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Abstract 

Accurate diagnosis and classification is the key issue for the optimal treatment of cancer 

patients.  Several studies demonstrate that cancer classification can be estimated with high 

accuracy, sensitivity and specificity from microarray-based gene expression profiling using 

artificial neural networks (ANN).  In this paper, a comprehensive study was undertaken to 

investigate the potential value of other neural networks for the discrimination of acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).  Probabilistic neural 

networks (PNN), multilayer perceptrons (MLP) and the learning vector quantization network 

(LVQ) were applied for this purpose.  The best results were obtained by PNN, followed by 

MLP networks and LVQ.  PNN classifier yields 100% recognition accuracy and is well 

suited for the AAL/AML classification in cancer treatment.  This study presents the 

capabilities of PNN, and also indicates that PNN should be evaluated in a larger prospective 

study.  Our future work will focus on applying the gene selection method and the PNN 

network on other dataset to observe the generality of this strategy. 
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1. Introduction 

Successful cancer treatment depends on choosing the right regimen for a given patient. 

For treatment strategies work differently for different tumors, how to accurately diagnose 

cancer subtypes becomes one of the biggest challenges in clinical cancer research.  A recent 

study reported by Goulb et al. [1], the first microarray-based and bioinformatic-orientated 

approach for identifying and classifying tumor types, moves cancer diagnosis away from 

traditional visually based systems to molecular based systems. 

The cancer model choused by Golub et al. [1] is acute leukemias.  According to 

enzyme-based histochemical analyses, acute leukemias can be classified into those arising 

from lymphoid precursors (acute lymphoblastic leukemia, ALL) or from myeloid precursors 

(acute myeloid leukemia, AML).  Although several clinical diagnoses have been developed, 

leukemia classification remains imperfect and errors do occur.  Because the acute leukemias 

are well understood and can generally be predicted correctly, they are a good test case for 

class prediction methods [1, 2].  

Golub et al. [1] employed a correlation metric to extract a small set of genes and 

developed a scheme named weighted voting to distinguish AAL from AML; the recognition 

rate they obtained was 94.1%.  By using the same database, several algorithms have been 

proposed to deal with class prediction of acute leukemias to improve classification accuracy 

in the literature [2-10].  Toure et al. [3] used the multilayer perceptron network (MLP) to 

predict the class of cancer and gave 58% accuracy on test data.  Ryu et al. [4] experimented 

with the MLP, support vector machine (SVM), and k-nearest neighbor (KNN) as the 

classifiers, and the best classification rate they achieved was 97.1% if gene is selected via 

Pearson’s correlation analysis and the MLP is used as the classifier.  Su et al. [5] employed 

the modular neural networks to classify two types of acute leukemias and the best 75% 

correct classification was reached.  Xu et al. [6] adopted the ellipsoid ARTMAP to analyze 
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the AML/AAL data set and the best result was 97.1%.   

Although most of the algorithms mentioned above can reach high prediction rate, any 

misclassification of the disease is still intolerable in acute leukemias treatment.  Therefore, 

the demand of a reliable classifier which gives 100% accuracy in predicting the type of 

cancer therewith becomes urgent.  

To address these challenges, we extract a set of informative patterns from 7129 gene 

expression data and train three kinds of neural networks [11-16], the MLP, the learning vector 

quantization network (LVQ) and the probabilistic neural networks (PNN) in turn with 38 

leukemia samples, then the classifiers are tested with another 34 samples to inspect the 

accuracy rate.  The experiment results show that PNN can predict the class of cancer 

correctly when the set of training and test patterns are composed of 50 informative genes.  

The remainder of the paper is organized as follows.  The feature extraction method for 

choosing effective predictive genes in our work is introduced in Section 2.  Then Sections 3, 

4, and 5 give a brief introduction for three types of neural networks for class prediction of 

cancer, respectively.  Section 6 compares the simulation results of three classifiers.  

Conclusions are made in Section 7. 

2. Gene Selection 

We used the dataset collected in [1-2] for training and testing of our classifiers.  The 

dataset consists of 72 leukemia samples, and each sample contains 7129 gene expression 

numbers.  As a result, extracting informative genes from of the dataset before classification 

is essential since the data set is highly dimensional and many genes in the data set are 

irrelevant to distinction of the cancer class.   

Slonim et al. [2] tested with several gene selection methods and reported that the best 

performance was obtained with the relative class separation metric defined by: 
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where µ1 denotes the mean expression level and σ1 represents the standard deviation of 

expression for the samples in class 1, respectively.  µ2 and σ2 are defined similarly for the 

samples in class 2.  Apparently Eq. (1) tries to pick up the genes with the feature of wider 

class separation and the smaller spread around class means.  We also adopted this gene 

selection method in our work to find out the set of the most informative genes for training 

and testing of our classifiers. 

3. Multilayer Perceptrons 

Although the MLP was already experimented as the classifier for the type of cancer in 

[3-4], we still hope to know what the outcome is when the MLP is trained with the data 

selected by the method introduced in the preceding section.  Fig. 1 shows the architectural 

graph of a multilayer perceptron built with one hidden layer.  Note that the number of the 

hidden layers can surpass one if necessary.  The incoming signals are fed into the input layer, 

and are then propagated from left to right.  The net input of the hidden layer, ) , is 

computed as the weighted sum of the incoming signals: 
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where )  denotes the weight associated with the link connecting node i in the input layer 

and node j in the hidden layer, and xi is the input signal handed over from node i in the input 

layer.  
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where  is a differentiable nonlinear activation function, such as a logistic function ( )⋅f
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Fig. 2 shows a logistic function, which can squash the inputs to the range of 0 and 1, and the 

first derivative of the logistic function can be shown as 
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Fig. 1. Architecture of a multilayer perceptron with one hidden layer. 
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Fig. 2. A logistic activation function. 

The net input of the output layer is then computed as the weighted sum of the output of 

the hidden layer: 
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where )  represents the weight associated with the link connecting node j in the hidden 

layer and node k in the output layer. 
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After applying the activation function to the net input of the output layer, the output of 

the node k in the output layer becomes 
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This completes a feedforward process of the multilayer perceptron.  Next we shall describe 

the operation of the back-propagation learning algorithm, which alters the behavior of each 

node through adjusting the weights used for the forward propagation process and in turn 
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modifies the output of the multilayer perceptron. 

3.1 Backpropagation learning rule 

The error signal at the output of node k in the output layer is defined as  

kkk OT −=ε , (8) 

where Tk denotes the expected output of node k. 

The squared error measure is obtained by summing over all k:  kε
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Then based on the gradient-descent method [11], the correction of the synaptic weight in 

the hidden-to-output connections is updated by 
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where η denotes the learning-rate parameter of the backpropagation algorithm. 

For the weight update in the input-to-hidden connections, the chain rule is used along 

with the gradient-descent method as shown by 
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With a choice of the logistic function as the activation function, we may rewrite Eqs. (10) and 

(11) by using Eq. (5) as follows:  

( ) ( ) jkk
k

O
jk HOO

O
Ew −

∂
∂

−=∆ 1η , (12) 

 7 



( ) ( ) ( ) (∑ −







−

∂
∂

−=∆
k

ijj
O
jkkk

k

H
ij xHHwOO

O
Ew 11η ) . (13) 

The supervised training cycles will proceed until some stopping criterion is met, such as the 

squared error measure is smaller than a predefined threshold, or the computation epochs 

reaches some maximum limit.   

4. Learning Vector Quantization 

The second type of neural network we investigate in this work is the learning vector 

quantization network (LVQ) which also consists of three layers as shown in Fig.1 [14-15].  

In the LVQ network, the net input of the hidden layer, ) , is computed as the Euclidean 

distance between the input vector and its corresponding weight vector: 
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and the output of the node in the hidden layer will be 1 if the Euclidean distance computed by 

Eq. (2) is shortest, and the other nodes will output 0.  

Similar to Eq. (6), the net input of the output layer is computed as the weighted sum of 

the hidden layer output: 
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where m denotes the ratio of the node count in the hidden layer to that in the output layer. 

The output of the node k in the output layer is 
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The correction of the synaptic weight ) in the input-to-hidden connections is updated by (H
ijw
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H
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where α is positive if the input pattern is classified correctly by Eq. (17), and negative 

otherwise.  The supervised training cycles will proceed until some stopping criterion is met. 

The classification of input patterns is launched by  
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The node with the minimal Euclidean distance will output 1, and the other nodes will output 

0.  Then the inferred output is 1 if the value of  is positive, or else the 

output is 0. 
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5. Probabilistic Neural Network 

The final network we will look into is the probabilistic neural network (PNN) [16-19].  

The inspiration of using this type of neural network comes from the gene selection method 

used before training stage in this work.  As pointed out in Section 2, the gene selection 

strategy given in Eq. (1) attempts to pick up the gene expressions with the characteristic of 

evident class distinction and better correlation, while the PNN models the Bayesian classifier 

[20-21] and tries to minimize the expected risk of classifying patterns in the wrong class.  

Thus, the PNN will perform well if the training and test data hold the feature mentioned 

above.   

Fig. 3 illustrates the architecture of a PNN network.  Note that the number of the nodes 
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in the pattern units as shown in Fig. 3 is identical to the counts of the training samples, and 

the synaptic weight ) in the input-to-pattern connections is  (P
ijw

( ) ( j
i

P
ij xw = ) , (20) 

where )  denotes the ith node input of the jth sample at the input layer. ( jxi
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Fig. 3. Architecture of a probabilistic neural network. 

As for the weight between the pattern and summation units )  can be expressed as (S
jkw

( )
( )



 =

=
else0

1 if1 j
kS

jk
T

w , (21) 

where the value of  is 1 only sample j is associated with class k, and 0's elsewhere.  ( )jTk

After the instantaneous training process as shown in Eqs. (20) and (21), the 

classification of input patterns can be initiated by computing the net input to the pattern units 

as follows: 
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Then the output of the pattern units is computed as 
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where σ is a smoothing parameter corresponding to the standard deviation of the Gaussian 

distribution.  Note that if the input is close to one or several training vectors of a single class, 

it is represented by one or several outputs at the pattern units that are close to 1. 

At the summation units, each node represents an individual class.  The output of each 

node can be expressed as 
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Then the output layer classifies the input vector into a specific one of k classes if that 

class had the maximum output value from the corresponding node at the summation units.  

6. Simulation Results 

We employ the gene selection method described in Section 2 to choose 50 informative 

genes for the training and test data, respectively, and apply three kinds of neural networks 

mentioned above on these data in turn.  Within the 72 leukemia samples, 38 samples are 

used for training, and the other 34 are for test of the classification.  Table 1 shows the 

comparison of prediction rate for different classifiers.  The test results show that the PNN 

network, which attains 100% prediction accuracy in both training and test data, indeed 

achieves the best performance as expected. 
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Table 1 Comparison of best prediction rate for different classifiers 

Type of Classifier Training Accuracy (%) Test Accuracy (%) 

Weighted Voting [1-2] 97.1 94.1 

MLP [3] 100 58 

MLP [4] 100 97.1 

SVM [4] 100 97.1 

KNN [4] 100 94.1 

Multi-domain Gating Network [5] 100 75 

Ellipsoid ARTMAP [6] 100 97.1 

Our MLP 100 94.1 

LVQ 100 94.1 

PNN 100 100 

 

7. Conclusion 

In order to predict the class of leukemia cancer, we have demonstrated the usefulness of 

three neural networks using an informative genes extraction method based on their 

correlation with the class distinction.  Experimental results show that the PNN network is 

most effective in classifying the type of leukemia cancer.  It yields 100% recognition 

accuracy and is well suited for the AAL/AML classification in cancer treatment.  The 

happening of the precise prediction is mainly contributed by the characteristic of manifest 

class distinction and the smaller spread around class means possessed by the test data.  Our 

future work will focus on applying the gene selection method and the PNN network on other 

datasets to observe the generality of this strategy. 

 12



REFERENCES 

[1] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. 
Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander, 
“Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene 
Expression Monitoring,” Science, vol. 286, pp. 531–537, 1999. 

[2] D. K. Slonim, P. Tamayo, J. P. Mesirov, T. R. Golub, and E. S. Lander, “Class prediction 
and discovery using gene expression data,” Proceedings of the Fourth Annual 
International Conference on Computational Molecular Biology, pp. 263–272, 2000. 

[3] A. Toure, and M. Basu, “Application of Neural Network to Gene Expression Data for 
Cancer Classification,” Proceedings of the 2001 International Joint Conference on 
Neural Networks, vol. 1, pp. 583–587, 2001. 

[4] J. Ryu, and S.-B. Cho, “Gene Expression Classification Using Optimal 
Feature/Classifier Ensemble with Negative Correlation,” Proceedings of the 2002 
International Joint Conference on Neural Networks, vol. 1, pp. 198–203, 2002. 

[5] Min Su, M. Basu, and A. Toure, “Multi-Domain Gating Network for Classification of 
Cancer Cells Using Gene Expression Data,” Proceedings of the 2002 International Joint 
Conference on Neural Networks, vol. 1, pp. 286–289, 2002. 

[6] R, Xu, G. Anagnostopoulos, and D. Wunsch, “Tissue Classification Through Analysis of 
Gene Expression Data Using A New Family of ART Architectures,” Proceedings of the 
2002 International Joint Conference on Neural Networks, vol. 1, pp. 300–304, 2002. 

[7] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini, 
“Tissue Classification with Gene Expression Profiles,” Proceedings of the Fourth 
Annual International Conference on Computational Molecular Biology, pp. 54–64, 
2000. 

[8] M. Kuramochi, and G. Karypis, “Classification Using Expression Profiles: A Feasibility 
Study,” Proceedings of the IEEE 2nd International Symposium on Bioinformatics and 
Bioengineering, pp. 191–200, 2001. 

[9] F. Azuaje, “Gene Expression Patterns and Cancer Classification: A Self-Adaptive and 
Incremental Neural Approach,” Proceedings of the 2000 IEEE EMBS International 
Conference on Information Technology Applications in Biomedicine, pp. 308–313, 2000. 

[10] F. Azuaje, “Making Genome Expression Data Meaningful: Prediction and Discovery of 
Classes of Cancer Through a Connectionist Learning Approach,” Proceedings of IEEE 
International Symposium on BioInformatics and Biomedical Engineering, pp. 208–213, 
2000. 

[11] J. Principe, N. Euliano, and W. Lefebvre, Neural and Adaptive Systems: Fundamentals 
Through Simulations, John Wiley & Sons, Inc., 2000. 

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Inc., 1999. 
[13] C. G. Looney, Pattern Recognition Using Neural Networks, Oxford University Press, 

 13



1997. 
[14] T. Kosaka, S. Omatu, and T. Fujinaka, “Bill Classification by Using the LVQ Method,” 

2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 
1430-1435, 2001. 

[15] T. Kosaka, S. Omatu, T. Fujinaka, H. Yanagimoto, and M. Yoshioka, “Italian Lira 
Classification by LVQ,” Proceedings of the 2001 International Joint Conference on 
Neural Networks, vol. 4, pp. 2947-2951, 2001. 

[16] D. F. Specht, “Probabilistic Neural Networks and the Polynomial Adaline as 
Complementary Techniques for Classification,” IEEE Trans. Neural Networks, vol. 1, 
no. 1, pp. 111-121, 1990. 

[17] P. K. Patra, M. Nayak, S. K. Nayak, and N. K. Gobbak, “Probabilistic Neural Network 
for Pattern Classification,” Proceedings of the 2002 International Joint Conference on 
Neural Networks, vol. 2, pp. 1200–1205, 2002. 

[18] D. S. Huang, and W. Zhao, “A Novel Method for Improving the Classification 
Capability of Radial Basis Probabilistic Neural Network Classifiers,” Proceedings of the 
2002 International Joint Conference on Neural Networks, vol. 1, pp. 102–106, 2002. 

[19] X. Jin, D. Srinivasan, and L. C. Ruey, “Classification of Freeway Traffic Patterns for 
Incident Detection Using Constructive Probabilistic Neural Networks,” IEEE Trans. 
Neural Networks, vol. 12. 1, no. 5, pp. 1173-1187, 2001. 

[20] M. B. Menhaj, F. Delgosha, “A Soft Probabilistic Neural Network for Implementation of 
Bayesian Classifiers,” Proceedings of the 2001 International Joint Conference on 
Neural Networks, vol. 1, pp. 454-458, 2001. 

[21] Y. Zhu, Y., Zhao, K., Palaniappan, X., Zhou, and X. Zhuang, “Optimal Bayesian 
Classifier for Land Cover Classification Using Landsat TM Data,” IEEE 2000 
International Geoscience and Remote Sensing Symposium, vol. 1, pp. 447-450, 2000. 

 14


