
 1

A Data Partition Scheme for Wireless Broadcast Mechanisms

Based on Linear Programming

Kuen-Fang Jea Chun-Le Wu

Institute of Computer Science

National Chung-Hsing University

{kfjea, cosa}@cs.nchu.edu.tw

Abstract

Due to the limited bandwidth in the wireless environment, broadcasting is the

most common way to service a large number of mobile clients at the same time. There

are two main issues in such an environment: saving battery energy for mobile clients

and accessing data quickly. In this paper, we aim at the energy saving issue and

propose a data partition scheme to improve tuning time for the broadcast mechanisms

based on linear programming. By investigating the geometric properties of data

distribution curves and integrating them into the linear programming technique, we

create the data partition scheme and use it to construct our broadcast mechanism. With

this partition scheme, the complexity of linear programming decreases and data

broadcast time is predicted more accurately. As a result, the bandwidth for storing

polynomial coefficients is reduced and better tuning time is achieved. Experimental

results in this paper also confirm these advantages of our broadcast mechanism.

1. Introduction

In the mobile computing environment, the power consumption problem is very

important because, as [SCB92] pointed out, the development of battery technology is

very slow. Power consumption at mobile clients can generally be distinguished into

active mode and doze mode. [IVB94c] pointed out the power consumption at mobile

clients in active mode is several thousand times of that in doze mode. Therefore, the

 2

selective tuning technique is usually adopted for energy saving. To receive data from

the broadcast channel, a mobile client follows the broadcast protocol to decide the

time it switches between and the duration it stays in the doze mode and active mode.

In related research, there are two major metrics to measure the broadcast

scheme’s performance. Tuning time measures the total time a mobile client tunes in

active mode, while access time measures the latency time a mobile client receives

data. The effect of tuning time is on the power consumption of mobile clients, and

inserting additional information into the channel for selective tuning is widely used in

current research to reduce tuning time. The effect of access time on mobile clients

determines whether they can receive data rapidly, and several techniques such as

[AAF95][Go95][JV98][CK99] [Wa01] have been proposed to reduce access time.

However, inserting additional information into the broadcast channel for energy

saving may enlarge the broadcast cycle and thus consume more bandwidth and

increase access time. It may also cause the directory miss problem: the desired data

bucket went past as the mobile client wakes up, and it should wait and get the same

data bucket in the next broadcast cycle. Directory miss is undesirable as it may

increase access time enormously.

Recently, [Wa01] proposed three broadcast schemes that can avoid directory

miss and have reasonable good access time. Similar to the hashing-based schemes,

they provide parameters in the broadcast cycle and allow mobile clients to predict

their desired data in the cycle by computing these parameters. They also use the linear

programming technique to minimize the prediction errors and thus reduce access time.

However, these schemes may need to solve a large number of constraint equations,

which depend on the number of data being broadcast, to derive a very high degree

predicting polynomial. To overcome this problem, [Wa01] proposed a partitioned

scheme that partitions data into equal subsets and derives a polynomial for each of

 3

them. Although the complexity of deriving polynomials is reduced, the even-partition

scheme still does not achieve very good tuning time. Moreover, it may need to store

many polynomial coefficients in the broadcast cycle, which results in longer cycles

and access time. To improve the drawbacks of the even-partition scheme, this paper

proposes a new data partition scheme which is based on the geometric properties of

data distribution curves and can select more appropriate polynomials for prediction.

With this scheme, we also propose a new broadcast mechanism, which not only has

better tuning time but also saves a lot of bandwidth for polynomial coefficients.

 The rest of this paper is organized as follows. Section 2 describes the related

work. Section 3 explains the broadcast model based on linear programming and

Section 4 presents our data partition scheme. Section 5 shows our broadcast

mechanism with an analysis of the mechanism. Section 6 demonstrates experimental

results of its performance and comparison with other related broadcast schemes.

Finally Section 7 concludes this study.

2. Related Work

 In this section, we review three kinds of broadcast schemes related to our

research, including hashing-based schemes, indexing-based schemes and the

predictive schemes based on linear programming.

 Hashing-based schemes [IVB94c] insert hash functions into the broadcast

channel as additional information in order to make mobile clients access desired data

directly. If a perfect hash function can be obtained, then no collision occurs and thus

no overflow chain [IVB94c] is created. In this case, hashing-based schemes will in

general have the optimal tuning time. But in practice, the perfect hash function is very

hard to find and they always cause overflow chains, so they will have longer tuning

time. Besides, hashing-based schemes will cause the directory miss problem and

 4

increase the access time.

 Indexing-based schemes add an index structure into the broadcast channel as

additional information. Mobile clients just have to read the index information and

follow the index step by step to get the desired data. [IVB94c] proposed Flexible

Indexing which divides the broadcast file into p segments and stores the control index

in the first bucket in each data segment. Mobile clients tune into these head buckets

and navigate the control index to receive their desired data.

 In [IVB94a], (1,m) Indexing and its extension Distributed Indexing were

presented. The index structure is built by +B -tree and the leaf contains pointers to

data items. (1,m) Indexing partitions data into m equal data segments. The whole

index is broadcast followed by each partition of data. The main difference between

(1,m) Indexing and Distributed Indexing is that only the portion of index tree related

to a data segment is broadcast in front of that data segment in Distributed Indexing for

better access time.

 [Wa01] proposed schemes that predict data location by polynomials which are

derived from linear programming. The coefficients of polynomials are stored in each

bucket in the broadcast channel and mobile clients find data by calculating the

polynomial using these coefficients.

 In [Wa01], three different schemes were presented, simple scheme, variation

scheme and partitioned scheme. The simple scheme has the same predictive

polynomial in each bucket and can predict the whole data set in the broadcast cycle.

The variation scheme, on the other hand, has a different predictive polynomial in each

bucket whose predicting scope is from the next bucket to the last bucket of the

broadcast cycle. The partitioned scheme divides the data set into p equal segments and

classifies the predictive polynomial into global and local types. The global polynomial

predicts which data segment contains the desired data, while the local polynomial

 5

predicts which time-slot (data bucket) contains the desired data. Although the partition

scheme reduces the complexity of deriving polynomial and has better tuning time, it

still leaves much space for improvement (as discussed in Section 1).

3. Linear Programming-based Broadcast Model

 The broadcast problem studied in [Wa01] can be formulated as follows: Find a

predictive function that can predict a data item’s time-slot on the broadcast channel

and always make the predicted position appear in front of the item’s actual time-slot.

The idea of linear programming-based broadcast model is to transform this broadcast

problem into a linear programming problem and solve it by the linear programming

technique.

 Figure1 shows an example. Assume that each bucket only contains one data item

and data are broadcast over a single channel in the ascending order of their key. If we

consider a coordinate system where the vertical axis indicates the time slot a data item

being broadcast (t-axis) in a broadcast cycle and the horizontal axis indicates the key

value of the broadcast data item (k-axis), then each data item can be represented as a

point (k, t) in this system. For the six data items in the broadcast cycle in Figure 1(a),

they can be replaced by six points: (4,1), (5,2), (8,3), (9,4), (12,5) and (13,6). To

predict the time-slot t when the data item k is broadcast, we may use a polynomial

)(1 kf of degree 1 (as shown in Figure 1(b)) with one constraint tkf ≤)(1 for each k

(as shown in Figure 1(c)) to guarantee every predicted position always appears in

front of the real broadcast time-slot t. Under these constraints, we can have the least

prediction error by maximizing ∑)(1 kf , i.e. make)(1 kf very close to the real t.

 6

1 2 3 4 5 6

broadcast channel

4 5 8 9 12 13key

(a)

613)13(
512)12(

49)9(
38)8(
25)5(
14)4(

01

01

01

01

01

01

≤+=
≤+=

≤+=
≤+=
≤+=
≤+=

aaf
aaf

aaf
aaf
aaf
aaf

0

2

4

6

8

0 5 10 15

011)(akakf +=
key

time-slot
positions

(b)
constraints to ensure
every predicted
location in front of
real t.

(c)
use a 1-degree polynomial to
predict data location

a briadcast cycle

Figure 1. Example to illustrate the broadcast problem

 On the other hand, the standard form of linear programming is as follows.

(3) 0,,,
),,(

(2)),,(

),,(subject to
(1) minimize)(or maximize

21

2211

22222121

11212111

2211

≥
<=>+++

<=>+++
<=>+++

+++=

n

mnmnmm

nn

nn

nn

aaa
bacacac

bacaaac
bacacac

acacacz

L

L

MMMMM

L

L

L

In the standard form, (1) is the objective function, (2) is a set of constraints, and (3)

are nonnegative constraints. The meaning of the standard form is that under the

constraints (2) and (3), the objective function (1) will be maximized or minimized.

 By using the constraints in Figure 1(c), giving the objective function

011 651)(aakfZMaximize +== ∑ and letting 21 iii aaa −= , 0, 21 ≥ii aa , we can

transform the broadcast problem in Figure 1 into the following standard form of linear

programming.

)3(0, ,,
6)()(13
5)()(12
4)()(9

(2) 3)()(8
2)()(5
1)()(4

(1))(6)(51)(

02011211

02011211

02011211

02011211

02011211

02011211

02011211

020112111

>
≤−+−
≤−+−
≤−+−
≤−+−
≤−+−
≤−+−

−+−== ∑

aaaa
aaaa
aaaa
aaaa
aaaa
aaaa
aaaatoSubject

aaaakfZMaximize

 7

 Based on this idea, the linear programming-based broadcast model, LPB-Model,

can be defined as follows. Assume n data items are broadcast over a single channel in

the ascending order of their keys ki. In the (k, t) coordinate system, they form n

coordinate points,)},(,),,(),,{(2211 nn tktktk L , itk ii ∀> 0, , nkkk <<< L21 and

nttt ≤≤≤ L21 . Let q
iqi kc)(, = and 21 iii aaa −= , 0, 21 ≥ii aa . We may obtain a

q-degree polynomial ∑
=

=
q

i

i
iq xaxf

0

)(with nitkf iiq ~1)(=∀≤ such that

mobile clients can use it to predict the time slot of their desired data ki with the least

prediction error by solving the following linear programming problem:

0,,,,,,...,,

)()()(...)(

)()()(...)(

)()()(...)(

)())(())(())((

02011211222121

020112111,22212,21,

2020112111,222212,221,2

1020112111,122212,121,1

0201
1

12111,
1

22212,
1

21,

>

≤−+−+−++−

≤−+−+−++−

≤−+−+−++−

−+−+−++−= ∑∑∑
===

aaaaaaaa
taaaacaacaac

taaaacaacaac
taaaacaacaac

toSubject

aanaacaacaacZMaximize

qq

nnnqqqn

qqq

qqq

n

i
i

n

i
i

n

i
qqqi

MMMMMM

L

In this model, the goal of least prediction error indicates the shortest distance that

mobile clients should navigate (stay in active mode) from the predicted location to the

real location. As a result, tuning time is largely reduced and more battery energy is

saved. According to this model, we define a function LP() which takes n data keys as

input and generates the q-degree polynomial ∑
=

=
q

i

i
iq xaxf

0

)(in the LPB-Model for

prediction. In fact, LP() implements the linear programming solution technique.

Complexity of LPB-Model

 Karmarkar algorithm [Ka84] is the most common algorithm for linear

programming and its time complexity is)lnlnln(25.3 LLLvO , where v is the number

of variables and L is the number of bits in the input. Generally we denote)(25.3 LvO

as its time complexity. In LPB-Model, there are)1(2 ++ qn variables, n is the

 8

number of data items and q is the degree of polynomial. Thus, the time complexity of

LP() is))2((25.3 LnO .

 LPB-Model has the following properties, whose proofs can be found in [Wu02].

Theorem 1. LP() always generates the optimal polynomial ∑
=

=
q

i

i
iq kakf

0
)(.

Theorem 2. The polynomial of higher degree will have less error than the polynomial

of lower degree for the same set of points (key, time-slot) in the (k, t)

coordinate system.

As shown in [Wa01], the broadcast mechanism generated by this model may

result in a lot of space reserved for polynomial coefficients in each bucket, especially

when n is large and the degree q of the polynomial is very high. This may waste a lot

of channel bandwidth and lead to longer tuning and access time. Therefore, in this

study, we will apply a data partition scheme to solve this problem. In contrast to the

even-partition scheme in [Wa01], this scheme partitions the data set into small subsets

(groups) based on the properties of polynomial and data distribution in the (k, t)

coordinate system, which generates better effect than the even-partition scheme.

4. Data Partition Scheme

 The basic idea of our data partition scheme is to divide data into several groups

(subsets) and make each group fit a q-degree polynomial. There are two kinds of

predictive polynomials, GLPF (Global Linear Programming predictive Function) and

LLPF (Local Linear Programming predictive Function). Each group has a LLPF to

predict data items in the group. There is only one GLPF, which is used to predict the

whole data set and makes sure that every predicted position always appears in front of

the first bucket of the group containing the desired data.

Our data partition scheme works as follows. We first find out the candidate

 9

points from which we can choose the boundary points for partition (as described in

Section 4.1). Then, we repeatedly split the approximation intervals (defined by two

consecutive candidate points) until the estimated error is smaller than a pre-specified

bound (as discussed in Section 4.2). After that, by merging segments and minimizing

the total estimated tuning time, we obtain the boundary points for partition (as stated

in Section 4.3). Finally we construct predictive polynomials based on these points (as

described in Section 4.4).

4.1 Select Candidate Points

 Consider Figure 2 as an example, which shows the graph of a 4-degree

polynomial 242636)(234 −++−= xxxxxf , where there are two inflection points c and

e. Line segments bd , df pass through c, e respectively, and their slopes are the

derivative of f(x) at c, e respectively. We can find two tangents ab and bd of f(x)

at point a, g such that the distance between the tangent and f(x) is the smallest. Four

segments ab、 bd 、 df and fg are used to fit (approximate) f(x). Usually a

q-degree polynomial can be fit (or approximated) by q line segments, i.e. we can treat

each line segment as one degree of the polynomial.

-2 2 4

-40

-20

20

40

60

80

a

b

c

d
e

f

g

Figure 2. Properties of polynomial

To approximate data distribution curves, we define several parameters in Table 1.

Table 1. Parameters for data curves

Parameter Description
iRS Slope of the line segment passing point),(ii tk and point),(11 ++ ii tk .

iVS Slope variation of iRS and 1−iRS .

 10

iCP Candidate points, from which we choose boundary points to partition
data into groups.

These parameters are determined as follows.
ii

ii
i kk

yyRS
−
−

=
+

+

1

1 , where ik is the key of

the ith data item, iy is the time-slot of the ith data item. 2
1

≥=
−

i
RS
RSVS

i

i
i ， . Candidate

points iCP include the 1st data point, last data point and those points i that satisfy the

condition 1≥iVS . Among these points, if 1,,, 1 >++ jiii VSVSVS L or

11 ==== ++ jiii VSVSVS L , we choose the two points i and ji + as candidate

points (iCP and jiCP+). According to this rule, we may generate candidate points for

further selection of the boundary points.

 Figure 3 shows a data distribution curve where there are 7 candidate points CP1,

CP4, CP7, CP9, CP11, CP14 and CP15 in total. Let iS denote the line segments

connecting iCP and jiCP+ , iIS denote the interval between iCP and jiCP+ , iSS

be the slope of iS , respectively. There are three kinds of curves in iIS , concave up

(1IS), concave down (4IS , 7IS , etc.) and straight line (14IS). If each interval iIS only

contains a few points, line segment iS will be very similar and close to the data

distribution curve in iIS . We can then treat each line segment as one degree of the

predictive polynomial and approximate the data distribution curve in Figure 3 by a

6-degree polynomial.

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500
key1CP

4CP

7CP
9CP

11CP

14CP
15CPtime slot

1S

4S

7S
9S

11S

14S

1IS 4IS

7IS 9IS

11IS

14IS

Figure 3. Data distribution curve and its approximation

4.2 Split Line Segments

 The rule stated above for determining candidate points might not be accurate

 11

enough to guarantee a reasonable small tuning time for some data points, if the data

curve is partitioned based on these candidate points. Therefore, we need to refine

some intervals iIS (split line segments Si to fit the curve more closely) and generate

more candidate points. The condition to refine intervals is when the average tuning

time (prediction error) for all data points is greater than 1. Assume there are ni data

points in iIS , and the prediction error dj for some point kj can be computed by | f(kj) –

Si(kj) | where f(x) is the polynomial for the data curve and Si is the approximating line

segment (tangent) in iIS . Let ie denote the estimated error of iS , which is

calculated by ei = Σ dj. Also let ∑= ieE denote the total estimated error for all of

the n data points. Then the interval refinement condition is E/n ≥ 1.

 Once the interval refinement condition is met, we refine each of those intervals

with largest estimated error and split its line segment into two new line segments. For

an interval with a concave up data curve, we choose the point k that satisfies the

condition kik RSSSRS <<−1 to split the line segment. For an interval with a concave

down data curve, we choose the point k that satisfies the condition

kik RSSSRS >>−1 to split the line segment. The split process is repeated until the

refinement condition is not satisfied.

4.3 Select Boundary Points for Partition

 As mentioned before, our broadcast mechanism uses two predictive polynomials

to predict data locations, first by GLPF and then by LLPF. The total estimated

prediction error must include the error from both GLPF and LLPF. The refinement

process in last section basically minimizes the error, denoted by E, due to LLPF, i.e.,

the tuning time for finding desired data in that group. To select boundary points for

partition, we also need to minimize the error, denoted by G, due to GLPF, i.e., the

tuning time for finding which data group contains the desired data.

 12

Figure 4(b) shows how mobile clients tune buckets and how we calculate the

tuning time. There are 16 data buckets divided into 5 data groups. Buckets 1,5,7,11,14

(the shadow buckets) are the head buckets for these groups. If a mobile client wants to

get data k, first it reads bucket 3 calculated by GLPF, and by the pointer in bucket 3 it

reads bucket 5. If k is not in the data group (headed by bucket 5), then it reads the

head bucket 7 of the next data group. Suppose that k is in this data group, it then reads

bucket 8 calculated by LLPF there and performs a linear search from bucket 8 till it

finds k. The total tuning time is 6, 3 due to finding the group (buckets 3, 5 and 7) and

3 due to search in the group (buckets 8, 9 and 10).

 Figure 4(a) shows how to estimate G. Assume GLPF and LLPF are the degree-3

predictive polynomial. Data points a, b, c, d, e are the candidate points to delimit

groups, which may correspond to the head buckets in Figure 4(b). Because the

predicted positions by GLPF should appear in front of the head bucket of the data

group containing the desired data, we may obtain those points A, B, C, and D in

Figure 4(a), which represent the largest key and the earliest time-slot of each data

group. Connecting these points sequentially, we obtain 3 Estimated Line segments AB,

BC and CD for estimating the total tuning time. To estimate G, we calculate the

number of candidate points between ap (actual position) and pp (predicted position)

for every data point and sum them up.

a

b

c

d
e

A

B

C

D

Eestimated Line

Data distribution

key

time slot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GLPF(k) (k)LLPF7

k

(a) (b)

predicted
position

pp

ap actual
position

Figure 4. Estimate G

 13

 To minimize G+E, we merge two consecutive segments iS and jS into a new

one if they have very small estimated error, that is, ji SSSS − is the smallest for all

the nearest ji, ji ≠ . In general, fewer data groups cost less tuning time for finding

the wanted group but cost more tuning time for finding data in that group. So after

reaching the condition (1≤
n
E), we estimate G and compute G+E. Then we merge

segments to maximize E (in order to minimize G), but 2≤
n
E should be satisfied in

the merge process. We keep on merging segments until the new (G+E) is larger than

the old one. At this moment the remaining candidate points are the boundary points.

4.4 Construct Predictive Polynomial

 In LPB-Model, the LP() function implements the linear programming solution

technique. It takes as input a set of data points represented in the (k, t) coordinate

system, and generates a q-degree predictive polynomial with prediction error

minimized and predicted position in front of actual position. We may use this function

to generate both global and local predictive polynomials (GLPF and LLPF). To

construct a LLPF for each data group, we call LP() with all the data points in that

group as input. On the other hand, to construct GLPF, we call LP() with all the

boundary points as input. The detail algorithms are presented in [Wu02].

5. Broadcast Mechanism

 This section describes our broadcast mechanism, including how to generate the

broadcast structure and how mobile clients tune buckets to access data.

5.1 Broadcast Structure

 Assume that there are n data items with keys },,,{ 21 nkkk L and each data item

ki is placed into a data bucket Bi respectively. These data items are partitioned into p

 14

groups and each group contains mi data items. Also assume that mobile clients have

memory and computing ability.

 The structure of data buckets is shown in Table 2. Buckets are classified into

head buckets and non-head buckets. Each bucket has 2 parts, control part and data

part. It stores the information necessary for predicting data locations and searching

data.

Table 2. Bucket structure

Bucket type Data/control
part Parameter Description

 Data part keyBi .1, Key of the data in this bucket
 idBi .1, Time slot over the channel

 keyBi max_.1, The max key of the ith data group
Head bucket ptrBi .1, Pointer to the head bucket 1,1+iB

Control part

cycleBi .1, Cycle length
 GLPFBi .1, Global predictive polynomial

 LLPFBi .1, Local predictive polynomial
 Data part keyB qi ., Key of the data in this bucket

 idB qi ., Time slot in the channel Non-head
bucket Control part ptrB qi ., Pointer to the head bucket 1,1+iB

 keyB qi max_., The max key of the ith data group

5.2 Generate Broadcast Cycle

 The following Algorithm CBT constructs the broadcast structure based on the

groups generated by the data partition scheme. CBT() takes as input the keys and the

numbers of data in each group, and produces the content of every bucket over the

broadcast channel. It places data as well as the parameters of GLPF and LLPF into

buckets according to the bucket structure. The complexity of CBT() is in GLPF() and

LLPF(), so its complexity is))2((25.3 LnO +∑
=

p

i
LmO

1

25.3))2((.

Algorithm CBT()

Input: data, and group information

 15

Output: content of a broadcast cycle

{
//obtain the predictive polynomials
GLPF= GLPF(},,,{ 21 nkkk L ， },,,{ 21 pmmm L);//global predictive polynomial
LLPF[]=LLPF(},,,{ 21 nkkk L ， },,,{ 21 pmmm L);//local predictive polynomial

00 =m ;
 for i=1 to p //p data groups

 for q=1 to im //The ith part has im data items
 if q == 1 //if head bucket

1)(

1, 1

0

.
+∑

= −

=

i

x
xm

i kkeyB ;

 =idBi .1, 1)(
1

0

+∑
−

=

i

x
xm ;

)(1,

0

max_.
∑
=

= i

x
xmi kkeyB ;

 ii mptrB =.1, ;
 ncycleBi =.1, ;
 =GLPFBi .1, GLPF;

 =LLPFBi .1, LLPF[i];
 else //non-head bucket

qm
qi i

x
x

kkeyB
+∑

= −

=

)(
, 1

0

. ;

 =idB qi ., qm
i

x
x +∑

−

=

)(
1

0

;

 1., +−= qmptrB iqi ;

)(,
0

max_.
∑
=

= i

x
xmqi kkeyB ;

 endif
endfor

 endfor
}

5.3 Tune Data Buckets

 Assume that wk is the key of the desired data, wB is the bucket containing wk

and cB is the current broadcast bucket over the broadcast channel. To search for wk ,

a mobile client must first obtain the cycle length and GLPF information from cB (if

it did not access data before), and then it should compute)(wkGLPF and follow

Algorithm TB below to obtain wk . An example of tuning buckets was presented in

 16

Figure 4(b) before.

Algorithm TB ()

Input: wk

Output: wB , the bucket containing wk .

{
Step1. if wk has been broadcast
Step2. Switch into doze mode and wait for the predicted bucket at time slot

=)(wkGLPF in the next cycle;
Step3. else if the predicted bucket at)(wkGLPF has not been broadcast
Step4. Switch into doze mode and wait for the bucket at)(wkGLPF ;
 endif
Step5. if wk is not in current data group
Step6. Switch into doze mode and wait for the head bucket in next data group;
Step7. else if the current bucket is not the head bucket, goto Step9;
 endif
Step8. Compute)(wkLLPF ;

Switch into doze mode, and wait for the bucket at time slot =)(wkLLPF ;
Step9. Read buckets sequentially till wk is found;
}

6. Experiment

 We implement a simulator and conduct several experiments to observe the

performance of our broadcast scheme. The following schemes are also simulated and

compared: Hashing B (HB) [IVB94c], Flexible Indexing (FI) [IVB94c], Simple

Scheme, Variation Scheme, Partitioned Scheme [Wa01] and our scheme.

6.1 Simulation Environment

 The computer platform is PC with 1 GHz CPU, 256 MB memory and WIN2000

OS. We use Borland C++ Builder 5.0 to develop the simulator. The broadcast

database contains 2 types of data distribution: normal distribution of key values with

standard deviation 2000 and mean value 6000 generated by EXCEL 2000, and

random distribution with key values from 1 to 10000 by the random number generator

in Borland C++ library.

 17

6.2 Simulation Results

 This section shows the experimental results. Figure 5 and Figure 6 show the

tuning time of our scheme for different polynomial degrees and various numbers of

data with key values having normal and random distributions respectively. In the

following figures, k denotes the degree of polynomial, and the access or tuning time is

measured in terms of number of buckets. It is observed that tuning time increases as

the number of data increases, but it decreases as the higher degree of polynomial is

used. Besides, the tuning time under normal distribution is higher than that under

random distribution when k=2, but the tuning time under both distributions is about

the same when k is larger than 2. The reason is that, the curve of normal distribution is

like the curve of a degree-3 polynomial and using a degree-2 polynomial is not

accurate enough to approximate its distribution curve.

0

2

4

6

8

10

0 200 400 600 800 1000 1200

k=2
k=3
k=4

k=5

Tuning time

Number of data

Figure 5. Tuning time for various numbers of data with keys having normal

distribution

0

2

4

6

8

0 200 400 600 800 1000 1200

k=2
k=3
k=4
k=5

Tuning time

Number of data

Figure 6. Tuning time for various numbers of data with keys having random

distribution

 Figure 7 shows the access time of various schemes. LP denotes the schemes

based on linear programming, including Simple scheme (S), Variation scheme (V),

 18

Partitioned scheme (P) and our scheme (O). FI denotes Flexible Indexing, and HB

denotes Hashing B, respectively. We partition FI and HB into n data segments in

the simulation because their access time is almost the best in all the ways of

partitioning data segments. In Figure 7, LP has the best access time (about half of the

number of data buckets) because this type of schemes does not cause directory miss.

FI also has good access time, but HB has the worst access time.

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200

LP
FI
HB(GA)

Access Time

Number of data

Figure 7. Access time for various schemes

 Figure 8 and Figure 9 show the tuning time of various schemes for different

number of data with keys having normal distribution and random distribution

respectively. For schemes based on linear programming we let k=3 in our simulation

because it is suitable for normal distribution and has reasonable good performance.

 There are two implementations of Hashing B, HB(BA) and HB(GA), depending

on the number of segments p into which the hash function divides data. HB(BA) has p

near the number of data, which has very good tuning time but very bad access time.

HB(GA) has p near n , which has the average tuning time and the best access time.

 It is observed from both Figure 8 and Figure 9 that, our scheme has the second

best tuning time among all these schemes. Though HB(BA) has the best tuning time,

it has a huge amount of access time (about twice the number of data buckets). HB(GA)

has the worst tuning time but an average access time. Simple scheme has the worst

tuning time among all the linear programming-based schemes, Variation scheme is

better than Simple scheme, but worse than Partitioned scheme. FI also has not bad

 19

tuning time.

0

5

10

15

20

0 200 400 600 800 1000 1200

O,k=3
S,k=3
V,k=3
P,k=3
HB(BA)
HB(GA)
FI

Number of data

Tuning time

Figure 8. Tuning time of various schemes for different numbers of data with keys

having normal distribution

0

5

10

15

20

0 200 400 600 800 1000 1200

O,k=3

S,k=3
V,k=3
P,k=3
HB(BA)

HB(GA)

FI

Number of data

Tuning time

Figure 9. Tuning time of various schemes for different numbers of data with keys

having random distribution

 Figure 10 and Figure 11 compare the number of polynomials and space for

polynomial coefficients among the linear programming-based schemes. In both

figures, LP denotes the three schemes (S, V, P) presented in [Wa01]. Figure 10 shows

the number of polynomials required by different schemes. Because all LP schemes

require every bucket contains a polynomial, the number of polynomials and the

number of data are the same. In our scheme, the polynomial is just stored in the head

bucket of each data group.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

O,k=2
O,k=3
O,k=4
LP

Number of Data

Number of
Polynomial

Figure 10. Number of polynomials required for various schemes

 Figure 11 shows the space required for polynomial coefficients. In LP, it needs a

 20

lot of space for coefficients. In our scheme, it needs much less space for coefficients.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200

O,k=2

O,k=3
O,k=4

LP,k=2
S,V,P,k=3

LP,k=4

Number of Data

Space of Polynomial

Figure 11. Space of polynomial coefficients required for various schemes

7. Conclusion

In general, many broadcast schemes cannot avoid the directory miss problem and

this will make the access time increase greatly. Our broadcast scheme adopts the

linear programming technique, and by the constraints imposed in linear programming,

it can avoid the directory miss problem and achieve very good access time. In

addition, our data partition scheme also shows that dividing data into groups based on

the properties of polynomial and the data distribution curve can not only generate

good tuning time, but also reduce a lot of space (bandwidth) for polynomial

coefficients in the broadcast cycle.

References

[AAF95] S. Acharya, R. Alonso, M.Franklin, and S. Zdonik, “Broadcast Disks-Data

Management for Asymmetric Communications Environment,” Proceedings of ACM

SIGMOD Conference, 1995, pp.199-210.

[CK99] Y. D. Chung, and M. H. Kim, “QEM: A Scheduling Method for Wireless

Broadcast Data,” Proceedings of 6th International Conference on Database Systems

for Advanced Application, April 19-21, 1999, pp. 135-142.

[Go95] V. Gondhalekar, Scheduling Periodic Wireless Data Broadcast, M.S.Thesis,

The University of Texas at Austin, U.S.A., 1995.

 21

[IVB94a] T. Imielinski, S. Viswanathan and B.R.Badrinath, “Energy Efficient

Indexing on Air,” Proceedings of ACM SIGMOD Conference, 1994, pp.25-36.

[IVB94b] T. Imielinski, S. Viswanathan and B.R.Badrinath, Data on Air:

Organization and Access, Technical Report, Department of Computer Science,

Rutgers University, U.S.A., 1994.

[IVB94c] T. Imielinski, S. Viswanathan and B.R.Badrinath, “Power Efficient Filtering

of Data on Air,” Proceedings of the International Conference on Extending Database

Technology, 1994, pp. 245-258.

[JV98] S. Jiang and N. Vaidya, Scheduling Algorithms for a Data Broadcast System:

Minimizing Variance of the Response Time, Technical Report 98-005, Department of

Computer Science, Texas A&M University, U.S.A., 1998.

[Ka84] N. Karmarkar, “A New Polynomial-time Algorithm For Linear

Programming,” Combinatorica, Vol. 4, 1984, pp. 373-395.

[SCB92] S. Sheng, A. Chandrasekaran, and R.W. Broderson, “A Portable Multimedia

Terminal for Personal Communications,” IEEE Communications Magazine,

December 1992, pp. 64-75.

[Wa01] D.W. Wang, A Broadcast Mechanism Based on Linear Programming,

M.S.Thesis, Institute of Computer Science, National Chung-Hsing University, 2001.

[Wu02] C.L. Wu, Use Segmentation to Enhance the Wireless Broadcast Mechanism

Based on Linear Programming, M.S.Thesis, Institute of Computer Science, National

Chung-Hsing University, 2002.

