Partition X into r arrays so that each ar-
ray contains the same number of points. Let
those arrays be X;,Xo,...,X,. The x co-
ordinates of the partitioning lines in the x

35

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

direction are midway between the x coordi-
nates of the last point of X; and the first
point of X;;;. There are r-1 partitioning
lines in the x direction.

(3.2) Creater corresponding arrays Y1, ¥s, ..., Y;
from Y by using the following algorithm.
Note that each Y; is sorted on y.

for a=1 to r do numbery, = 0 enddo;
for b=1 to number of points in Y do
c=0;
repeat
¢ =c+1;
primary comparison on x and sec-
ondary comparison on'y */
numbery, = numbery, + 1;
Y.[numbery,] = Y[b];
enddo

(8.3) Partition each Y; into r arrays so that each
array contains the same number of points.
Let those arrays be Y;;. Note that the
data space is now partitioned into R = r®
regions, each having the same number of
points. The y coordinates of the partition-
ing lines in the y direction are midway be-
tween the y coordinates of the last point of
Y; ; and- the first point of ¥; j+1. There are
r-1 partitioning lines in the y direction for
each partition Y;.

(8.4) For each X;, create r arrays X;1,X;2, -
X;, from X; by using the following algo-
rithm. Note that each X; ; is sorted on x.

for a=1 to r do numbery, , = 0 enddo;
for b=1 to number of points in. X; do
c=0;
repeat
c=c+ 1 .
until Y;[1] < Xi[o] < Yic+1[l] /*
primary comparison on y and sec-
ondary comparison on x */

numberx, . = numberx, . + 1;
Xic[numberx, .| = X;[b];
enddo

(8.5) If the number of points in X is greater
than P, create an index node which contains
the R bounding réctangles corresponding to
the X; ;. Set numberO f Points of the index
node t0 be the number of points in X. Let
parent of the index node point to its parent.

(3.6) For each partition 4,7, set X = X;; and Y
=Yi;j.

(4) Then store the points in each partition into a data

node of the directory tree. Set numberO f Points

of the data node to be the number of points in

that partition. Let perent of the data node point
to its parent.

Proceedings of International Conference on Distributed
Systems, Software Engineering-and Database Systems

L2 - L]
. P B |, ?,
R, P,
k3
B | .
P . B,
.P. P. .
B P,
5 .
R P
Y .
Pu. ?::
B, B
o e ' 8
T B[R "R
- - *
B | R B,
X

Figure 2: The rectangular regions corresponding to
X1, X9, X3

For example, Figure 2 shows the rectangular re-
gions after X is partitioned into X;, X5, X3 for a set
of 27 points with P=3 and R=9. Each X; contains
nine points. Then each rectangular region is further
partitioned into three regions in the y direction, so
that there are nine rectangular regions as shown in
Figure 1 (a).

We now analyze the complexity of the Construct
algorithm. The cost of steps (1) and (2) (sorts of N
points) is O(N xlogs(N)). Then we find a recurrence
relation for step (3). Let C(N) be the cost of step (3).
The costs of steps (3.1) and (3.2) are O(N). The cost
of step (3.3) is O(N), because the cost of partitioning
Y; into Vi ;,§ =1, 2, ..., r is O(N/r) and i runs from
1 to r. Similarly, the cost of step (3.4) is O(N). The
cost of step (3.5) is O(R x (N/R)) = O(N), because

the cost of finding the smallest bounding rectangle for -

X, ; is O(N/R) and there are R X; ;. Step (3.6) takes
a constant time. Therefore, the recurrence relation is

C(N) = R x C(N/R) + O(N).

Solving this by the master theorem [CLR90], we find
that C(N) is O(Nxloggr(NV)). The cost of step (4) is
O(N). Therefore, the complexity of the Construct
algorithm is O(N xlog2(N}).

Now let’s consider the number of disk accesses of
the Construct algorithm. If N is sufficient small that
that all the sorting and partitioning can be done in
main memory, disk accesses are required only when
the data are retrieved from the disk and the directory
tree is saved in the disk. In this case, the number of
disk accesses required to retrieve data is %. There is
one node at the root node level (level 0). At the first
level, there are R nodes. At the second level, there
are R? nodes, and so on. At the k-th level, there are
R* nodes. Therefore, there are 1+ R+R?>+...+RF =

k41 _ k41 . T q.
e h PQI(E&) ~ & nodes in the directory

tree. That is, we need approximately % pages in disk
to store the directory tree. So, the number of disk
accesses of the Construct algorithm is bounded by
O(%).

If N is so large that all the sorting and partition-
ing can not be done in main memory, disk accesses

36

are required when the data are retrieved, sorted, and
partitioned, and the directory tree is saved. That is,
we need to use external sort algorithm such as merge
sort to sort the data and only a portion of the data is
loaded into main memory for partitioning. In this
case, the number of disk accesses required to sort
the data is bounded by O(’—;— X logz(--g—)). For each
level of partitioning, we need to access O(%) pages
in steps (3.1) to (3.4). Also, we need to access R
pages in step (3.5) for the i-th level of partitioning.
There is no disk accesses in step (3.6). There are k
levels of partitions. Hence, the number of disk ac-
cesses required to partition the data is bounded by

Ok x ¥ + Y8 R) = O(X x logr(%)). So, the
number of disk accesses of the Construct algorithm
is bounded by O(% x log(4)).

If N is not of the form of P x R*, say, P x R¥"! <
N < PxR* (k > 1), the data space is first partitioned
into M subspaces, where M is [p-He=r 1. (Note that

M > 2 because R%F—T > 1.) Then we can apply
the above algorithm to construct the directory tree
for each subspace. If N < P, we don’t need to execute
the Construct algorithm but we just store all points
into one data node. In this case, the directory tree
contains only one data node.

If R is not of the form of r? and R is not a prime
number, we can choose R=a x b so that a and b are as

close to V'R as possible. For example, R=24. We can
choose R=4 x 6. Then use a and b to partition the
data space. If R is a prime number, we can choose an
appropriate number R’ to approximate R. For exam-
ple, R=17. We can choose R’=4 x 4.

3.2 Insertion

Algorithm Insert. Insert a new point p=(x,y) into
the directory tree. Let the root of the directory trée
be T and S=T.

(1) Repeat steps (1.1) and (1.2) until S is a data
node.

(1.1) If logr{(numberOfPoints of S + 1)/P)
is equal to some positive integer i, invoke
the Construct algorithm to reconstruct the
subtree of S and then stop the Insert algo-
rithm. Include p in the construction.

(1.2) Otherwise; if S is an index node, in-
crease numberQfPoints by 1 and set S
to be the node at the next lower level
whose corresponding bounding rectangle
contains p. (If p is on a partitioning line,
choose the bounding rectangle with the least
numberQ f Points.)

(2) Perform one of the following steps. (At this point,
S is a data node.)

(2.1) If S is not full, insert p’in S and increase
numberO f Points of S by 1.

(2.2) If S is full and S’s parent have less than
R children, create a new data node S; and

store one half of points in S into S; accord-

ing to the coordinates of the points. Insert

p in S or S; according to the coordinate of

p. Let the parent of S; point to the S’s par-

eSnt. Adjust the numberO f Points of S and
1.

(2.3) If S is full and S’s parent has R children or
S has no parent, split S into two new data
nodes, S and S3, so that Sz and S3 have
about an equal number of points. Insert p
in S, or Sz according to the coordinate of p.

. Adjust the numberO f Points of Sz and S3.
Change S into an index node which contains
two data nodes: S; and Ss.

3.3 Exact Match Search

Here we only present two types of searching algo-
rithms. The other types of searching can be seen as
the variations of these two algorithms.

Algorithm Search. Given a point p=(x,y), test
whether p is in the database. Let the root of the
directory tree be T and S=T.

(1) IfSis an index node, find all bounding rectangles
in S containing p. For each bounding rectangle
containing p, recursively invoke Search on the
corresponding subtree. '

(2) If S is a data node, for each point q in S, test
whether p = q. If yes, report p is in the database.

3.4 Range Query

Algorithm Range Query. Given a rectangle Q,
find all points that are contained in Q. Let the root
of the directory tree be T and S=T.

(1) IfSis an index node, find all bounding rectangles
overlapping Q, For each overlapping rectangle,
recursively invoke Range Query on the corre-
sponding subtree.

(2) If S is a data node, check each point q in S to
determine whether Q contains q. If yes, q is a
qualifying point.

3.5 Bounding Rectangles

When the points in a database are clustered, the
data space may contain some empty regions. (See
(EX1), (EX2), (EX3) and (EX4) in Figure 4.) To
speed up the search operations, we can make the
bounding rectangles smaller. Instead of storing the
rectangular region in step (3.5) of the Construct al-
gorithm, we can store the smallest bounding rectangle
(SBR. for short) with sides parallel to the boundaries
of the data space, that contains all points in this re-
gion.

The empty data space is not partitioned. Hence,
the Search algorithm may reject a point p when p
is not in any SBR. at some level. It is not necessary
to search down to the data node and then reject p.
Therefore, the search operation becomes faster. Sim-
ilarly, the range query becomes faster. However, the
insertion operation needs more extra work. Consider

37

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

(a) R=4x:‘md P=4 (b) After Lh:linseniun ofp
Figure 3: The example of an insertion by using SBRs.
Note: The dotted lines are the partition lines.

the case: insert a point p and p is not contained in
an SBR at some level. In this case, we need extra
information to decide which SBR should be expanded
to include p. In particular, each index node in the
directory tree must store the x and y coordinates of
the partitioning lines of the data space corresponding
to the index node. For example, the index node corre-
sponding to the whole rectangle in Figure 3(a) needs
to store z; for the vertical partitioning lines and store
11 and ys for the horizontal partitioning lines. This
requires only extra storage in each index node. After
p is inserted in Figure 3, we find that p is in the lower
left rectangular region. So, the SBR corresponding
to the lower left rectangular region is expanded to in-
clude p. The result is shown in Figure 3(b).

4 Performance Comparisons

According to the results shown in [KKSSS89], the
performance of the buddy tree was superior to that
of the HB tree[LS89], the BANG file[Fre87] and the
Grid file[HN83]. Therefore, we compared our method
only with the buddy tree. Our implementation of the
buddy tree followed the specifications of the buddy
tree in [SK90].

We conducted the performance comparisons on
SUN Sparc workstations under UNIX using C++ im-
plementations of the selected methods.

4.1 Simulation Model

The procedure used here was similar to the stan-
dardized testbed designed by Kriegel et al. [KSSS89].
We performed six experiments on 2-dimensional
points with varying distributions. There were 10°
points without duplicates in the first five experiments.
The data for the last experiment is real satellite data
and contains about 34823 points without duplicates.

The data space was normalized to be {0, 1]*. In the
following, U(a,b) denotes a uniform distribution be-
tween a and b and N(m,v) a normal distribution with
mean m and variance v. The specifications of the six
experiments are shown below. The data. distributions
of those experiments are shown in Figure 4.

(EX1) Diagonal: The points follow a uniform dis-
tribution on the main diagonal.

(EX2) Sine Distribution: The points follow a sine
curve. That is, the x coordinates of the points

- Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

(EX I)

*
¥*
t e
Ll
(EX 3) (EX 4)

Figure 4: Data distributions

are uniformly distributed and the y coordinates
follow N(sin(2 x wx x), 0.1).

(EX3) x-Parallel: The x coordinates of the points

are uniformly distributed and the y coordinates
follow N(0.5, 0.01).

(EX4) Clustered Points: The x coordinates of the
points follow N(z,, 0.05) and the y coordinates
follow N(z,, 0.05), where (zg, z,) are the coordi-
nates of the cluster centers. Here we arbitrarily
choose ten cluster centers which are located at
the lower left triangle of the data space, with six
of the cluster centers located around the lower
left corner of the data space. Each group of clus-
tered points contains 10000 points.

(EX5) Uniform Distribution: The points are uni-
formly distributed over [0, 1]°.

(EX6) Real Data: The real satellite data repre-
sents information on soils in Spearfish, South
Dakota. We acknowledge receiving this data

from the Construction Engineering Research
Laboratory (USACERL), Illinois, USA.

For each experiment we performed five kinds of
queries:

38

(Q1) 20 range queries in which the query rectangles
were squares with area 0.001 in which the cen-
ter of the squares followed a uniform distribution
over [0, 1]2.

(Q2) 20 range queries in which the query rectangles
were squares with area 0.01 in which the center of
the s2qua,res followed a uniform distribution over
[0,1]%.

(Q3) 20 range queries in which the query rectangles
were squares with area 0.1 in which the center of
the squares followed a uniform distribution over

- (0,11

(Q4) 20 partial match queries in which the specified
x coordinate was uniformly distributed over {0,1]
and the y coordinate was unspecified.

(Q5) 20 partial match queries in which the specified
y coordinate was uniformly distributed over [0,1]
and the x coordinate was unspecified.

Therefore we had 100 queries in total. For each ex-
periment we performed the 100 queries and computed
the average number of disk accesses. We chose the
disk page size to be 1024 bytes (1K). We repeated the
experiments so as to get small confidence intervals.
We performed each experiment two hundred times,
which yielded a relative error within 5% with confi-
dence 95%. ‘

4.2 Results and Summary

The number of disk accesses for each experiment
is shown in Figure 5 to Figure 10, where the range
query contains three columns: 0.1%, 1%, and 10%
corresponding to (Q1), (Q2) and (Q3) respectively,
and the partial match query contains two columns:
x-spec and y-spec corresponding to {Q4) and (Q53)
respectively. Generally speaking, our method is better
than the buddy tree for all three types of range queries
over all six types of data distributions. This is because
our method creates a more balanced tree than the
buddy tree method does.

For the experiment (EX3) (x-parallel), if we modify
our method in the way that the number of partitions
in the x direction is about ten times as many as the
number of partitions in the y direction, because the
range of y coordinates of the points is about one tenth
of the range of x coordinates of the points, the number
of disk accesses for two types of partial match queries
(x-spec and y-spec) is 11.3 £+ 0.1 and 12.5 £+ 1.5 re-
spectively and the average number of disk accesses is
32.6 £ 1.2, which is about 80% of the original average
number of disk accesses. This implies that how we
partition a data space should take into account the
data distribution.

The average number of disk accesses over all query
types for both methods is shown in Figure 11. Overall,
our method is better than the buddy tree in the sense
of requiring fewer disk accesses.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Access Method Range Query Partial Match Query
01% 1% 10 % X-Spec y-spec

Buddy Tree L +03120+1511689x671 4F£0.1 4£0.1
Partition Method | 26 £ 02 131 £1 {11074 £43 145 £01 45 £0.1

Figure 5: (EX1): Number of disk accesses for the diagonally distributed points

Access Method Range Query Partial Match Query

0.1 % 1% 10 % X-spec y-Spec

Buddy Tree 607 383252233 +£9.2[166.7X79 6 £ 0.2
Partition Method | 38 £ 03 [I7.7 £ 12 [1244 £55 | 169 £ 0.7 | 16.4 £ 0.2

Figure 6: (EX2): Number of disk accesses for the points following a sine distribution

Access Method Range Query _Partial Match Query -
0.1 % 1% 10 % X-Spec y-spec
Buddy Tree A4+x05]299£25(2015+£93] 42 £01 | 79.8£11.2
Partition Method [43+ 04 [193+ 1.9 [1276+ 6.4 | 526 £ 0.2 | 3.6 £ 0.3

Figure 7: (EX3): Number of disk accesses for the distributed parallel to the x axis points

Range Query

Partial Match Query

Access Method
1% 10 % X-Spec y-spec
Buddy Tree o7 4 £ 2912063121939 +44 (1516 £6.7
Partition Method 20811 1109+£58 [35707 335+0.4

Figure 8: (EX4): Number of disk accesses for the clustered points

Access Method Range Query Partial Match Query
. % 10 % X-Spec y-spec
Buddy Tree 393 X044 | 1951291226 £0.5| 71.1 £ 1.1
Partition Method 228021166 1.8 527+ 0.2 | 405 £0.1

Figure 9: (EX5): Number of disk accesses for the uniformly distributed points

Access Method Range Query Partial Match Query
1% 10 % X-Spec y-Spec
Buddy Tree 352131120539 [263.1£7.6 454 +£0.1
Partition Method 127204] 545 £ 2.1 751 22.5 £ 0.2

Figure 10: (EX6): Number of disk accesses for the real data

39

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

5 Conclusions

We have proposed a new spatial access method.
Like the buddy tree, our method can generate the
SBRs in its directory. Hence the data space is not
completely covered by those SBRs. In particular
empty data space is not reflected in the directory tree.
By using Kriegel’s standardized testbed, we ran a per-
formance comparison of our method with the buddy
tree and the result demonstrated the efficiency and
robustness of our method.

In addition, it appears that a directory tree can be
reorganized locally or globally in our method. How to
reorganize a directory tree and how the reorganization
affects the performance needs be further studied. As
shown in the result of the performance comparison,
the partition of a data space depends on the data dis-
tributions. Choosing a good partition for a given data
distribution needs be further investigated. Also, we
are extending our method from the two dimensional
case to higher dimensions.

References

[Ben75] J.L. Bently. Multidimensional Binary
Search Trees Used for Associative Search-
ing. Commaunications of the ACM,
18(9):509-517, 1975.

T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts,
1990.

R.A. Finkel and J.L. Bently. Quad Tree: A
Data Structure for Retrieval on Composite
Key. Acta Informatica, 4(1):1-9, 1974.

M. Freeston. The BANG file: a new kind
of grid file. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data; pages 260-
269, 1987.

K. Hinrichs and J. Nievergelt. The Grid
File: A Data Structure Designed to Sup-
port Proximity Queries on Spatial Ob-
jects. In Proc. Workshop on Graph Theo-
retic Concepts in Computer Science, pages
100-113, 1983.

A. Hutflesz, H.W. Six, and P. Widmayer.
Globally Order Preserving Multidimen-
sional Linear Hashing. In Proc. IEEE /th
Intl. Conf. on Data Engineering, 1988.

A. Hutflesz, H.W. Six, and P. Widmayer.
Twin Grid File: Space Optimizing Access
Schemes. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data, pages 183-
190, 1988.

H.P. Kriegel, M. Schiwietz, R. Schneider,
and B. Seeger. . Performance Comparison
of Point and Spatial Access Method. In
First Symposium SSD: Design and Im-
plementation of Large Spatial Databases,
pages 89-114, 1989.

{CLR90]

- [FB74]

[Fre87)

[FN83]

[HSW88a]

[HSW88b)

[KSSS89]

40

Data Distribution | Buddy Tree | Partition Method
Diagonal 401 +1.3 202 X009
Sine 88.9 £ 26 359 +1.2
X-parallel 644+ 29 415 £ 1.3
Cluster 122.5 £ 31 413+ 12
Uniform 87.9 £ 0.6 479 +0.3
Real Data 86.9 £ 1.8 26.7 £ 0.5

Figure 11: Average number of disk accesses over all
five types of queries

D.B. Lomet and B. Salzberg. The hB-tree:
A Robust Multiattribute Search Struc-
ture. In Proc. IEEE 5th Intl. Conf. on
Data Engineering, 1989.

Y. Nakamura, S. ABE, Y. Ohsawa, and
M. Sakauchi. MD-Tree: A Balanced Hi-
erarchical Data Structure for Multidime-
sional Data with Highly Efficient Dynamic
Characteristics. In Proc. IEEE Intl. Conf.
on Pattern Recognition, pages 375-378,
1988.

J. Nievergelt and H. Hinterberger.. The
Grid File: An Adaptable, Symmetric Mul-
tikey File Structure. ACM Trans. on
Database Systems, 9(1):38-71, 1984.

Y. Ohsawa and M. Sakauchi. A New
Tree Type Data Structure with Homoge-
neous Nodes Suitable for a Very Large
Spatial Database. In Proc. IEEE 6th Intl.
Conf. on Date Engineering, pages 296-
303, 1990.

J.T. Robinson. The k-d-B-Tree: A Search
Structure for Large Multidimensional Dy-
namic indexes. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data, pages
10-18, 1981.

B. Seeger and H.P..Kriegel. The Buddy-
Tree: An Efficient and Robust Access
Method for Spatial Data Base Systems.
In Proc. 16th Very Large Database Conf,
pages 590-601, 1990.

[LS89]

[NAOSSS]

[NH84]

[0S90]

[Rob81]

[SK90]

[Tam82] M. Tamminen. Efficient Spatial Access to
a Database. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data, pages 200-

206, 1982.

