
A Classifier Learning Scheme based on Rough Membership
and Genetic Programming

(Workshop G: Workshop on Artificial Intelligence)

Been-Chian Chien* and Jui-Hsiang Yang

Institute of Information Engineering

I-Shou University

1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung County,

Taiwan, 840, R.O.C.

E-mail: cbc@isu.edu.tw, m9003012@isu.edu.tw

TEL: +886-7-6577711 ext 6517

Fax: +886-7-6578944

and

Tzung-Pei Hong

Department of Electrical Engineering

National University of Kaohsiung

Kaohsiung, Taiwan, R.O.C.

E-mail: tphong@nuk.edu.tw

* To whom all correspondence should be sent

A Classifier Learning Scheme based on Rough Membership

and Genetic Programming

Abstract

Classification is one of the important research topics in knowledge discovery and

machine learning. A new classifier learning method using genetic programming has been

developed for classifying numerical data recently. However, it is difficult for a function-based

classifier to classify general nominal data, because nominal data may have possible large

distinct values with no ordering values. In this paper, we present a new scheme based on

rough set theory and genetic programming to learn a classifier from the data with both

nominal and numerical attributes. The proposed scheme first transforms the nominal data into

numerical values by rough membership functions. The classification functions then can be

generated by genetic programming easily. We use several URI data sets to show the

performance of the proposed scheme and make comparisons with other methods.

(Keywords: Knowledge discovery, Machine learning, Genetic programming, Classification,

Rough set)

 1

1. Introduction

Classification is one of the important tasks in machine learning. A classification problem

is a supervised learning that is given a data set with pre-defined classes referred as training

samples, then the classification rules, decision trees, or mathematical functions are learned

from the training samples to classify future data with unknown class. Owing to the versatility

of human activities and unpredictability of data, such mission is a challenge. For solving

classification problem, many different methods have been proposed. Most of the previous

classification methods are based on mathematical models or theories. For example, the

probability-based classification methods are built on the Bayesian decision theory [7][9]. The

Bayesian network is one of the important classification methods based on statistical model.

Many improvements of Naïve Bayes like NBTree [9] and SNNB [18] also provide good

classification results. Another well-known approach is neural network [20]. In the approach

of neural network, a multi-layered network with m inputs and n outputs is trained with a given

training set. We give an input vector to the network, and an n-dimensional output vector is

obtained from the outputs of the network. Then the given vector is assigned to the class with

the maximum output. The other type of classification approach uses the decision tree, such as

ID3 and C4.5 [16]. A decision tree is a flow-chart-like tree structure, which each internal

node denotes a decision on an attribute, each branch represents an outcome of the decision,

and leaf nodes represent classes. Generally, a classification problem can be represented in a

decision tree clearly.

Recently, some active techniques start to be applied by few researchers to develop new

classifiers. As an example, CBA [12] employs data mining techniques to develop a hybrid

rule-based classification approach by integrating classification rules mining with association

 2

rules mining. The evolutionary computation is the other one interesting technique. The most

common techniques of evolutionary computing are the genetic algorithm(GA) and the genetic

programming(GP) [5][8]. For solving a classification problem, the genetic algorithm first

encodes a random set of classification rules to a sequence of bit strings. Then the bit strings

will be replaced by new bit strings after applying the evolution operators such as reproduction,

crossover and mutation. After a number of evolving generations, the bit strings with good

fitness will be generated. Thus a set of effective classification rules can be obtained from the

final set of bit strings satisfying the fitness function. For the genetic programming, the

classifier can be accomplished in either two ways: classification rules [5] or classification

functions [8]. The main advantage of classifying by functions instead of rules is concise and

efficient, because computation of functions is easier than rules induction.

The technique of genetic programming (GP) was proposed by Koza [10][11] in 1987. The

genetic programming has been applied to several applications like symbolic regression, the

robot control programs, and classification, etc. Genetic programming can discover underlying

data relationships and presents these relationships by expressions. An expression is

constructed by terminals and functions. There are several types of functions can be applied to

the genetic programming:

1. Arithmetic operations: addition, subtraction, multiplication and division.

2. Trigonometric functions: Sine and Cosine, etc.

3. Conditional operators and Boolean operators: IF, ELSE and OR, etc.

4. Other add-on operations: Absolution, negative and other user-specific functions.

The algorithm of a genetic programming begins with a population that is a set of

randomly created individuals. Each individual represents a potential solution that is

 3

represented as a binary tree. Each binary tree is constructed by all possible compositions of

the sets of functions and terminals. A fitness value of each tree is calculated by a suitable

fitness function. According to the fitness value, a set of individuals having better fitness will

be selected. These individuals are used to generate new population in next generation with

genetic operators. Genetic operators generally also include reproduction, crossover, mutation

and others that are used to evolve functional expressions. After the evolution of a number of

generations, we can obtain an individual with good fitness value. If the fitness value of such

individual still does not satisfy the specified conditions of the solution, the process of

evolution will be repeated until the specified conditions are satisfied.

The previous researches on classification using genetic programming have shown the

feasibility of learning classification functions by designing an accuracy-based fitness function

[8] and special evolution operations[2]. However, there are two main disadvantages in the

previous work. First, only numerical attributes are allowed in calculating of functions. It is

difficult for genetic programming to handle the cases with nominal attributes containing

categorical data. The second drawback is that classification functions may conflict each other.

In this paper, we propose a new learning scheme that defines a rough attribute membership

function to solve the problems of nominal attributes and gives a distance-based fitness

function for genetic programming to generate a function-based classifier. Based on the

distance-based fitness function, an effective conflict resolution method is developed to

overcome the problem of conflicts. More than twenty datasets are selected from UCI data

repository to show the performance of the proposed scheme. We also compare the results with

other approaches including the statistical model, the decision tree and the association mining.

 4

This paper is organized as follows: Section 2 introduces the concepts of rough set theory

and rough membership functions. In Section 3, we discuss the proposed learning algorithm

based on rough attribute membership and genetic programming. In Section 4, we present the

conflicts resolution in the classification algorithm. Section 5 shows the experimental results.

Finally, conclusions are made in Section 6.

2. Rough Membership Functions

Rough sets introduced by Pawlak [14] is a powerful tool for the identification of

common attributes in data sets. The mathematical foundation of rough set theory is based on

the set approximation of partition space on sets. The rough sets theory has been successfully

applied to knowledge discovery in databases. This theory provides a powerful foundation to

reveal and discover important structures in data and to classify complex objects. An attribute-

oriented rough sets technique can reduce the computational complexity of learning processes

and eliminate the unimportant or irrelevant attributes so that the knowledge can be learned

from large databases efficiently.

The idea of rough sets is based on the establishment of equivalence classes on the given

data set S and supports two approximations called lower approximation and upper

approximation. The lower approximation of a concept X contains the equivalence classes that

are certain to belong to X without ambiguity. The upper approximation of a concept X

contains the equivalence classes that cannot be described as not belonging to X.

A vague concept description can contain boundary-line objects from the universe, which

cannot be with absolute certainty classified as satisfying the description of a concept. Such

uncertainty is related to the idea of membership of an element to a concept X. We use the

 5

following definitions to describe the membership of a concept X on a specified set of

attributes B [14].

Definition 1: Let U = (S, A) be an information system where S is a non-empty, finite set of

objects and A is a non-empty, finite set of attributes. For each B ⊆ A, a ∈ A, there is an

equivalence relation EA(B) such that

EA(B) = {(x, x’) ∈ S2 | ∀a ∈ B, a(x) = a(x’)}.

If (x, x’) ∈ EA(B), we say that objects x and x’ are indiscernible.

Definition 2: apr = (S, E), is called an approximation space. The object x ∈ S belongs to one

and only one equivalence class. Let

[x]B = { y | x EA(B) y, ∀x, y ∈ S },

[S]B = {[x]B | x∈S }.

The notation [x]B denotes equivalence classes of EA(B) and [S]B denotes the set of all

equivalence classes [x]B for x∈S.

Definition 3: For a given concept X ⊆ S, a rough attribute membership function of X on the

set of attributes B is defined as

|][|
|][|)(

B

BX
B x

Xxx ∩
= 　　µ .

|[x]B| denotes the cardinality of equivalence classes of [x]B. |[x]B∩X| denotes the

cardinality of the set [x]B∩X. The rough membership value)(xX
Bµ can be interpreted as the

 6

conditional probability that an object x belongs to X, given that the object belongs to [x]B. The

value of)(xX
Bµ is in the range of [0, 1].

3. The Learning Algorithm of Classification Functions

3.1 Classification Functions

Consider a given data set S, for a data xj such that xj∈S having n attributes A1, A2, …, An.

Let A = {A1, A2, …, An} and Ai∈R, for 1 ≤ i ≤ n . Assume that

),...,,(21 jnjjj vvvx = ,

where vjt ∈At stands for the t-th attribute of data xj in S. Let C = {C1, C2,…, CK} be the set of

K predefined classes. We may say that <xj, cj> is a sample if the data xj belongs to class cj,

cj∈C. We define a training set (TS) to be a set of samples,

TS = {<xj, cj>| xj ∈S , cj∈C, 1 ≤ j ≤ m}.

Where m=|TS| is the number of samples in TS, and mi is the number of samples belonging to

the class Ci,

∑
=

≤≤=
K

i
i Kimm

1
.1,　　

A classification function for class Ci, fi, is a function

,RR: →n
if

such that satisfies the following conditions:





≠<
=≥

ijji

ijji

Ccaxf
Ccaxf

　

　

if,)(
if,)(, where 1 ≤ i ≤ K, 1 ≤ j ≤ m.

A set of classification functions F for the set of class C is defined as

 7

}.1,RR:{ KiffF n
ii ≤≤→=

3.2 The Transformation of Rough Attributes Membership

The classification function defined in Section 3.1 has a limitation on attributes. Since the

calculation of functions allows only numerical values, it cannot work if dataset contained

nominal attributes. In order to apply the genetic programming to train the data set, we make

use of rough attribute membership as the definitions in Section 2 to transform the nominal

attributes into a set of numerical attributes.

For the set of n attributes A = {A1, A2, …, An}, a data xj ∈ S, xj = (vj1, vj2, ... , vjn), vji ∈ Ai.

If Ai is a numerical attribute, we have Ãi = {Ai}, let wjk be the value of Ãi, wjk = vji.

If Ai is a nominal attribute, we assume that S is partitioned into pi equivalence classes by

attribute Ai. Let [sl]Ai denote the l different partitions on attribute Ai, pi is the number of

partitions on the attribute Ai. Thus, we have

[S]Ai = ∪
i

ii

p

l
AlA sS

1
][][

=

= , where pi = |[S]Ai|.

We transform the original nominal attribute Ai into a set of K numerical attributes Ãi. Let

Ãi = {Ai1, Ai2, ... , AiK},

where K is the number of predefined classes C as defined in Section 3.1. Let the values of Ãi

be denoted as

(wjk, wj(k+1), ... , wj(k+K-1)), wik ∈ Aik.

For a data xj ∈ S, xj = (vj1, vj2, ... , vjn), vji ∈ Ai is a nominal attribute, we have

wjk =)(1
j

C
A x

i
µ , wj(k+1) =)(2

j
C
A x

i
µ , ... , wj(k+K-1)=)(j

C
A xK

i
µ ,

where

 8

|][|

|][][|
)(

j

kjk
i

Al

CjAl
j

C
A s

xs
x

∩
= 　　µ , if vji ∈ [sl]Ai.

After the transformation, we get the new set of attributes Ã and the value yj, as follows

∪
n

i
iAA

1

~~

=

= , yj = (wj1, wj2, …, wjn’),

where n’ = (n-r) + rK, r is the number of nominal attributes in A. Thus, the new training set

becomes

TS’ = {<yj, cj>| xj ∈S , cj∈C, 1 ≤ j ≤ m}.

3.3 The Fitness Function

The fitness value is important for genetic programming to evaluate an individual and

generate effective solutions. From the definition of claiming classification functions in

Section 3.1, we consider a classification function fi of a class Ci and a specified constant a.

For the positive instances <yj, cj>, cj = Ci in the training set TS’, we urge that fi(yj) ≥ a; on the

contrary, fi(yj) < a for negative instance <yj, cj>, cj ≠ Ci. To achieve the objective of fi, we

define two parameters p and q, let p > a, q < a and p + q = 2⋅a. We measure the error of a

positive instance by





<=−
≥=

=
ayfandCcifyfp
ayfandCcif

D
jiijji

jiij
p)()]([

)(0
2 　　　　

　　　　　　　　　
,

and measure the error of a negative instance by





≥≠−
<≠

=
ayfandCcifqyf
ayfandCcif

D
jiijji

jiij
n)(])([

)(0
2 　　　　

　　　　　　　　　
.

The fitness value of an individual is then evaluated by the following fitness function:

 9

fitness(hi, TS’) = ∑
=

+−
m

j
np DD

1
)(,

where m is the number of training samples, <yj, cj>∈TS’, 1 ≤ j ≤ m. Since the fitness value of

an individual represents the degree of error between target function and the individual, we

have the fitness value be as large as possible and approach to zero.

3.4 The Learning Algorithm

The learning algorithm for classification functions using genetic programming is

described in detail as follow:

Algorithm: The genetic programming for learning classification functions

Input: The training set TS

Output: A function with the best fitness value

Step 1: Initial value i = 1, k = 1.

Step 2: Transform nominal attributes into rough attribute membership values.

For a data xj ∈TS, xj = (vj1, vj2, …, vjn), for all 1≤ j ≤ m,

If Ai is a numerical attribute, wjk = vji, k = k + 1.

If Ai is a nominal attribute, wjk =)(1
j

C
A x

i
µ , wj(k+1) =)(2

j
C
A x

i
µ , ... , wj(k+K-1)=)(j

C
A xK

i
µ ,

k = k + K, repeat Step 2 until yj = (wj1, wj2, …, wjn’) is generated, n’ = (n-r) + rK, r is

the number of nominal attributes in A.

Step 3: The new training set TS’ = {<yj, cj>| yj = (wj1, wj2, …, wjn’) , cj ∈ C, 1 ≤ j ≤ m}.

Step 4: Initialize the population.

 10

Let gen = 1 and generate the set of individuals Ω1 = { 1
1h , 1

2h , …, 1
qh } initially, where

Ω(gen) is the population in the generation gen and)(gen
ih stands for the ith individual of

the generation gen.

Step 5: Evaluate the fitness value of each individual on the training set.

For all)(gen
ih ∈ Ω(gen), compute the fitness values)(gen

iE = fitness()(gen
ih , TS’), where the

fitness evaluating function fitness() is dependent on the problem and the function is

defined by the user.

Step 6: Does it satisfy the conditions of termination?

If the best fitness value of)(gen
iE satisfies the conditions of termination or the gen is

equal to the specified maximum generation, then the)(gen
ih with the best fitness value

is returned and the algorithm halts; otherwise, gen = gen + 1.

Step 7: Generate the next generation of individuals and go to Step 5.

The new population of next generation Ω(gen) is generated by the ratio of Pr, Pc and Pm,

goes to Step 5, where Pr, Pc and Pm represent the probabilities of reproduction,

crossover and mutation operations, respectively.

3.5 An Example

We give an example to explain the above learning algorithm more clearly. The example

used in Table 1 is the weather set. This data set concerns the conditions if it is suitable for

playing some unspecified game. The conditions consist of four nominal attributes: outlook,

temperature, humidity, and wind. The outcome is whether to play or not. The symbolic

categories in the four attributes, respectively, are:

 11

Table 1. The weather data set.

data outlook temperature humidity windy play
x1 sunny hot high false no
x2 sunny hot high true no
x3 overcast hot high false yes
x4 rainy mild high false yes
x5 rainy cool normal false yes
x6 rainy cool normal true no
x7 overcast cool normal true yes
x8 sunny mild high false no
x9 sunny cool normal false yes
x10 rainy mild normal false yes
x11 sunny mild normal true yes
x12 overcast mild high true yes
x13 overcast hot normal false yes
x14 rainy mild high true no

� outlook: {sunny, overcast, rainy},

� temperature: {hot, mild, cool},

� humidity: {high normal},

� windy: {true, false}.

We give an example for showing the learning algorithm for the class play = yes.

Step 1: Initial value i = 1, k = 1.

Step 2: Transform nominal attributes into rough attribute membership values.

Let A1 = {outlook}, [s1]A1 be the partition of outlook = sunny, [s2]A1 be the partition of

outlook = overcast, and [s3]A1 be the partition of outlook = rainy.

[s1]A1 = [x1]A1 = [x2]A1 = [x8]A1 = [x9]A1 = [x11]A11 = {x1, x2, x8, x9, x11},

[s2]A1 = [x3]A1 = [x7]A1 = [x12]A1 = [x13]A1 = {x3, x7, x12, x13},

[s3]A1 = [x4]A1 = [x5]A1 = [x6]A1 = [x10]A1 = [x14]A1 = {x4, x5, x6, x10, x14}.

 12

[S]A1={{x1, x2, x8, x9, x11}, {x3, x7, x12, x13}, {x4, x5, x6, x10, x14}}, p1 = |[S]A1| = 3.

Let A2 = {temperature}, [s1]A2 be the partition of temperature = hot, [s2]A2 be the

partition of temperature = mild, and [s3]A2 be the partition of temperature = cool.

[s1]A2 = [x1]A2 = [x2]A2 = [x3]A2 = [x13]A2 = {x1, x2, x3, x13},

[s2]A2 = [x4]A2 = [x8]A2 = [x10]A2 = [x11]A2 = [x12]A2 = [x14]A2 = {x4, x8, x10, x11, x12, x14},

[s3]A2 = [x5]A23 = [x6]A23 = [x7]A23 = [x9]A23 = {x5, x6, x7, x9}.

[S]A2={{x1, x2, x3, x13}, {x4, x8, x10, x11, x12, x14}, {x5, x6, x7, x9}}, p2 = |[S]A1| = 3.

Let A3 = {humidity}, [s1]A3 be the partition of humidity = high and [s2]A3 be the

partition of humidity = normal.

[s1]A3 = [x1]A3 = [x2]A3 = [x3]A3 = [x4]A3 = [x8]A3 = [x12]A3 = [x14]A3 = {x1, x2, x3, x4, x8, x12, x14},

[s2]A3 = [x5]A3 = [x6]A3 = [x7]A3 = [x9]A3 = [x10]A3 = [x11]A3 = [x13]A3 = {x5, x6, x7, x9, x10, x11, x13}.

[S]A3={{x1, x2, x3, x4, x8, x12, x14}, {x5, x6, x7, x9, x10, x11, x13}}, p3 = |[S]A3| = 2.

Let A4 = {windy}, [s1]A4 be the partition of windy = true, [s2]A4 be the partition of

windy = false.

[s1]A4 = [x2]A4 = [x6]A4 = [x7]A4 = [x11]A4 = [x12]A4 = [x14]A4 = {x2, x6, x7, x11, x12, x14}.

[s1]A4 = [x1]A4 = [x3]A4 = [x4]A4 = [x5]A4 = [x8]A4 = [x9]A4 = [x10]A4 = [x13]A4

= {x1, x3, x4, x5, x8, x9, x10, x13}.

[S]A4={{x2, x6, x7, x11, x12, x14}, {x1, x3, x4, x5, x8, x9, x10, x13}}, p4 = |[S]A4| = 2.

For C1: play = yes,

[x3]C1 = [x4]C1 = [x5]C1 = [x7]C1 = [x9]C1 = [x10]C1 = [x11]C1 = [x12]C1 = [x13]C1

= {x3, x4, x5, x7, x9, x10, x11, x12, x13}.

For C2: play = no,

[x1]C2 = [x2]C2 = [x6]C2 = [x8]C2 = [x14]C2 = {x1, x2, x6, x8, x14}.

 13

Table 2. The rough attribute membership values of the weather data.

 outlook temperature humidity wind play
Data wj1 wj2 wj3 wj4 wj5 wj6 wj7 wj8 Ci

y1 0.40 0.60 0.50 0.50 0.43 0.57 0.75 0.25 no
y2 0.40 0.60 0.50 0.50 0.43 0.57 0.50 0.50 no
y3 1.00 0.00 0.50 0.50 0.43 0.57 0.75 0.25 yes
y4 0.60 0.40 0.67 0.33 0.43 0.57 0.75 0.25 yes
y5 0.60 0.40 0.75 0.25 0.86 0.14 0.75 0.25 yes
y6 0.60 0.40 0.75 0.25 0.86 0.14 0.50 0.50 no
y7 1.00 0.00 0.75 0.25 0.86 0.14 0.50 0.50 yes
y8 0.40 0.60 0.67 0.33 0.43 0.57 0.75 0.25 no
y9 0.40 0.60 0.75 0.25 0.86 0.14 0.75 0.25 yes
y10 0.60 0.40 0.67 0.33 0.86 0.14 0.75 0.25 yes
y11 0.40 0.60 0.67 0.33 0.86 0.14 0.50 0.50 yes
y12 1.00 0.00 0.67 0.33 0.43 0.57 0.50 0.50 yes
y13 1.00 0.00 0.50 0.50 0.86 0.14 0.75 0.25 yes
y14 0.60 0.40 0.67 0.33 0.43 0.57 0.50 0.50 no

The number of nominal attributes n’ = 4×2 = 8.

4.0)(111
1
1

== xw C
Aµ , 6.0)(112

2

1
== xw C

Aµ ,

5.0)(113
1

2
== xw C

Aµ , 5.0)(114
2

2
== xw C

Aµ ,

43.0)(115
1

3
== xw C

Aµ , 57.0)(116
2

3
== xw C

Aµ ,

75.0)(117
1

4
== xw C

Aµ , 25.0)(118
2

4
== xw C

Aµ .

y1 = (w11, w12, …, w18) = (0.4, 0.6, 0.5, 0.5, 0.43, 0.57, 0.75, 0.25).

The final results are listed in Table 2.

Step 3: Let TS’={<yj, cj>| yj = (wj1, wj2, …, wj8) , cj ∈ C, 1 ≤ j ≤ 14}, listed as Table 2.

Step 4: Initialize the parameters.

 14

We set m = 14, a = 0, p = 100, and q = 100 for the fitness function. Initially, gen = 1,

we generate Ω1 = { 1
1h , 1

2h , …, 1
qh }. The set of positive instance of TS’ for classification

C1 is {y3, y4, y5, y7, y9, y10, y11, y12, y13}, and the set of negative instances is {y1, y2, y6,

y8, y14}.

Step 5: Evaluate the fitness values of each individual on the training set.

Assume that 1
1h = 50(wj1-wj2), we compute the fitness values 1

1E = fitness(1
1h , TS’).

The fitness value of the individual 1
1h is

∑
=

+−==
14

1

1
1

1
1)()',(

j
np DDTShfitnessE = -40400.

Step 6: Does it satisfy the conditions of termination?

For above case, if the best fitness value of)(gen
iE does not satisfy the condition of

termination, then gen = gen + 1 and go to Step 7. However, if the best fitness value of

)(gen
ih satisfies the condition,)(gen

ih is returned and the algorithm halts. After the

computing for a finite number of generations, we can get the solution. In this example,

the final function is as follows

fC1 = 100[(-(wj8-wj7)(wj3-wj4)+(wj1-wj2)+(wj5-wj6))-7.

By the same learning procedure, the classification function fC2 can be obtained:

]3)(12)(100)(54[
1

432187

4
2 +−+−+−−

=
jjjjjj

j
C wwwwww

w
f .

Step 7: Generate the next generation of individuals and go to Step 5.

The new population of next generation Ω(gen) is generated by the ratio of Pr, Pc and Pm

and goes to Step 5.

 15

4. The Classification Algorithm

After generating the classification functions, the task of classification becomes straight

and simple calculations of mathematical formulas. However, a classifier cannot recognize all

objects correctly in real applications generally. Except the case of misclassification, two

situations of conflict may occur. The first case is that an object is recognized by two or more

classification functions at the same time. The other case is that an object cannot be recognized

by any classification function. Under the above both situations, we cannot decide the exact

class while classifying an unknown object. A complete classifier will include a conflict

resolution method to solve the problem of conflict usually. The resolution in the proposed

scheme is based on the distance-based fitness values and Z-score of statistical test. We present

the resolution approach in the following.

For a classification function fi ∈ F and samples <yj, cj> ∈ TS’ with cj = Ci, let iX be the

mean of values of fi(yj), 1 ≤ j ≤ mi. That is,

.1,1,

)(
,,

Kimj
m

yf

X i
i

Cc
TScy

ji

i
ij

jj

≤≤≤≤=

∑
=
>∈<

　　
　　

For each iX , the standard deviation of values of fi(yj), 1 ≤ j ≤ mi, is defined as

.1,1,

))((
,,

2

Kimj
m

Xyf

i
i

Cc
TScy

iji

i
ij

jj

≤≤≤≤

−

=

∑
=
>∈<

　　
　　

σ

For a data x ∈ S and a classification function fi, let y ∈ S’ be the data with all numerical

values after transforming x using rough attribute membership. The Z-value of data y for fi is

defined as

 16

,
|)(|

)(
ii

iji
ji m

Xyf
yZ

σ

−
=

where, 1 ≤ i ≤ K. If one of the classification functions in F determines the class of the data y

uniquely, we complete the classifying task. However, once the data cannot be recognized by

any classification function or the data is recognized by more than two classification functions

in F, the Z-value will be applied to determine the class to which the data should be assigned.

The detailed classification algorithm is listed as follow.

Algorithm: The classification algorithm

Input: A data x

Output: The class Ck that x is assigned

Step 1: Initial value k = 1.

Step 2: Transform nominal attributes of x into numerical attributes.

Assume that the data x ∈S, x = (v1, v2, …, vn).

If Ai is a numerical attribute, wk = vi, k = k + 1.

If Ai is a nominal attribute, wk =)(1 xC
Ai

µ , wj(k+1) =)(2 xC
Ai

µ , ... , wj(k+K-1)=)(xK
i

C
Aµ ,

k = k + K, repeat Step 2 until y = (w1, w2, …, wn’) is generated, n’ = (n-r) + rK, r is the

number of nominal attributes in A.

Step 3: Initially, i = 1 and there exists a set Z such that Z = ∅.

Step 4: If fi(y) ≥ 0, that is, the data y is recognized by fi, then Z = {fi}∪Z.

Step 5: If i < K, then i = i + 1, go to Step 4. Otherwise, go to Step 6.

Step 6: Let |Z| be the number of functions in Z. If |Z| = 1, the unique class Ci corresponding to

the function fi in Z will be returned and stop; otherwise, go to Step 7.

 17

Step 7: If |Z| = 0, Z = F.

Step 8: Compute Zi(y), where fi ∈ Z.

Step 9: Find the)}({minarg yZk iZfi i∈
= , the data x will be assigned to the class Ck.

5. The Experimental Results

The proposed learning algorithm based on genetic programming is implemented by

modifying the GPQuick 2.1 [17]. The parameters used in our experiments are list in Table 3.

We define only four basic operations {+, -, ×, ÷} for final functions. That is, each

classification function contains only the four basic operations. The experimental data sets are

selected from UCI Machine Learning repository [1]. We take 20 data sets from the repository

totally including 3 nominal data sets, 7 composite data sets (with nominal and numeric

attributes), and 10 numerical data sets. For avoiding the missing values in attributes, we

modified some of data sets by deleting some objects and attributes with incomplete data into

our experimental data sets. The related information of the selected data sets is summarized in

Table 4.

Table 3. The parameters of GPQuick used in the experiments.

Parameter Value
Node mutate weight 43.5%
Mutate constant weight 43.5%
Mutate shrink weight 13%
Selection method Tournament
Tournament size 7
Crossover weight 28%
Crossover weight annealing 20%
Mutation weight 8%
Mutation weight annealing 40%
Population size 1000
Set of functions {+, -, ×, ÷}
Generations 5000

 18

Table 4. The information of data sets

 Original Characteristics Modified Characteristics
Attributes Attributes

Dataset nomina
l

numeri
c

Miss Classes Cases nomina
l

numeri
c

Classes Cases

australian 8 6 no 2 690 8 6 2 690
breast-w 0 10 yes 2 699 0 10 2 683

cleve 7 6 yes 2 303 7 6 2 296
diabetes 0 8 no 2 768 0 8 2 768
german 13 7 no 2 1000 13 7 2 1000
glass 0 9 no 7 214 0 9 7 214
heart 7 6 no 2 270 7 6 2 270
horse 15 7 yes 2 368 9 4 2 326

ionosphere 0 34 no 2 351 0 34 2 351
iris 0 4 no 3 150 0 4 3 150

labor 8 8 no 2 57 3 4 2 57
led7 7 0 no 10 3200 7 0 10 3200

lymph 18 0 no 4 148 18 0 4 148
pima 0 8 no 2 768 0 8 2 768
sick 22 7 yes 2 2800 22 1 2 2800

sonar 0 60 no 2 229 0 60 2 229
tic-tac-toe 9 0 no 2 958 9 0 2 958

vehicle 0 18 no 4 846 0 18 4 846
waveform 0 21 no 3 5000 0 21 3 5000

wine 0 13 no 3 178 0 13 3 178

The performance of the proposed classification scheme is evaluated by the average

classification error rate for 10 runs of 10-fold cross validation. We figure out the experimental

results and compare the effectiveness with different classification models in Table 5. These

models include statistical model like Naïve Bayes [4], NBTree[9], SNNB [18]; decision tree

based like C4.5 [16], and the association rule-based classifier CBA [12]. Since the proposed

GP-based classifier is random based, we also show the standard deviations in the table for

reference of readers.

 19

From the experimental results, we observed that the proposed method obtains lower error

rates than CBA in 11 out of the 20 domains, and higher error rates in 9 domains. It obtains

lower error rates than C4.5 Rules in 14 domains and higher error rates 6 domains. While

comparing our method with NBTree and SNNB, the result is in a tie. While comparing with

Naïve Bayes, the proposed method wins 12 domains and loses in 8 domains. Generally, the

classification results of proposed method is better than others on an average. However, in

some data sets, the test results in GP-based is much worse than others, for example, in the

“labor” data, we found that the average error rate is 23.1. The main reason of high error rate

terribly in this case is the small size of samples in the data set. The “labor” contains only 57

data totally and is divided into two classes. While the data with small size is tested in 10-fold

cross validation, the situation of overfit will occur between the two classification functions

easily. The other reason is that we delete some of the attributes for avoiding the problem of

missing values in data. Although the data may have missing values in only one or two

attributes of some objects, deleting entire the objects or attributes straight will decrease the

accuracy of classification. The results of data sets “horse” and “sick“ have the same effect as

“labor”. Nevertheless, the proposed GP-based classification scheme still have good results in

general.

 20

Table 5. Experimental results and comparisons.

GP-Based Dataset NB

[18]
NBTree

[18]
SNNB

[18]
C4.5
[18]

CBA
[18] Average S.D.

australian 14.1 14.5 14.8 15.3 14.6 13.1 0.6
breast-w 2.4 2.6 3.0 5.0 3.7 3.1 0.4

cleve 18.1 19.1 18.5 21.8 17.1 20.8 1.3
diabetes 24.1 24.1 24.1 25.8 25.5 25.5 1.7
german 24.5 24.5 26.2 27.7 26.5 17.3 0.8
glass 28.5 28.0 28.0 31.3 26.1 27.3 1.3
heart 18.1 17.4 18.9 19.2 18.1 14.4 0.4
horse 21.7 18.7 17.4 17.4 17.6 23.2 1.8

ionosphere 10.5 12.0 10.5 10.0 7.7 4.9 0.5
iris 5.3 7.3 5.3 4.7 5.3 4.2 0.8

labor 5.0 12.3 3.3 20.7 13.7 23.1 1.9
led7 26.7 26.7 26.5 26.5 28.1 23.4 2.1

lymph 19.0 17.6 17.0 26.5 22.1 17.9 1.6
pima 24.5 24.9 25.1 24.5 27.1 25.5 2.0
sick 4.2 22.1 3.8 1.5 2.8 11.7 0.7

sonar 21.6 22.6 16.8 29.8 22.5 16.5 0.9
tic-tac-toe 30.1 17.0 15.4 0.6 0.4 4.2 0.4

vehicle 40.0 29.5 28.4 27.4 31 31.4 2.2
waveform 19.3 16.1 17.4 21.9 20.3 17.7 1.5

wine 1.7 2.8 1.7 7.3 5.0 5.3 0.4

6. Conclusions

Classification is an important task in many applications. The technique of classification

using genetic programming is a new classification approach developed recently. However,

how to handling nominal attributes in genetic programming is a difficult problem. We

proposed a scheme based on the rough membership function to classify data with nominal

attribute using genetic programming in this paper. Furthermore, we give a conflict resolution

 21

mechanism for avoiding conflicting among classification functions. The experimental results

demonstrate that the proposed scheme is feasible. Although it is not so effective in some cases

of datasets, we are trying to find a new fitness function to improve the accuracy for any

possible datasets and cope with the data having missing values in the future.

References

[1] C. Blake, E. Keogh, C. J. Merz, UCI repository of machine learning database,

http://www.ics.uci.edu/~mlearn/MLReopsitory.html, Irvine, University of California,

Department of Information and Computer Science, 1998.

[2] M. Bramrier and W. Banzhaf, A Comparison of Linear Genetic Programming and Neural

Networks in Medical Data Mining, IEEE Transaction on Evolutionary Computation, Vol.

5, No. 1, Feb. pp. 17-26, 2001.

[3] B. C. Chien, J. Y. Lin, and T. P. Hong, Learning Discriminant Functions with Fuzzy

Attributes for Classification Using Genetic Programming, Expert Systems with

Applications, No. 23, pp. 31-37, 2002.

[4] R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis, New York: John Wiley,

1973.

[5] A. A. Freitas, A Genetic Programming Framework for Two Data Mining Tasks:

Classification and Generalized Rule Induction, Proceedings of the 2nd Annual

Conference Morgan Kaufmann, pp. 96-101, 1997.

[6] E. H. Han, G. Karypis, V. Kumar, Text Categorization Using Weight Adjusted k-nearest

Neighbor Classification, PhD thesis, University of Minnesota, 1999.

[7] D. Heckerman, M. P. Wellman, “Bayesian networks”, Communications of the ACM, Vol.

 22

38, No. 3, pp. 27-30, 1995.

[8] J. K. Kishore, L. M. Patnaik, V. K. Agrawal, Application of Genetic Programming for

Multicategory Pattern Classification, IEEE Transactions on Evolutionary Computation,

Vol. 4, No. 3, pp. 242-258, 2000.

[9] R. Kohavi, Scaling Up the Accuracy of Naïve-Bayes Classifiers: a Decision-Tree Hybrid.

Proceedings of the Second International Conference on Knowledge Discovery & Data

Mining, AAAI Press/MIT press, Cambridge/Menlo Park, pp. 202-207, 1996.

[10] J. R. Koza, Genetic Programming: “On the programming of computers by means of

Natural Selection”, MIT Press, 1992.

[11] J. R. Koza, Introductory Genetic Programming Tutorial, Genetic Programming 1996

Conference, Stanford University, 1996.

[12] B. Liu, W. Hsu, and Y. Ma, Integrating Classification and Association Rule Mining.

Proceedings of the Fourth International Conference on Knowledge Discovery and Data

Mining, pp. 443-447, 1998.

[13] T. Loveard and V. Ciesielski, Representing Classification Problems in Genetic

Programming, in Proceedings of the 2001 Congress on Evolutionary Computation, pp.

1070-1077, 2001.

[14] Z. Pawlak, Rough Sets, International Journal of Computer and Information Sciences, No.

11, pp. 341-356,1982.

[15] Z. Pawlak, A. Skowron, Rough Membership Functions, in: R.R. Yager and M. Fedrizzi

and J. Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence, pp. 251-

271, 1994.

[16] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

 23

[17] A. Singleton, Genetic Programming with C++, Byte, Feb. pp. 171-176, 1994.

[18] Z. Xie, W. Hsu, Z. Liu, M. L. Lee, SNNB: A Selective Neighborhood Based Naïve Bayes

for Lazy Learning, Proceedings of the sixth Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, pp. 104-114, 2002.

[19] Y. Y. Yao, S. K. M. Wong, A Decision Theoretic Framework for Approximating Concepts,

International Journal of Man-machine Studies, No. 37, pp. 793-809, 1992.

[20] G. P. Zhang, Neural Networks for Classification: a Survey, IEEE Transaction on Systems,

Man, And Cybernetics-Part C: Applications and Reviews, Vol.30, No. 4, pp. 451-462,

2000.

