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ABSTRACT  
In this paper, a set of statistical properties is used 
to evaluate several well-known smoothing 
methods. We first propose a set of properties to 
analyze the statistical behaviors of these methods. 
Furthermore, we present a new smoothing method 
which complies with all the proposed properties. 
Finally, we implement three Mandarin language 
models and then evaluate the cross entropies on 
various size N. 
Keywords:Statistical properties, Smoothing  Method, 

Cross entr opy, Language models. 
 

1. Introduction 
Language models (LM) have been used in various 
tasks of natural language processing (NLP). An 
event can be regarded as a possible type of n-gram 
in LM, n>=1. We can calculate the probability for 
the each occurred event according to its count in 
corpora.  

It is important in NLP to compute the probability 
of a sequence of words                                   This 
probability will be denoted by                            We 
can use the chain rule of probability to decompose 
the probability: 

 
 
                                                                   (1) 
In practice, the probability should be estimated on 

the assumption that each word depends only on a 
limited number of preceding words. In the n-gram 
model, the conditional probability in Eq. (1) can be 
written as: 

                                                                   (2) 

 
where C(‧) denotes the count of an event in the 
training corpus. 

The probability P of Eq. (2) is the relative 
frequency and such a method of parameter 
estimation is called maximum likelihood estimation 
(MLE).  As shown in Eq (2), we can estimate the 
probability of a word sequence W with MLE.  

Because of zero count of an event, such a 
method will lead to the degradation of performance. 
For a given word wi-1 in bigram model, if a bigram wi-

1wi never occur in the training corpus, then C(wi-1wi) 
is equal to 0. It is apparent that Eq. (2) evaluates to 
zero. Yet an unseen event in a word sequence W 
does not mean that P(W) should be zero. The 
schemes used to resolve this problem are called 
smoothing. Smoothing methods are usually used to 
re-estimate the probability for each possible event. 
There are some well-known methods: Additive 
discount, Good-Turing, Witten-Bell, Absolute 
discount, and so on.   

 
2. Pre vious Smoothing Methods  
 
In this section, we review some famous 

smoothing methods and only consider n-gram 
Mandarin language models in our paper.  Let a type  
ti be a possible event in an n-gram model and C(ti) 
be the count (the number of times) that  type ti 
occurred in the training corpus. We use N to denote 
the number of occurrences of all the type, That is, 

                                                                     (3)  
Also we use B (bins) to denote the number of 

possible types. Then we have B=V, B=V2, and B=V3 
for the unigram, bigram, and trigram models, 
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correspondingly, where V is the vocabulary size (the 
number of Mandarin characters in our discussion). 

Additive smoothing method is intuitively simple. 
A small δ is added into all types (including all seen 
and unseen type s). Typically, 0<δ<=1. The case δ
=1 is called add-1 smoothing. The adjusted count c* 
is defined as:  
                                                                       (4) 
 

According to the previous experiments [1], the 
performance was usually degraded by using add-1 
smoothing. 

Good-Turing was first described by Good in 1953 
[2]. Some related works are [3] and [4]. Let nc 
denote the number of types with count c in the 
corpus. For example, n0 represent that the number of 
types with zero count and n1 means the number of 
types which exactly occur once. Therefore, nc will be 
described as: 

                                                                                   
  (5) 

 
Based on Good-Turing smoothing, the 

redistributed count c*will be presented in term of nc, 
nc+1 and c as: 

 
                       .                                                (6) 
 

We discuss two of five smoothing schemes 
introduced by Wetten-Bell1[6]; called W-B A and C. 
In method W-B A, just one count is allocated to the 
probability that an unseen bigram will occur next. 
The probability mass Pmass assigned to all unseen 
bigrams can be summed up to 1/(N+1). Let        be 
the smoothed probability of type ti in a training data 
od size N. Then, 

                                                        
                             

(7)  
  

where U is the number of unseen types, i.e.,  
 
                                                                       (8) 
 
     Each smoothed count c* in W-B C is described as:                                                                         
 

(9) 
 
 
 

                                                 
1 There are 5 methods in [6]; method A, B, C, P and X. We just 

discuss two of them (W-B A and C) in this paper. 

 
where S is the number of  kinds of seen types, i.e., 
 
                                                                      (10) 
 

The discounted probability will be expressed for 
seen bigrams as: 

                                                                          
(11) 

 
Absolute discount, introduced by authors of Ney 
and Essen [5], is an interpolating scheme and looks 
like method of Jelinek and Mercer [3]. The method 
interpolates the higher and lower order models; the 
higher order distribution will be calculated just 
subtracting a static discount D from each n-gram 
with non-zero count.  
                                                                            

3. Proposed Properties  
 

In this section, we propose five properties which can 
be regarded as statistical features. These properties 
will be further used to analyze the statistical 
behaviors of the smoothing methods.  
     Property 1: The smoothed probability for any 
one type ti should fall between 0 and 1 (0,1), which is 
described as: 
  

(12) 
 

Property 2: The summation of smoothed 
probability P* for all the types is necessarily equal to 
1 on any training size N. Total probability P is 
summed as:             
                                           ,                            (13) 
 
     Property 3: Let           be the smoothed probability of a 
type with count c on a training corpus of size N. That is, 
                                                                        (14)   

The smoothed probability assigned to the type ti 
with different count should satisfy all the following 
inequality  
equations:  

                 for c=0,1,2,… ,                        (15) 
   Inequality Eq. (15) describes the concept that 
smoothed probability for any type with same count 
should be the same. Instead, the probability for type t 
with count c+1 should be larger than that of type 
with count c. 

Property 4:  Comparing to the probability P prior 
to smoothing process, the smoothed probability P* for 
all types will be changed. Since we assign some 
probability to the unseen types, the smoothed 
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probability of he unseen types should be higher than 
zero obtained from MLE. Property 4 can be 
expressed as follows:                    

(16) 
                                                                   (17) 
 
Property 5: We have B=S+U for the language 

models. When the number of training size is 
Increased, all the smoothed probability Q* for type 
with same count on training size N+1 should be 
smaller than Q* on training size N. For instance, 
when an incoming type (say tnext) occurs, the training 
size is increase by one (now N=N+1). The smoothed 
probability Q* on N+1 training set should be less than 
the probability Q* on N for 0≥c , except the P* for 
the incoming bigram tnext.             .                                                            
     In other words, in addition to the P* of tnext at 
training size N+1, all other smoothed probability Q* at 
training size N+1 will be decreased than those at 
training size N. In summary, property 5 can be 
expressed as: 
 
                     ,                                                 (18)  

                      .                                                (19) 
 

4. Properties Analysis 
 

From the statistical points, smoothed probability for 
bigrams computed from various smoothing methods 
should still comply with these properties. Based on 
the statistical properties, we will analyze the 
rationalization of each smoothing models. For 
simplicity, only Good-Turing will be analyzed using 
five properties in this section. 
4.1 The Analysis of Good-Turing Smoothing 
Referring to Eq. (7), total number of smoothed count 
can be computed as:   

  
 

Properties 1, 2 and 3 do not hold. For instance, the 
following case:  nm is equal 0,                                  , 
and                                 (violate property 1 and 2). 
In such a case, it is obvious that:      
 
     Hence, the results also violate the property 3. 
     It is possible that one of nm for certain amount of 
training data set will be zero. The smoothed 
probability for unseen and seen bigrams with c 
counts, property 4 does not hold.  

When a new type  tnext is read in, then training size 
is increased by one (N=N+1). As shown in Eq. (6), 

the smoothed count                                  .    
Supposed that the type  tnext is ever seen with count c 
on training size N, upon the tnext appears, N=N+1, 
nc=nc-1 and nc+1=nc+1+1, the smoothed probability 
for types with c on training size N and N+1 can be 
computed as: 

                     and                               . 
 

Therefore, the ratio  of Q* is: 
                                          

                                    .                        (20) 
 

 
According to Eq. (18),               Therefore, Eq. 

(19) should be greater than 1. In fact, N>>nc and 
N>>nc+1 while Eq. (20) may be < 1 on certain 
situation. Hence, property 5 does not hold.  

For the type tnext, what is the relation between the 
smoothed probabilities P* on training size N and N+1?                                                                  

As we know: 
 
                          ,                                     .     
 
then: 

 
                                                                  .  (21) 
                                   

   
According to Eq. (19) of property 5, Eq. (21) 

should be less than 1. It is obvious that Eq. (21) may 
be greater than 1 in certain situations, while it is 
possibly less than 1. Therefore, property 5 does not 
hold. 
4.2  Our Smoothing Method and Its Properties 
We will propose a new smoothing method; Yu-
Huang (called Y-H hereafter) and then analyze the 
statistical behaviors of these methods.  

We describe another smoothing scheme; in which 
the probability mass for unseen bigrams is assigned 
Ud/(N+1). Consequently, it varied with N and U; the 
number of training data and types of unseen types.  

 The smoothed probabilities will be calculated as: 
 
                                                                    

(22)  
 
                                        

and    
  

       .                                                            (23) 
When computing the smoothed probability P*, our 

proposed method don’t employ interpolating scheme 
to combine the high order models with lower order 
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QQ NcNcmodels. As shown of Eq. (22), (N+1-Ud)/(N+1) is 
the normalization factor of Q* for seen types. The 
probabilities Q will be discounted by the 
normalization factor and then the remained Q* are 
redistributed to unseen types; which share uniformly 
the distributed probability mass Ud/(N+1) 

We will analyze further the statistical behaviors 
of Y-H smoothing. As shown in Eq. (22), the 
smoothed probabilities for seen and unseen types will 
be (0,1). Therefore, property 1 does hold. The total 
probabilities for seen and seen types can be summed 
as: 
 
 
 
 
    
   So, property 2 does hold. The smoothed probability 
Q* for bigrams with c and c+1 counts on training size 
n is calculated as follows. For c=0 and 1, 
 
 

                                                                   
(24)  

 
Due to the condition of d (see Eq. (22) ), Eq. (24) 

is larger than 0. For c>1,  
   

                                                                             

(25)  
 
      Eq. (25) will be less than 0. Referring to the 
results of Eqs. (24) and (25), we can conclude that 
property 3 does hold. Original and smoothed 
probability for types is as follows:                 
 
                                                                                       
 

(26)  

                                                                             

                                                                        (27) 
 
      As shown of Eq. (26) and (27), we can conclude 
that property 4 does hold. Finally, we analyze 
property 5. Smoothed probabilities for types with 
count c on N and N+1 training data are calculated as: 
              
 
 
 
 
 

                                                                                       
 

(28) 

Numerator (N+2-2Ud) should be larger than 0 
because d< (N+2)/2U. We can prove that Eq. (28) is 
greater than 0. From the results above, property 5 
does hold. 
4.3 Summary of the Properties 
In Table 1, the relationship between 6 smoothing 
methods and five proposed properties are shown. 
Among these smoothing methods, there isn’t any 
method which completely comply with 5 proposed 
properties. Additive discounting and W-B C don’ t 
comply only one of five properties. All other methods 
do not comply with more than two properties. 
However, Our smoothing Y-H does satisfy all 
properties.  Notations O and X denote the method 
does and does not comply with the property, 
respectively.  
 

Table 1:  The relationship of 6 methods and 
proposed statistical properties.    

 
5.   Evaluation of Cross Entropy 

5.1 Data Sets and Empirical Language Models  
In the following experiments, a text sources is used 
as data sets; the Mandarin news texts collected from 
Internet and divided into two parts; training set and 
test set. The html tags and all unnecessary symbols 
are extracted and there are about 30M(106) 
Mandarin characters of news texts.  

We construct three language models: Mandarin 
character unigrams, character bigrams and trigram 
model, to evaluate the cross entropy CH of 
smoothing methods discussed. The cross entropies of 
first two models are evaluated on various data size 
on ratio 4:1 of training and test sets, from 4M to 12M 
Mandarin characters. The third model employs 30M 
characters as training set (trigrams).  

In our experiments, δ=1 for additive smoothing 
and discount constant D =1 for absolute discount 
smoothing.  A set of cut-off value K on various 
training size N for Good-Turing is used to avoid the 

              property 
Method 

 
1 

 
2 

 
3 

 
4 

 
5 

Add-one discount O O O X O 
Good-Guring X X X X X 
Witten-Bell (A) O O O O X 
Witten-Bell (C) O O X O O 
Absolute discount O O X O X 
Yu-Huang O O O O O 
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failure (such as violating the properties in Section 3) 
of probability estimation. 

5.2 Results 
Figure 1~3 display three empirical results of cross 
entropies CH for six smoothing methods discussed in 
this paper. Basically, the method with lower cross 
entropy may perform better in NLP.   

Figure 1 gives the cross entropies for Mandarin 
characters unigram model. Although the difference 
of CH between various methods is not obvious, 
Good-Turing and Y-H methods have lower CH. 
The average of cross entropy is near 9.81. Figure 2 
shows Mandarin character model. For all methods, 
the cross entropies will decrease gradually on 
increasing training data set N. Among these methods, 
Good-Truing always obtains lower CH through  
different N by using a cut-off K. Our Yu-Huang 
obtains 17.8 in average and a little higher CH than 
that of Good-Truing, while lower than that of all 
other methods. Figure 3 shows trigram model on 
training size N=30M characters. Three methods; 
Good-Truing, W-B C and Yu-Huang, generate 
closer CH. It is apparent that Add-1 always obtains 
highest CH For both bigram and trigram models.   

 
 
 
 
 

 
 
 
 
 
Figure 1: Cross Entropies of 6 smoothing methods 

 for Mandarin character unigram. 
 

 
 
 
 
 
 
 
 
 
 
Figure 2: Cross Entropies of 6 smoothing methods 

for Mandarin character bigram. 
 
 
 

 
 
 
  
 
 
 
  
Figure 3: Cross Entropies of 6 smoothing methods 

for trigram on 30M Mandarin characters. 
  
6. Conclusion 
In the paper we propose 5 statistical properties to 
evaluate 5 well-known smoothing methods employed 
to solve the zero-count problem for language model. 
An effective smoothing method is also proposed and 
evaluated by these properties. For each method, 
every property is proven and 5 previous methods 
can’t satisfy these properties while our method 
satisfies all the properties; which presents the 
method will fit the application of NLP and holds 
better statistical behaviors. Based on the experiment 
results, our smoothing method always gets lower CH 
than three previous methods and almost equal to that 
of  Good-Truing smoothing method.   
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