Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Nested Query Processing Techniques in Object-Oriented Databases

Jorng-Tzong Horng,

Jiunn-Chin Wang,

Ji-Tsong Lin, Baw-Jhiune Liu

Institute of Computer Science and Information Engineering
National Central University, Chung-Li, Taiwan, R.O.C.
horng@db.csie.ncu.edu.tw

Abstract

Nested queries can simplify queries on a database for
users. However, nested queries also increase the
complexity of query processing. In this paper, we
propose query processing techniques for nested
queries in object-oriented databases. Nested query
expressions are first transformed into a query graph by
using query graph transformation algorithm. We adapt
Access Support Relations (ASRs) technique to
represent and manipulate path expressions. The query
graph is then converted to an execution plan which
consists of a set of operators that we defined to
manipulate ASRs in the query processing. The
structure of Access Support Relations is the same as
relations in RDB, thus many processing techniques in
relational databases can be directly applied in our
query processing.

Keywords: Object-Oriented Database, Nested Query,
Query Graph, Path Expression, ~Access Support
Relation, Execution Plan,

1 Introduction

In recent years, object-oriented programming has
gained a tremendous popularity in the design and
implementation of complex applications, such as
engineering design and manufacturing (CAD/CAM)
[12], image and graphics databases, scientific databases,
geographic information systems, multimedia
applications [15]. These applications require more
complex structure for objects, new data types for
storing images or large textual items. Object-oriented
databases were proposed to meet the needs of these
applications.

One of the basic functionalities of database
management systems is to be able to process
declarative user queries. The last decade, there are
some significant research in defining object-oriented
query models [10] including calculus [6, 13], algebra

76

[8], and user language [1, 2, 3, 4]. Some queries
require that existing values in the database be fetched
and then used in comparison condition. Such queries
usyally are formulated by using nested queries. Nested
queries can simplify queries on a database for users.
However, nested queries also increase the complexity
of query processing.

Kim [11] proposed an algorithm that transforms
SQL-like nested queries into equivalent flat SQL
queries. He categorized nested queries into four types--
type N, type J, type JX, and type JA. These queries are
the set of source queries including set-membership
queries using the IN operator,. set-inclusion queries
using the CONTAINS operator, and various aggregate
functions. By transforming the nested queries into
equivalent join queries, Kim enabled the query
optimizer to use the most appropriate join computation
method. Ganski and Wong [7] proposed an algorithm
to fix the bug in Kim’s algorithm. Furthermore, the
algorithm they proposed extends the set of source
queries that can be transformed. For example, it is able
to process unnested queries containing the EXIST
operator.)

Baekgaard and Mark [3] proposed a two-step
strategy for computing nested relational query
expressions. In the first step, it transformed the nested
query expressions into unnested flat query expressions.
In the second step, it computed the flat query
expressions. The transformation is applied to nested
algebraic queries, and the transformed queries are
algebraic queries as well. Their major contribution is
the use of a concise and readable algebra to algebraic
notation and the proof of correctness.

Yang and Liu provided techniques [16] to process
nested fuzzy SQL queries. They investigated the
problem of unnesting SQL-like queries in a fuzzy
database environment and modified those techniques
for non-fuzzy databases. They also proposed unnesting
techniques for fuzzy databases. Their unnesting
techniques are similar to Kim‘s techniques, both of
them translated nest queries to equivalent join queries.
Owing to large amount of join operations. would exist

in flat queries after unnesting, they proposed a

modified standard merge join method to make their

processing more efficient.

In object-oriented database area, many proposed
object query languages do not address on the
processing of nested query expressions. In this paper,
we propose query processing techniques for nested
query expressions. Nested queries are expressed in a
declarative language - Object Query Language (OQL)
which is defined in ODMG-93 [5]. Nested query
expressions are first transformed into a query graph by
using query graph transformation algorithm. The query
graph is then converted to execution plans by using
transformation rules.

In this paper, we use Access Support Relations
(ASRs) technique [9] to represent and manipulate path
expressions in our query processing. ASRs are
proposed to support associative search for objects in
secondary storage, e.g., implicit join along path
expression which is an arbitrary long attribute chains
that may even contain set-valued attributes. Finally, we
define a set of operators to be the interface of object
manager. The access routines of these operators are the
executable elements of query execution plans, they can
manipulate internal data in processing and executing
low level 1/0 operations by calling function calls
provided by object manager. Although the processing
cost of the strategy may be expensive, but it is easy to
implement.

The rest of this paper is organized as follows. In
Section 2, we describe three query types and give some
examples. In Section 3, we present the query graph
approach and explain how to translate nested query
expression into the query graph. In Section 4, we
describe the ASRs technique and the generation of
execution plans. Conclusion and future works are given
in Section $.

2 Query Types and Examples

In this section, we briefly introduce the object query
language named OQL which defines in ODMG-93 [5].
Then, we classify queries into three types and give
examples.

2.1 Object Query Language (OQL)

OQU is a high-level declarative language for querying
and updating database objects. It can be used as a
stand-alone language or embedded in a host language
program. As an embedded language, OQL query is a

77

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

function which, when applied to native language input,
delivers an object whose type may be inferred from the
operator contributing to the query expression. There
are some of design principles and assumptions about
the OQL. One of these is that OQL relies on the
ODMG data model. The query language supports both
types of objects: mutable (i.e., having an OID) and
literal (identity = their value), depending on the way
those objects are constructed or seiected. For more
details of OQL, the reader may refer to [5].

2.2 Query Types and Examples

In this Section, we categorize queries into three types --
simple, nested, correlated. Then, examples of these
three types of queries are given. The queries in this
paper are defined on the class schema shown in Figure

1.
/D_e:artmem
Name
Employee Number | int
Name Location | char*

. Members @-—
Birthday]
Address Manager []

S Control [Ja
Sex

Salary

Workfor

Supervisor

Supervisee

Manage

Workon]

\ Project

Name char*
Number int
Members O/
Controlled| @ —

reference link

Figure 1. Class Schema of Employee Database

2.2.1 Simple Query

Simple query is an one-level query that there is no
other subqueries in subclause. The format of simple

query is

select TargetClause
from RangClause
where QualificationClause

The target clause is the specification of the
attributes to be output; the range clause indicates the

Proceedings.of International Conference on Distributed
Systems, Software Engineering and Database Systems

binding variable, called object variables, to
corresponding sets of instances of classes; the
qualification clause specifies ~ the qualification
conditions as a Boolean combination of predicates. Q1
is an example of simple query.

Q1: Retrieve the name of employee whose supervisor
is the manager of the department located in Taipei.

select e.Name

from e in Employee, d in Department

where e.Supervisor = d.Manager and
d.Location= “Taipei”

2.2.2 Nested Query

Nested queries permit the use of one SQL query within
the from clause or where clause.

Q2: Q1 can be rephrased to a nested query shown in

Q2.

select e.Name
from ¢ in Employee, d in
seleet y
from y in Department
where y.Location= "Taipei"
where e.Supervisor = d.Manager

2.23 Correlated Query

In nested queries, the variable that defined in outer
queries exits in inner queries. This kind of queries is
correlated queries.

Q3: Retrieve the name of employees who work on the
projects are all controlled by the department
located in Taipei.
select e.Name
from e in Employee
where for all x in

e.Workon: x.Controled.Location = “Taipei”

Q3a: Query Q3 can be rephrased to the following
expression.

select e.Name
from e in Employee, d in
select vy
from y in Department
where y.Location = “Taipei”
where for all x in e.Workon: x.Controled =d

Q4: Retrieve the name of employees who work on at
least one of the projects are controlled by the

78

department located in Taipei.

select e.Name
from ein Employee
where exist x in e. Workon:
~ x.Controled.Location = “Taipei”

3 Query Processing Techniques

3.1 System Architecture

Before introducing the query graph approach, we
describe the architecture of query processor of our
system. The query processor architecture is simpler
than the object query-processing methodology
proposed by Straube and Ozsu [14]. In Figure 2, the
declarative query expression is first parsed to internal
form which is composed of parsing trees and several
tables such as variable table, path expression table,
class table,...,etc. The internal form is then translated
into a. query graph by Query Graph generator.
Execution Plan Generator is the process of mapping
query graph to a sequence of data manipulation
operators. Finally, the Runtime Database Executor runs
the execute plan to generate query results.

Figure 2. Query Processor Architecture

3.2 Query Graph
Query graph is a representation of query expression.
The query graph is hierarchical, the hierarchical

characteristic fits for the nested characteristic of
queries in OQL.

3.2.1 Definitions

Definition 1. A Query Graph G is a connected graph

which is composed of Nodes, N, and Links, L. It can be
expressed as G=[N, L].

Definition 2. The nodes in N are divided into three
kinds. They are Simple-Node N,, Collection-Node Nc,
and Path-Node N,

Definition 3. The Simple-Node N, is the primitive node
which can not be decomposed into any other nodes. It
is used to represent a variable or the intermediate
attribute node in path expression (attribute chain). It is
composed of three elements: Var, Type, and Filter. Var
is a variable name. Type is the corresponding type of
the variable. Filter is predicate against the node. N, can
be represented as [Var, Type, Filter].

The type of Simple-Node can not be Literal such
as int, char, float,..., etc. The Simple-Node is used to
represent complex attribute rather than literal attribute.
For example, e.Name = “John” can be represented as
follows: Ny, =[e, Employee, Name="John"],

Definition 4. The Collection Node N, can be
decomposed into another sub-query graph Gsub and
then the project operation (project operation is similar
to that in relational model) is applied to the graph. The
projection-list is a list of attributes to be projected by
Project() from the subgraph Gsub. A collection node
N, is denoted as [Var, Type, Filter], where Type is
Project(Gsub, projection list).

The return type of this node is a bag or a set of
objects. In the type hierarchy against ODMG model,
bag and set is the subtype of the type
Structured_Object. We implement it with persistence
class in object manager to save the intermediate query
result.

Definition 5. The Path-Node N, is not decomposable.
It is used to represent the set-attribute corresponding to
a declared variable in universal or . existential
quantifications. A path node is denoted as N, =[Var,
Path, Filter].

Definition 6. The links in L are divided into five kinds.
They are Navigation-Link L,, Join-Link Ly, All-Link Ly,
Exist-Link Loy, and In-Link L;,.

Definition 7. The Navigation-Link L, is a directed
primitive link that can not be decomposed. It has three
elements, two nodes that are connected by a link, and a
corresponding attribute. L, can be represented as [(NV,,
N,) , Attribure]. L, is used to represent path expression.
For example, e.Workon is a directed primitive link that

79

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

connects two nodes, Employee and Project. The path
expression can be formulated as follows:

Ny = [e, Employee, null],
Ln(workon) =I(N\'(e)a Ns'(p)), Workon],
Ny = [p, Project, null].

The graphic representation of Navigation-Link is
sketched in Figure 3.

Employee Project

¢ @O——@® "’

Workon

Figure 3. The graphic representation of an
example of Navigation-Link

Definition 8. The Join-Link L, is an undirected
primitive link. It connects two nodes using the join
attribute JoinAtr. The objects in these two nodes are
Joined by their oids rather than their attribute values. L
can be represented as [N, N,, JoinAttr]. If the JoinAttr
is null, it means the types of both nodes are not
primitive types. L; is used to specify the join condition
in a query. For example, the join condition in QI:
e.Supervisor = d.Manager can be formulated by using
a sequence of simple nodes and navigational links and
finally is joined by L, (see below).

Ny =[e, Employee, null],
Lugupervisor= [(Nygeps Nygey), Supervisor,
Nyey =[e’, Employee, nulll,
Ny =[d, Department, null],
Lupmanagery = [(Ny, Nyy), Manager],
Ny =[d’, Employee, null],

Ljsvmgn= [Nyge), Ny null]

The graphic representation of the above expressions is
shown in Figure 4.

Employee Department
e d
Supervisor Manager
Employee Goin link) Employee

Figure 4. The graphic representation of
e.Supervisor = d.Manager

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

Definition 9. The All-Link L, is a directed and
decomposable link. It is equivalent to a sub-query-
graph Gsub which contains Path-Node in it. Both of
nodes connected by L,; must be the same type. L, can
be represented as [(N,, N;) , Gsub], where Gsub is
constructed by a Path-Node.

L. is used to represent the universal quantification.
For example, the predicate in Q3 in the where-clause is
“for all x in e.Workon: x.Contorlled.Location=Taipei”.
We can view it as a filter of outer variable e whose
filter condition is x.Controlled.Location = “Taipei”.
The predicate in the where-clause of Q3 can be
formulated as follows:

Ny, = | e Employee, null],

Lar = 1(N_\.(.,_), Nye '))7 Gsub],
Nyey= | €. Employee, null],
Gsub = |
Nt = | x, e.Workon, null],

Ln(v-lnlrm'lu.l,rr-:l.(’ :():_/71V.\'('L'Unlm//utl))7 COI’I[VO[[ed],
/

Nyw = | d, Department, Location="Taipei"],

The graphic representation of the above expressions are
skelched in Figure 5.

Employee e.Workon
e @ X
Loan (Crow) Controlled
(‘l‘mh
e’ ’
Employee d @ Location="Taipei"

Department

Figure 5. The graphic representation of
Qualification clause in Q3

Definition 10. The Exist-Link L.y, is similar to that of
All-Link except the Exist() quantification.

Definition 1. The In-Link L, is a directed and
primitive link. L,, can be represented as [(N;, Nj),
where N, and N, are two sub-query graphs. Let us
illustrate it by using the following query, Q5.

Q5: Retrieve the name of employee whose supervisor
is one of the supervisee of Taipei department manager.

80

select eName

from e.in Employee, d in Department

where e.supervisor in d.Manager.Supervisee and
d.Location = “Taipei”

The predicate in the where clause can be formulated
using the following expressions.
Nv(e)

Ln(vupérvisar)z [(N\'(e)a N\'(\'upcrvi.\'ar))a Sup ervisor]a
N\'(e i

=[e, Employee, null],

=1 e’, Employee, nulll,

Nyw = [d, Department, Location="Taipei”],
Ln(managcr) = [(N\'(zl), N\'(c"))a Manager],
Nyfer =[e”, Employee, null],

(e")

Ln(mpervisee) = [(N\'(c')s]v.\'(ec)), Supei’Visee],
= [ee, Employee, null],
= [(Nyey> Nygeey)]

N\‘(cc)

Lin(.vpr, spe)

The graphic representation of the above expressions is
sketched in Figure 6.

Department
d

Location="Taipei"

Manager

Employee *
e

@ Employee

Supervisor Supervisee
a - L” - >é
Employee Employee

Figure 6. The graphic representation of
Qualification clause of Q4

3.2.2 Query Graph Transformation

In this section, we propose an algorithm to transform a
query expression into a query graph. Queries are
expressed in OQL. The idea of the transformation is
based on the ‘internal storage structure, Access Support
Relation. We map a path expression in a query to an
ASR storage structure. A path expression maps to a
combination of Simple-Nodes and Navigate-Links. A
path decides the order of execution of navigation. Each

construct in query graph could map to a sequence of
operators. A Simple-Node maps to an intermediate
state of ASRs; A Navigate-Link maps to a navigate
operator; A Join-Link maps to a join operator; A filter
condition maps to a select operator; A projection list
maps 1o a project operator. The advantage of our
design is that it is easy to translate the query graph to
execution plans.

Transformation Algorithm

I. A non-literal variable or non-literal attribute in a
path expression is transformed into a Simple-
Node N,. The name of node is identical as that of
a.variable. If there is no variable name, the system
will assign a unique name to this node
autontatically.

2. Two non-literal attributes in a path expression
construct a Navigation-Link Z,,.

3. The join condition in qualification clause
construct a Join-Link.

4. The resuit of the evaluation of from-where clause
is a bag or a set of objects. It is represented by a
Collection-Nocde N,. The select clause then
projects required attribute values.

5. Qualification clause must be transformed into the
disjunction normal form, i.e., (query and query
and ...) or (query and query and) or Each
subexpression in a pair of parentheses constructs a
Collection-Node. These Collection-Nodes are
combined by Union operation and then produce a
new Collection-Node.

6. A clause containing for all universal
quantification is transformed into to a All-Link
Lay.

7. A clause containing exist universal quantification
is transformed into to a Exist-Link L,,,.

8. A clause containing in quantification is
transformed into a In-Link L;,.

Query graphs QG1 and QG3a can be derived from
the queries Q1 and Q3a respectively by applying the
above transformation algorithm. The query graphs are
shown in Figure 7a and Figure 7b, respectively.

4 Access Support Relations

Access Support Relations (ASRs) techniques are
proposed by Kemper and Moerkotte [17]. ASRs are
introduced as a means for optimizing query processing
in object-oriented database systems. The general idea is
to maintain separate structures (dissociated from the

81

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

object representation) to redundantly store those object
references that are frequently traversed in database
queries.

According to the definition of [9]. A path
expression has the form : 0.4,......4,, where o is a tuple
structures object containing the atiribute 4, and
0.4,......4; refers to an object or a set of objects, all of
which have an attribute 4;,;. The result of the path
expression is the set of objects (or values) of type tn
that can be reached from o via the specified attribute
chain. Formally, the definition of a path expression or
attribute chain can be found in [9].

K e S\xnmat N
/ Locatior= Taips" .
¢ - N ,
Vo oD@
* Enployee Bpoe
£Mem)

TrpQist

Figure 7a. Query Graph QG1

TR

,- Depatment
. v @ |
No' Localiore'Taiper' '
- {h;jec«y)
TrpQist

Figure 7b. Query Graph QG3a

4.1 Operators to Manipulate ASRs

We define a set of operators to manipulate ASRs in the
query processing. These operators are described as
below.

Proceedings of International Conference on Distributed
Syste,’ms, Software Engineering and Database Systems

1/0 Operators

® NewAsr: This operator is used to create a new
canonical extension of ASRs (denoted ASR.).
This canonical extension is initialized by filling
the extents of the specified class. The format of
the operator is
ASR ., = NewAsr(initial class).

® SetAttrToAsr: This operator generates a
canonical extension ASR.,,; to store the oid of
o;. A, where o; is the specified object identifier in
ASR . [So,..s SiseesSulean and A is a set-attribute
of 0,. The format of the operator is
ASR 1 = SetAttrToASR(ASRcan, o;. 4)
where ASR . is a temporal ASR.

® AsrToCls: This operator save [Sp, . . . ,Splcan tO @

temporal class via object manager. The
[So, . .. ,Sp)an forms instances of a class which
attribute specification is decided by Sp, . . . ,S,.

The format of this operator is
temporal class =AsrToCIS(ASRan).

Basic Operators / v

. . Va
® Select: The select operation is used to/select a
subset of tuples in an ASR that satisfy a selection
condition. The operator has its format as follows:

ASR = Select(ASR, , selection condition),

. ;Sn]can = 6<1<:ond>([S(); e »Sn]can)'

® Navigate: [f the path expression [t,.,.4,] is a
subpath of the path expression [f;4,...4,] and
there already existing a canonical extension of
ASRealSo. - . . »Spt)can- Also, the domain of #,.; is
the same as that of S,.;. The operator will extend
the specified ASRm[So Sptlean 1O
ASR.a[Se, - - ., Sns Sulean, Where S, is the
domain of attribute A,. The operator has its format
as follows:

ASR» = Navigate(ASRean: 5 £n-1-4n),
or

[S(): e 'Sn]cunl = V’n«I.An([SO.- o :Sn-l] canl)~
® Join: This operator is used to join two ASRs
according the join condition. The format of the
operator is
ASR 137 J0IN(ASR can1, ASRana, join condition),
or

or [S, ..

|:S().~ EEEREA) S.?IH']]Calﬁ = [SOy ..
N <join condition> [Sg, ..

. ;Sn]canl
. :Sn]canz.

82

® Union: The operator is used to union two ASRs
whose domains are compatible. The format of the
operator is

ASR rz=Union(ASR a1, ASReanz),
or
[So, . - - »SnJeans =[S0, - - - Spleamt
[So, - - - ,Sulcanz
® Difference: The operator is used to difference -

two. ASRs whose domains are compatible. The
format of the operator is

ASR_ .3 = Difference(ASR a1, ASReanz),
or
[So, - - - ,Sudeans =[S0, - - - ,Shlcans
[So, - -+, Snleanz
® Project: The operator selects certain columns

from the specified ASR and discards the other
columns. The format of the operator is

ASR .z = Project(ASR.,, , projection-list),
or
[So, s ySi]canZ =7[<projection—l_ist> ([S(); s :Sn]can)
, 0<i<nm
where project-list is a list of attributes of the
specified ASR .
Extended Operators

® All: The operator is used to implement All-Link.

® Exist: Similarly, the operator is
implement Exist-Link.

used to

4.2 Execution Plan Generation

Execution plan generation is the process of mapping a
query graph to a set of operators defined in the
previous section. In this paper, we do not address the
problem of query optimization. Query optimization
techniques in relational databases can be used in our
nested query processing. Let us give an example to
illustrate the generation of execution plan. Consider the
query graph shown in Figure 7 for Query 1. The
execution plan is shown as follows.

Stepl: asr1= NewAsr(“Employee”);

Step2: asr2= Navigate(asr1, e.Supervisor);

Step3: asr3= NewAsr(“Department”);

Step4: Sélect(asr3, d.Location= "Taipei’);

Step5: asr4= Navigate(asr3, d. Manager);

Step6: asr5= Join(asr2, asr4, tmpVarl= tmpvar2);

Step7: ast6= Project(asr5, e.Name);
Step8: TmpCls1= AsrToCls(asr6);

5. Conclusion and Future Works

In this paper, we present nested query processing
techniques in object-oriented databases. Nested queries
are expressed in a declarative language-OQL which is
defined in ODMG-93. A query is transformed into a
query graph by using graph transformation algorithm.
We defined a set of operations to manipulate ASRs in
the query processing. Queries including nested and
correlated queries can be processed. We can handle
large amount path expressions that exist in an object-
oriented queries. Since the storage structure of ASRs is
the same as relation in RDB, many processing
techniques in the relational database systems can be
applied in our query processing. We do not address the
optimization and indexing techniques in this paper,
these are our future works.

References

nm S. Abiteboul and P.C. Kandllakis, “Object
Identity as a Query Language Primitive,” in
Proc. of ACM SIGMOD Conf. on Management
of Data, Oregon, pp. 159-173, 1989.

[2] M. Alashqur, S. Y. W. Su, and H. Lam, "OQL:
A Query Language for Manipulating Object-
Oricnted Databases," in Proc. 15th Int. Conf.
Very Large Data Bases, pp. 433-442, Aug.
1989.

[3] L. Baekgaard, L. Mark, “Incremental
Cornputation of Nested . Relational Query
Expressions,” in ACM Trans. Database Syst.,
Vol. 20, No. 2, pp. 111-148, June 1995.

4] J. Banerjee, W. Kim, and K. C. Kim, “Queries
in Object-Oriented Databases,” in Proc. IEEE
Data Engineering Conf., pp. 31-38, Feb. 1988.

[5] R. G. G. Cattel, T. Atwood, J. Dubl, G. Ferran,
M. Loomis, and D. Wade “The Object
Database Standard: ODMG-93” in Morgan
Kaufimann Publishers, 1993.

(6] L. Fegaras, D. Maier . “Towards an Effective
Calculus for Object Query Languages,” in ACM
SIGMOD International Conference on
Management of Data, San Jose, California, pp.
47-58, May 1995. '

[7] R. A. Ganski, H. K. T. Wong, “Optimization of
nested SQL queries revisited,” in SIGMOD

83

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

(8]

(9]

{10]

[11]

[12]

[13]

[14]

[15]

[16]

International Conference on Management of
Data , San Francisco, California, pp. 22-33,
May, 1987.

M.S. Guo, “An Association Algebra: A
Mathmatical Foundation for Object-Oriented
Databases,” Ph.D. dissertion, EE Depaerment,
University of Florida, 1990.

A. Kemper, G. Moerkotte. “Access Support
Relations: An Indexing Method for Object
Bases,” in Infomation Systems Vol.17, No. 2, pp.
117-145, 1992.

W. Kim, “Model of Queries,” in Intorduction to
Object-Oriented Databases, Chapter 6, 1990.

W. Kim, “On optimizing an SQL-like nested
query,” in ACM Trans. Database Syst. 7,
3(Sept.), pp. 443-449, 1982.

D. Maier, “Making database systems fast
enough for CAD applications,” in Object-
Oriented Concepts, Applications, and
Databases, W. Kim and F. Lochovsky. Eds.
Reading, MA: Addison-Wesley, 1989.

G. Ozsoyoglu., Z. Ozsyoglu, and V. Matos
“Extending Relational Algebra and Relational
Caculus with Set-Valued Attributes and
Aggregate Functions,” in ACM Transactions on
Database Systems, 12(4):566-592, December
1987.

D. D. Straube, M. T. Ozsu. “Execution Plan

Generation for an Object-Oriented Data

Model,” in Proceedings of 2nd International

Conference on Deductive and Object-Oriented -
Databases, C. Delobel, M. Kifer, and Y.

Masunaga, Eds. SpringerVerlag, pp. 43-67,

1991.

D. Woelk and . W. Kim, “Multimedia
information managemant in an object-oriented
database system,” in Proc. Int. Conf. Very
Large Data Bases, Brighton England, pp.319-
329, Sept. 1987.

Q. Yang, C. Liu, J. Wu, C. Yu, S. Dao, H.
Nakajima, “Efficient Processing of Nested
Fuzzy SQL Queries, ” in Proceedings of the
Eleventh International Conference on Data
Engineering, pp. 131-138, 1995.

