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Abstract 

Due to the limited bandwidth in the wireless environment, broadcasting is the 

most common way to service a large number of mobile clients at the same time. There 

are two main issues in such an environment: saving battery energy for mobile clients 

and accessing data quickly. In this paper, we aim at the energy saving issue and 

propose a data partition scheme to improve tuning time for the broadcast mechanisms 

based on linear programming. By investigating the geometric properties of data 

distribution curves and integrating them into the linear programming technique, we 

create the data partition scheme and use it to construct our broadcast mechanism. With 

this partition scheme, the complexity of linear programming decreases and data 

broadcast time is predicted more accurately. As a result, the bandwidth for storing 

polynomial coefficients is reduced and better tuning time is achieved. Experimental 

results in this paper also confirm these advantages of our broadcast mechanism. 

 

1. Introduction 

In the mobile computing environment, the power consumption problem is very 

important because, as [SCB92] pointed out, the development of battery technology is 

very slow. Power consumption at mobile clients can generally be distinguished into 

active mode and doze mode. [IVB94c] pointed out the power consumption at mobile 

clients in active mode is several thousand times of that in doze mode. Therefore, the 
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selective tuning technique is usually adopted for energy saving. To receive data from 

the broadcast channel, a mobile client follows the broadcast protocol to decide the 

time it switches between and the duration it stays in the doze mode and active mode. 

In related research, there are two major metrics to measure the broadcast 

scheme’s performance. Tuning time measures the total time a mobile client tunes in 

active mode, while access time measures the latency time a mobile client receives 

data. The effect of tuning time is on the power consumption of mobile clients, and 

inserting additional information into the channel for selective tuning is widely used in 

current research to reduce tuning time. The effect of access time on mobile clients 

determines whether they can receive data rapidly, and several techniques such as 

[AAF95][Go95][JV98][CK99] [Wa01] have been proposed to reduce access time. 

However, inserting additional information into the broadcast channel for energy 

saving may enlarge the broadcast cycle and thus consume more bandwidth and 

increase access time. It may also cause the directory miss problem: the desired data 

bucket went past as the mobile client wakes up, and it should wait and get the same 

data bucket in the next broadcast cycle. Directory miss is undesirable as it may 

increase access time enormously. 

Recently, [Wa01] proposed three broadcast schemes that can avoid directory 

miss and have reasonable good access time. Similar to the hashing-based schemes, 

they provide parameters in the broadcast cycle and allow mobile clients to predict 

their desired data in the cycle by computing these parameters. They also use the linear 

programming technique to minimize the prediction errors and thus reduce access time. 

However, these schemes may need to solve a large number of constraint equations, 

which depend on the number of data being broadcast, to derive a very high degree 

predicting polynomial. To overcome this problem, [Wa01] proposed a partitioned 

scheme that partitions data into equal subsets and derives a polynomial for each of 
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them. Although the complexity of deriving polynomials is reduced, the even-partition 

scheme still does not achieve very good tuning time. Moreover, it may need to store 

many polynomial coefficients in the broadcast cycle, which results in longer cycles 

and access time. To improve the drawbacks of the even-partition scheme, this paper 

proposes a new data partition scheme which is based on the geometric properties of 

data distribution curves and can select more appropriate polynomials for prediction. 

With this scheme, we also propose a new broadcast mechanism, which not only has 

better tuning time but also saves a lot of bandwidth for polynomial coefficients. 

 The rest of this paper is organized as follows. Section 2 describes the related 

work. Section 3 explains the broadcast model based on linear programming and 

Section 4 presents our data partition scheme. Section 5 shows our broadcast 

mechanism with an analysis of the mechanism. Section 6 demonstrates experimental 

results of its performance and comparison with other related broadcast schemes. 

Finally Section 7 concludes this study. 

 

2. Related Work 

 In this section, we review three kinds of broadcast schemes related to our 

research, including hashing-based schemes, indexing-based schemes and the 

predictive schemes based on linear programming. 

 Hashing-based schemes [IVB94c] insert hash functions into the broadcast 

channel as additional information in order to make mobile clients access desired data 

directly. If a perfect hash function can be obtained, then no collision occurs and thus 

no overflow chain [IVB94c] is created. In this case, hashing-based schemes will in 

general have the optimal tuning time. But in practice, the perfect hash function is very 

hard to find and they always cause overflow chains, so they will have longer tuning 

time. Besides, hashing-based schemes will cause the directory miss problem and 



 4 

increase the access time. 

 Indexing-based schemes add an index structure into the broadcast channel as 

additional information. Mobile clients just have to read the index information and 

follow the index step by step to get the desired data. [IVB94c] proposed Flexible 

Indexing which divides the broadcast file into p segments and stores the control index 

in the first bucket in each data segment. Mobile clients tune into these head buckets 

and navigate the control index to receive their desired data. 

 In [IVB94a], (1,m) Indexing and its extension Distributed Indexing were 

presented. The index structure is built by +B -tree and the leaf contains pointers to 

data items. (1,m) Indexing partitions data into m equal data segments. The whole 

index is broadcast followed by each partition of data. The main difference between 

(1,m) Indexing and Distributed Indexing is that only the portion of index tree related 

to a data segment is broadcast in front of that data segment in Distributed Indexing for 

better access time. 

 [Wa01] proposed schemes that predict data location by polynomials which are 

derived from linear programming. The coefficients of polynomials are stored in each 

bucket in the broadcast channel and mobile clients find data by calculating the 

polynomial using these coefficients. 

 In [Wa01], three different schemes were presented, simple scheme, variation 

scheme and partitioned scheme. The simple scheme has the same predictive 

polynomial in each bucket and can predict the whole data set in the broadcast cycle. 

The variation scheme, on the other hand, has a different predictive polynomial in each 

bucket whose predicting scope is from the next bucket to the last bucket of the 

broadcast cycle. The partitioned scheme divides the data set into p equal segments and 

classifies the predictive polynomial into global and local types. The global polynomial 

predicts which data segment contains the desired data, while the local polynomial 
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predicts which time-slot (data bucket) contains the desired data. Although the partition 

scheme reduces the complexity of deriving polynomial and has better tuning time, it 

still leaves much space for improvement (as discussed in Section 1). 

 

3. Linear Programming-based Broadcast Model 

 The broadcast problem studied in [Wa01] can be formulated as follows: Find a 

predictive function that can predict a data item’s time-slot on the broadcast channel 

and always make the predicted position appear in front of the item’s actual time-slot. 

The idea of linear programming-based broadcast model is to transform this broadcast 

problem into a linear programming problem and solve it by the linear programming 

technique. 

 Figure1 shows an example. Assume that each bucket only contains one data item 

and data are broadcast over a single channel in the ascending order of their key. If we 

consider a coordinate system where the vertical axis indicates the time slot a data item 

being broadcast (t-axis) in a broadcast cycle and the horizontal axis indicates the key 

value of the broadcast data item (k-axis), then each data item can be represented as a 

point (k, t) in this system. For the six data items in the broadcast cycle in Figure 1(a), 

they can be replaced by six points: (4,1), (5,2), (8,3), (9,4), (12,5) and (13,6). To 

predict the time-slot t when the data item k is broadcast, we may use a polynomial 

)(1 kf  of degree 1 (as shown in Figure 1(b)) with one constraint tkf ≤)(1  for each k 

(as shown in Figure 1(c)) to guarantee every predicted position always appears in 

front of the real broadcast time-slot t. Under these constraints, we can have the least 

prediction error by maximizing ∑ )(1 kf , i.e. make )(1 kf  very close to the real t. 
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Figure 1. Example to illustrate the broadcast problem 

 On the other hand, the standard form of linear programming is as follows. 
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In the standard form, (1) is the objective function, (2) is a set of constraints, and (3) 

are nonnegative constraints. The meaning of the standard form is that under the 

constraints (2) and (3), the objective function (1) will be maximized or minimized. 

 By using the constraints in Figure 1(c), giving the objective function 

011 651)(    aakfZMaximize +== ∑  and letting 21 iii aaa −= , 0, 21 ≥ii aa , we can 

transform the broadcast problem in Figure 1 into the following standard form of linear 

programming. 
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 Based on this idea, the linear programming-based broadcast model, LPB-Model, 

can be defined as follows. Assume n data items are broadcast over a single channel in 

the ascending order of their keys ki. In the (k, t) coordinate system, they form n 

coordinate points, )},(,),,(),,{( 2211 nn tktktk L , itk ii ∀>     0, , nkkk <<< L21  and 

nttt ≤≤≤ L21 . Let q
iqi kc )(, =  and 21 iii aaa −= , 0, 21 ≥ii aa . We may obtain a 

q-degree polynomial ∑
=

=
q

i

i
iq xaxf

0

)(  with nitkf iiq ~1)( =∀≤  such that 

mobile clients can use it to predict the time slot of their desired data ki with the least 

prediction error by solving the following linear programming problem: 
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In this model, the goal of least prediction error indicates the shortest distance that 

mobile clients should navigate (stay in active mode) from the predicted location to the 

real location. As a result, tuning time is largely reduced and more battery energy is 

saved. According to this model, we define a function LP() which takes n data keys as 

input and generates the q-degree polynomial ∑
=

=
q

i

i
iq xaxf

0

)(  in the LPB-Model for 

prediction. In fact, LP() implements the linear programming solution technique. 

Complexity of LPB-Model 

 Karmarkar algorithm [Ka84] is the most common algorithm for linear 

programming and its time complexity is )lnlnln( 25.3 LLLvO , where v is the number 

of variables and L is the number of bits in the input. Generally we denote )( 25.3 LvO  

as its time complexity. In LPB-Model, there are )1(2 ++ qn  variables, n is the 
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number of data items and q is the degree of polynomial. Thus, the time complexity of 

LP() is ))2(( 25.3 LnO . 

 LPB-Model has the following properties, whose proofs can be found in [Wu02]. 

Theorem 1. LP() always generates the optimal polynomial ∑
=

=
q

i

i
iq kakf

0
)( . 

Theorem 2. The polynomial of higher degree will have less error than the polynomial 

of lower degree for the same set of points (key, time-slot) in the (k, t) 

coordinate system. 

As shown in [Wa01], the broadcast mechanism generated by this model may 

result in a lot of space reserved for polynomial coefficients in each bucket, especially 

when n is large and the degree q of the polynomial is very high. This may waste a lot 

of channel bandwidth and lead to longer tuning and access time. Therefore, in this 

study, we will apply a data partition scheme to solve this problem. In contrast to the 

even-partition scheme in [Wa01], this scheme partitions the data set into small subsets 

(groups) based on the properties of polynomial and data distribution in the (k, t) 

coordinate system, which generates better effect than the even-partition scheme. 

 

4. Data Partition Scheme 

 The basic idea of our data partition scheme is to divide data into several groups 

(subsets) and make each group fit a q-degree polynomial. There are two kinds of 

predictive polynomials, GLPF (Global Linear Programming predictive Function) and 

LLPF (Local Linear Programming predictive Function). Each group has a LLPF to 

predict data items in the group. There is only one GLPF, which is used to predict the 

whole data set and makes sure that every predicted position always appears in front of 

the first bucket of the group containing the desired data. 

Our data partition scheme works as follows. We first find out the candidate 
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points from which we can choose the boundary points for partition (as described in 

Section 4.1). Then, we repeatedly split the approximation intervals (defined by two 

consecutive candidate points) until the estimated error is smaller than a pre-specified 

bound (as discussed in Section 4.2). After that, by merging segments and minimizing 

the total estimated tuning time, we obtain the boundary points for partition (as stated 

in Section 4.3). Finally we construct predictive polynomials based on these points (as 

described in Section 4.4). 

4.1 Select Candidate Points 

 Consider Figure 2 as an example, which shows the graph of a 4-degree 

polynomial 242636)( 234 −++−= xxxxxf , where there are two inflection points c and 

e. Line segments bd , df  pass through c, e respectively, and their slopes are the 

derivative of f(x) at c, e respectively. We can find two tangents ab  and bd  of f(x) 

at point a, g such that the distance between the tangent and f(x) is the smallest. Four 

segments ab、 bd 、 df  and fg  are used to fit (approximate) f(x). Usually a 

q-degree polynomial can be fit (or approximated) by q line segments, i.e. we can treat 

each line segment as one degree of the polynomial. 
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Figure 2. Properties of polynomial 

To approximate data distribution curves, we define several parameters in Table 1. 

Table 1. Parameters for data curves 

Parameter Description 
iRS  Slope of the line segment passing point ),( ii tk  and point ),( 11 ++ ii tk . 

iVS  Slope variation of iRS  and 1−iRS . 
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iCP  Candidate points, from which we choose boundary points to partition 
data into groups. 

These parameters are determined as follows. 
ii

ii
i kk

yyRS
−
−

=
+

+

1

1 , where ik  is the key of 

the ith data item, iy  is the time-slot of the ith data item. 2
1

≥=
−

i
RS
RSVS

i

i
i ， . Candidate 

points iCP  include the 1st data point, last data point and those points i that satisfy the 

condition 1≥iVS . Among these points, if 1,,, 1 >++ jiii VSVSVS L or 

11 ==== ++ jiii VSVSVS L , we choose the two points i  and ji +  as candidate 

points ( iCP  and jiCP+ ). According to this rule, we may generate candidate points for 

further selection of the boundary points. 

 Figure 3 shows a data distribution curve where there are 7 candidate points CP1, 

CP4, CP7, CP9, CP11, CP14 and CP15 in total. Let iS  denote the line segments 

connecting iCP  and jiCP+ , iIS  denote the interval between iCP  and jiCP+ , iSS  

be the slope of iS , respectively. There are three kinds of curves in iIS , concave up 

( 1IS ), concave down ( 4IS , 7IS , etc.) and straight line ( 14IS ). If each interval iIS  only 

contains a few points, line segment iS  will be very similar and close to the data 

distribution curve in iIS . We can then treat each line segment as one degree of the 

predictive polynomial and approximate the data distribution curve in Figure 3 by a 

6-degree polynomial. 
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Figure 3. Data distribution curve and its approximation 

4.2 Split Line Segments 

 The rule stated above for determining candidate points might not be accurate 
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enough to guarantee a reasonable small tuning time for some data points, if the data 

curve is partitioned based on these candidate points. Therefore, we need to refine 

some intervals iIS  (split line segments Si to fit the curve more closely) and generate 

more candidate points. The condition to refine intervals is when the average tuning 

time (prediction error) for all data points is greater than 1. Assume there are ni data 

points in iIS , and the prediction error dj for some point kj can be computed by | f(kj) – 

Si(kj) | where f(x) is the polynomial for the data curve and Si is the approximating line 

segment (tangent) in iIS . Let ie  denote the estimated error of iS , which is 

calculated by ei = Σ dj. Also let ∑= ieE  denote the total estimated error for all of 

the n data points. Then the interval refinement condition is E/n ≥ 1. 

 Once the interval refinement condition is met, we refine each of those intervals 

with largest estimated error and split its line segment into two new line segments. For 

an interval with a concave up data curve, we choose the point k  that satisfies the 

condition kik RSSSRS <<−1  to split the line segment. For an interval with a concave 

down data curve, we choose the point k  that satisfies the condition 

kik RSSSRS >>−1  to split the line segment. The split process is repeated until the 

refinement condition is not satisfied. 

4.3 Select Boundary Points for Partition 

 As mentioned before, our broadcast mechanism uses two predictive polynomials 

to predict data locations, first by GLPF and then by LLPF. The total estimated 

prediction error must include the error from both GLPF and LLPF. The refinement 

process in last section basically minimizes the error, denoted by E, due to LLPF, i.e., 

the tuning time for finding desired data in that group. To select boundary points for 

partition, we also need to minimize the error, denoted by G, due to GLPF, i.e., the 

tuning time for finding which data group contains the desired data. 
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Figure 4(b) shows how mobile clients tune buckets and how we calculate the 

tuning time. There are 16 data buckets divided into 5 data groups. Buckets 1,5,7,11,14 

(the shadow buckets) are the head buckets for these groups. If a mobile client wants to 

get data k, first it reads bucket 3 calculated by GLPF, and by the pointer in bucket 3 it 

reads bucket 5. If k is not in the data group (headed by bucket 5), then it reads the 

head bucket 7 of the next data group. Suppose that k is in this data group, it then reads 

bucket 8 calculated by LLPF there and performs a linear search from bucket 8 till it 

finds k. The total tuning time is 6, 3 due to finding the group (buckets 3, 5 and 7) and 

3 due to search in the group (buckets 8, 9 and 10). 

 Figure 4(a) shows how to estimate G. Assume GLPF and LLPF are the degree-3 

predictive polynomial. Data points a, b, c, d, e are the candidate points to delimit 

groups, which may correspond to the head buckets in Figure 4(b). Because the 

predicted positions by GLPF should appear in front of the head bucket of the data 

group containing the desired data, we may obtain those points A, B, C, and D in 

Figure 4(a), which represent the largest key and the earliest time-slot of each data 

group. Connecting these points sequentially, we obtain 3 Estimated Line segments AB, 

BC and CD for estimating the total tuning time. To estimate G, we calculate the 

number of candidate points between ap (actual position) and pp (predicted position) 

for every data point and sum them up. 

a

b

c

d
e

A

B

C

D

Eestimated Line

Data distribution

key

time slot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GLPF(k) (k)LLPF7

k

(a) (b)

predicted
position

pp

ap actual
position

 

Figure 4. Estimate G 
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 To minimize G+E, we merge two consecutive segments iS  and jS  into a new 

one if they have very small estimated error, that is, ji SSSS −  is the smallest for all 

the nearest ji,  ji ≠ . In general, fewer data groups cost less tuning time for finding 

the wanted group but cost more tuning time for finding data in that group. So after 

reaching the condition ( 1≤
n
E ), we estimate G and compute G+E. Then we merge 

segments to maximize E (in order to minimize G), but 2≤
n
E  should be satisfied in 

the merge process. We keep on merging segments until the new (G+E) is larger than 

the old one. At this moment the remaining candidate points are the boundary points. 

4.4 Construct Predictive Polynomial 

 In LPB-Model, the LP() function implements the linear programming solution 

technique. It takes as input a set of data points represented in the (k, t) coordinate 

system, and generates a q-degree predictive polynomial with prediction error 

minimized and predicted position in front of actual position. We may use this function 

to generate both global and local predictive polynomials (GLPF and LLPF). To 

construct a LLPF for each data group, we call LP() with all the data points in that 

group as input. On the other hand, to construct GLPF, we call LP() with all the 

boundary points as input. The detail algorithms are presented in [Wu02]. 

 

5. Broadcast Mechanism 

 This section describes our broadcast mechanism, including how to generate the 

broadcast structure and how mobile clients tune buckets to access data. 

5.1 Broadcast Structure 

 Assume that there are n data items with keys },,,{ 21 nkkk L  and each data item 

ki is placed into a data bucket Bi respectively. These data items are partitioned into p 
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groups and each group contains mi data items. Also assume that mobile clients have 

memory and computing ability. 

 The structure of data buckets is shown in Table 2. Buckets are classified into 

head buckets and non-head buckets. Each bucket has 2 parts, control part and data 

part. It stores the information necessary for predicting data locations and searching 

data. 

Table 2. Bucket structure 

Bucket type Data/control 
part Parameter Description 

 Data part keyBi .1,  Key of the data in this bucket 
  idBi .1,  Time slot over the channel 

  keyBi max_.1,  The max key of the ith data group 
Head bucket ptrBi .1,  Pointer to the head bucket 1,1+iB  

 
Control part 

cycleBi .1,  Cycle length 
  GLPFBi .1,  Global predictive polynomial 

  LLPFBi .1,  Local predictive polynomial 
 Data part keyB qi .,  Key of the data in this bucket 

 idB qi .,  Time slot in the channel Non-head 
bucket Control part ptrB qi .,  Pointer to the head bucket 1,1+iB  

  keyB qi max_.,  The max key of the ith data group 

5.2 Generate Broadcast Cycle 

 The following Algorithm CBT constructs the broadcast structure based on the 

groups generated by the data partition scheme. CBT() takes as input the keys and the 

numbers of data in each group, and produces the content of every bucket over the 

broadcast channel. It places data as well as the parameters of GLPF and LLPF into 

buckets according to the bucket structure. The complexity of CBT() is in GLPF() and 

LLPF(), so its complexity is ))2(( 25.3 LnO +∑
=

p

i
LmO

1

25.3 ))2(( . 

Algorithm CBT() 

Input: data, and group information 
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Output: content of a broadcast cycle 

{ 
//obtain the predictive polynomials 
GLPF= GLPF( },,,{ 21 nkkk L ， },,,{ 21 pmmm L );//global predictive polynomial 
LLPF[]=LLPF( },,,{ 21 nkkk L ， },,,{ 21 pmmm L );//local predictive polynomial 

00 =m ; 
 for i=1 to p    //p data groups 

 for q=1 to im   //The ith part has im  data items 
 if q == 1   //if head bucket 

   
1)(

1, 1

0

.
+∑

= −

=

i

x
xm

i kkeyB ; 

   =idBi .1, 1)(
1

0

+∑
−

=

i

x
xm ; 

  
)(1,

0

max_.
∑
=

= i

x
xmi kkeyB ; 

  ii mptrB =.1, ; 
   ncycleBi =.1, ; 
   =GLPFBi .1, GLPF; 

  =LLPFBi .1, LLPF[i]; 
   else   //non-head bucket 
    

qm
qi i

x
x

kkeyB
+∑

= −

=

)(
, 1

0

. ; 

    =idB qi ., qm
i

x
x +∑

−

=

)(
1

0

; 

    1., +−= qmptrB iqi ; 
    

)(,
0

max_.
∑
=

= i

x
xmqi kkeyB ; 

  endif 
endfor 

 endfor 
} 

 

5.3 Tune Data Buckets 

 Assume that wk  is the key of the desired data, wB  is the bucket containing wk  

and cB  is the current broadcast bucket over the broadcast channel. To search for wk , 

a mobile client must first obtain the cycle length and GLPF information from cB  (if 

it did not access data before), and then it should compute )( wkGLPF  and follow 

Algorithm TB below to obtain wk . An example of tuning buckets was presented in 
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Figure 4(b) before. 

Algorithm TB () 

Input: wk  

Output: wB , the bucket containing wk . 

{ 
Step1.  if wk  has been broadcast  
Step2.  Switch into doze mode and wait for the predicted bucket at time slot 

= )( wkGLPF  in the next cycle; 
Step3.  else if the predicted bucket at )( wkGLPF  has not been broadcast 
Step4.  Switch into doze mode and wait for the bucket at )( wkGLPF ; 
  endif 
Step5.  if wk  is not in current data group  
Step6.  Switch into doze mode and wait for the head bucket in next data group; 
Step7.  else if the current bucket is not the head bucket, goto Step9; 
 endif 
Step8.  Compute )( wkLLPF ;  

Switch into doze mode, and wait for the bucket at time slot = )( wkLLPF ; 
Step9.  Read buckets sequentially till wk  is found; 
} 

 

6. Experiment 

 We implement a simulator and conduct several experiments to observe the 

performance of our broadcast scheme. The following schemes are also simulated and 

compared: Hashing B (HB) [IVB94c], Flexible Indexing (FI) [IVB94c], Simple 

Scheme, Variation Scheme, Partitioned Scheme [Wa01] and our scheme. 

6.1 Simulation Environment 

 The computer platform is PC with 1 GHz CPU, 256 MB memory and WIN2000 

OS. We use Borland C++ Builder 5.0 to develop the simulator. The broadcast 

database contains 2 types of data distribution: normal distribution of key values with 

standard deviation 2000 and mean value 6000 generated by EXCEL 2000, and 

random distribution with key values from 1 to 10000 by the random number generator 

in Borland C++ library. 
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6.2 Simulation Results 

 This section shows the experimental results. Figure 5 and Figure 6 show the 

tuning time of our scheme for different polynomial degrees and various numbers of 

data with key values having normal and random distributions respectively. In the 

following figures, k denotes the degree of polynomial, and the access or tuning time is 

measured in terms of number of buckets. It is observed that tuning time increases as 

the number of data increases, but it decreases as the higher degree of polynomial is 

used. Besides, the tuning time under normal distribution is higher than that under 

random distribution when k=2, but the tuning time under both distributions is about 

the same when k is larger than 2. The reason is that, the curve of normal distribution is 

like the curve of a degree-3 polynomial and using a degree-2 polynomial is not 

accurate enough to approximate its distribution curve. 
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Figure 5. Tuning time for various numbers of data with keys having normal 

distribution 
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Figure 6. Tuning time for various numbers of data with keys having random 

distribution 

 Figure 7 shows the access time of various schemes. LP denotes the schemes 

based on linear programming, including Simple scheme (S), Variation scheme (V), 
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Partitioned scheme (P) and our scheme (O). FI denotes Flexible Indexing, and HB 

denotes Hashing B, respectively. We partition FI and HB into n  data segments in 

the simulation because their access time is almost the best in all the ways of 

partitioning data segments. In Figure 7, LP has the best access time (about half of the 

number of data buckets) because this type of schemes does not cause directory miss. 

FI also has good access time, but HB has the worst access time. 
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Figure 7. Access time for various schemes 

 Figure 8 and Figure 9 show the tuning time of various schemes for different 

number of data with keys having normal distribution and random distribution 

respectively. For schemes based on linear programming we let k=3 in our simulation 

because it is suitable for normal distribution and has reasonable good performance. 

 There are two implementations of Hashing B, HB(BA) and HB(GA), depending 

on the number of segments p into which the hash function divides data. HB(BA) has p 

near the number of data, which has very good tuning time but very bad access time. 

HB(GA) has p near n , which has the average tuning time and the best access time. 

 It is observed from both Figure 8 and Figure 9 that, our scheme has the second 

best tuning time among all these schemes. Though HB(BA) has the best tuning time, 

it has a huge amount of access time (about twice the number of data buckets). HB(GA) 

has the worst tuning time but an average access time. Simple scheme has the worst 

tuning time among all the linear programming-based schemes, Variation scheme is 

better than Simple scheme, but worse than Partitioned scheme. FI also has not bad 



 19 

tuning time. 
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Figure 8. Tuning time of various schemes for different numbers of data with keys 

having normal distribution 
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Figure 9. Tuning time of various schemes for different numbers of data with keys 

having random distribution 

 Figure 10 and Figure 11 compare the number of polynomials and space for 

polynomial coefficients among the linear programming-based schemes. In both 

figures, LP denotes the three schemes (S, V, P) presented in [Wa01]. Figure 10 shows 

the number of polynomials required by different schemes. Because all LP schemes 

require every bucket contains a polynomial, the number of polynomials and the 

number of data are the same. In our scheme, the polynomial is just stored in the head 

bucket of each data group. 

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

O,k=2
O,k=3
O,k=4
LP

Number of Data

Number of
Polynomial

 

Figure 10. Number of polynomials required for various schemes 

 Figure 11 shows the space required for polynomial coefficients. In LP, it needs a 
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lot of space for coefficients. In our scheme, it needs much less space for coefficients. 
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Figure 11. Space of polynomial coefficients required for various schemes 

 

7. Conclusion 

In general, many broadcast schemes cannot avoid the directory miss problem and 

this will make the access time increase greatly. Our broadcast scheme adopts the 

linear programming technique, and by the constraints imposed in linear programming, 

it can avoid the directory miss problem and achieve very good access time. In 

addition, our data partition scheme also shows that dividing data into groups based on 

the properties of polynomial and the data distribution curve can not only generate 

good tuning time, but also reduce a lot of space (bandwidth) for polynomial 

coefficients in the broadcast cycle. 
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