
 1

A High-Speed Feature Selection Method

For Large Dimensional Data Set

Wei-Chou Chen, Ming-Chun Yang, Shian-Shyong Tseng*

Department of Computer and Information Science

National Chiao Tung University

Hsinchu 300, Taiwan, R. O. C.

E-mail: sstseng@cis.nctu.edu.tw

Abstract

Feature selection is about finding useful (relevant) features to describe an

application domain. The problem of finding the minimal subsets of Features that can

describe all of the concepts in the given data set is NP-hard. In the past, we had

proposed an feature selection method, that originated from rough set and bitmap

indexing techniques, to select the optimal (minimal) feature set for the given data set

efficiently. Although our method is sufficient to guarantee a solution’s optimality, the

computation cost is very high when the number of features is huge. In this paper, we

propose the nearly optimal feature selection method, called bitmap-based feature

selection method with discernibility matrix, which employs a discernibility matrix to

record the important features during the construction of the cleansing tree to reduce

the processing time. And the corresponding indexing and selecting algorithms for

such feature selection method are also proposed. Finally, some experiments and

comparisons are given and the result shows the efficiency and accuracy of our

proposed method.

Keywords: bitmap feature selection method, performance, feature selection, bitmap

indexing, rough set.

*Corresponding Author

 2

1. Introduction

 Feature selection is about finding useful (relevant) features to describe an

application domain. Generally speaking, the function of feature selection is divided

into three parts: (1) simplifying data description, (2) reducing the task of data

collection, and (3) improving the quality of problem solving. The benefits of having a

simple representation are abundant such as easier understanding of problems, and

better and faster decision-making. In the case of data collection, having less features

means that less data should be collected. As we know, collecting data is never an easy

job in many applications because it could be time-consuming and costly. Regarding

the quality of problem solving, the more complex the problem is if it has more

features to be processed. It can be improved by filtering out the irrelevant features that

may confuse the original problem, and it will win the better performance. There are

many discussions about feature selection, and many existing methods to assist it, such

as bit-wise indexing[2][3][4], GA technology [1][12], entropy measure[7][6], and

rough set theory[19][12].

 In the past, we had proposed an efficient feature selection method, that originated

from rough set and bitmap indexing techniques, to select the optimal (minimal)

feature set for the given data set. Although our method is sufficient to guarantee a

solution’s optimality, the computation cost is very high when the number of features is

huge. In this paper, we propose the nearly optimal feature selection method, called

bitmap-based feature selection method with discernibility matrix, which employs a

discernibility matrix to record the important features during the construction of the

cleansing tree to reduce the processing time. And the corresponding indexing and

selecting algorithms for such feature selection method are also proposed. Finally,

some experiments and comparisons are given and the result shows the efficiency and

 3

accuracy of our proposed method.

This paper is organized as follows. The reviews of the relative work are given in

Section 2. The bitmap-based feature selection method with discernibility matrix and

its corresponding definitions and algorithms are proposed in Section 3. In Section 4,

some experiments and discussions are made. At last, the conclusions are given in

Section 5.

2. Related Work

 Feature selection is about finding useful (relevant) features to describe an

application domain. The problem of feature selection can formally be defined as

selecting minimum features M’ from original M features where M’� M such that the

class distribution of M’ features is as similar as possible to M features [8]. Generally

speaking, the function of feature selection is divided into three parts: (1) simplifying

data description, (2) reducing the task of data collection, and (3) improving the quality

of problem solving. The benefits of having a simple representation are abundant such

as easier understanding of problems, and better and faster decision-making. In the

case of data collection, having less features means that less data should be collected.

As we know, collecting data is never an easy job in many applications because it

could be time-consuming and costly. Regarding the quality of problem solving, the

more complex the problem is if it has more features to be processed. It can be

improved by filtering out the irrelevant features that may confuse the original problem,

and it will win the better performance. There are many discussions about feature

selection, and many existing methods to assist it, such as bit-wise indexing[2][3][4],

GA technology [1][12], entropy measure[7][6], and rough set theory[19][12].

The rough set theory, proposed by Pawlak in 1982 [7], can serve as a new

 4

mathematical tool for dealing with data classification problems. It adopts the concept

of equivalence classes to partition training instances according to some criteria. Two

kinds of partitions are formed in the mining process: lower approximations and upper

approximations. Rough sets can also be used for feature reduction and the features

that do not contribute towards the classification of the given training data will be

removed. The problem of finding the minimal subsets of attributes that can describe

all of the concepts in the given data set is NP-hard. Thus, researchers proposed several

heuristic algorithms to reduce the computation time for such problem. In this paper, a

new, efficient feature selection method originated from rough set is proposed.

Moreover, the bitmap indexing techniques are also applied in this method for

accelerating the feature selection procedure.

The bitmap-based feature selection method is a feature selection method, that

originated from rough set and bitmap indexing techniques, to select the optimal

(minimal) feature set for the given data set efficiently. This method consists of Bitmap

Indexing Phase and Feature Selection Phase. In the Bitmap Indexing Phase, the target

table is first transformed into a bitmap indexing matrix with some further

classification information. In the Feature Selection Phase, a feature-based spanning

tree is first built for cleansing the bitmap indexing matrix and the cases with noisy

information are thus filtered out. After that, a class-based table generated from the

correct bitmap indexing matrix is built, and the bitwise operators "AND" and "OR"

are thus applied to get optimal feature sets for decision making. The flowchart of the

proposed method is shown in Figure 1.

 5

Bitmap Indexing

Cleansing

Feature
Combination

 FS = Ø

Feature Selection

Refined
Feature Selection

No

Yes

Bitmap Indexing
Phase

Feature Selection
Phase

Data

Output FS

Figure 1. Flowchart of bitmap-based feature selection method

3. Bitmap-based feature selection method

In Chapter 3, the bitmap-based feature selection method for feature selection is

proposed to combine features to check if the new feature set is good enough to solve

the problem. As we know, when the number of features is large, the optimal solution

becomes impractical. Although an exhaustive search is sufficient to guarantee a

 6

solution’s optimality, the computation cost is very high in many real problems.

Therefore, we propose the bitmap-based feature selection method with discernibility

matrix which employs a discernibility matrix to record the important features during

the construction of the cleansing tree to reduce the processing time. Based upon the

cleansing tree, the discernibility matrix of bitmap-based feature selection is generated

and the nearly optimal solution will be obtained. The flowchart of bitmap-based

feature selection method with discernibility matrix is shown in Figure 2.

 7

Bitmap Indexing

Cleansing with
Discernibi li ty

Matrix

Bitmap Indexing
Phase

Revise
Discernibili ty

Matrix

Feature Selection
Phase

FS = Union
Discernibili ty

Matrix

Data

Output FS

Figure 2. Flowchart of bitmap-based feature selection method with discernibility

matrix

The definitions of proposed method are described in detail in the following

sub-section.

3.1. Problem Definitions

 8

 Assume that there is a target table in a database, denoted as T. Set R is the set of

records in T, denoted as R= {R1, R2, …, Rn} where n is the number of records in T.

Assume C is the features domain of T, denoted as C={C1, C2, …, Cm} and m is the

number of features in T. All features except Cm, a decision feature, are condition

features. For each feature Cj of record Ri, its feature value is denoted as Vj(i) and Vj(i)

≠ null. Denote the feature value domain of Cj as Vj={Vj1, Vj2, …,Vj j
σ }, where each

element in Vj is a possible feature value of Cj and σj is the number of distinct values of

Cj. In the next two sub-sections, the bitmap indexing phase and feature selection

phase are described in detail with their corresponding definitions and algorithms.

3.2 Bitmap Indexing Phase

In this sub-section, the target table is first transformed into a bitmap indexing

matrix with some further classification information. Initially, denote ONEk and ZEROk

as the bit strings with length k, and all bits in the vector are set to 1 and 0 respectively.

Denote UNIQUEk as a bit string with length k, and only one bit in the vector is set to 1

and the others are set to 0. In Figure 3, the target table T which shows a dataset

containing ten records R={R1, R2, …, R10} and five features C={C1 ,C2 ,C3 ,C4} �

{ C5}, where C5 is a decision feature and others are condition features.

 C1 C2 C3 C4 C5
R1 M L 3 M 1
R2 M L 1 H 1
R3 L L 1 M 1
R4 L R 3 M 2
R5 M R 2 M 2
R6 L R 3 L 3
R7 H R 3 L 3
R8 H N 3 L 3

 9

R9 H N 2 H 2
R10 H N 2 H 1

Figure 3. Target table T

Definition 1: Record vector

The record vector Fjk.record is a bit string denoting the associated relationships

of the k-th feature value of feature Cj in record set R, where 1 ≤ j ≤ m. Fjk.record =

b1b2…bn. Set bi to 1 if Vj(i) equals to Vjk ; otherwise set bi to 0.

According to the definition of Record vector, the BelongToClass algorithm is

proposed to get the corresponding Class vector by given record vector.

Algorithm 1: BelongToClass

Input : Record vector Fjk.record

Output : Class vector classjk

Step 1: Set classjk to ZEROσm.

Step 2: For each i, where 1 ≤ i ≤ σm, set the i-th bit of classjk to 1 if the result

of using "AND" bitwise operator on recordjk and Fmi.record is not

equal to ZEROn; otherwise, set it to 0.

Step 3: Return classjk.

Definition 2: Class vector

The class vector Fjk.class is a bit string denoting the class distribution of

Fjk.record, where 1 ≤ j ≤ m and 1 ≤ k ≤ σj. Fjk.class = b1b2…b
m

σ , σm is the number of

distinct values of Cm. Class vector can be obtained via applying BelongToClass

algorithm.

 10

Definition 3: Feature-value vector

The feature-value vector Fjk consists of record vector and class vector with the

k-th feature value of the j-th feature, where 1 ≤ j ≤ m and 1 ≤ k ≤ σj.

Definition 4: A matrix of feature-value vectors

A matrix Mj of its feature-value vectors for feature Cj is denoted as

jj

j

j

F

F

F

σ

M

2

1

, where

σj is the number of distinct values of Cj.

Applying bitwise operator "OR" on all record vectors of feature-value vector in

Mj can get the ONEn vector, and applying bitwise operator "AND" on any two record

vectors of feature-value vector in Mj can get the ZEROn vector. According to the

above definitions and notations, it can be easily seen that Fj1.record OR Fj2.record

OR…OR Fj j
σ .record = ONEn, and Fja.record AND Fjb.record = ZEROn, where 1 ≤ a,b

≤ σj and a≠b. Obviously, Fj1.record XOR Fj2.record XOR …XOR Fj j
σ .record =

ZEROn.

Definition 5: A matrix of all features for a table T

A matrix TM of all features for a table T is denoted as

mM

M

M

M
2

1

, where m is the

number of the features.

 11

Example 1:

As shown in Figure 3, there are five features in the target table. According to

Definitions 4 and 5, the matrix TM is shown in Figure 4.

Feature Feature-value Record Class

F11 1100100000 110

F12 0011010000 111

M1

F13 0000001111 111

F21 1110000000 100

F22 0001111000 011

M2

F23 0000000111 111

F31 1001011100 111

F32 0110000000 100

M3

F33 0000100011 110

F41 1011100000 110

F42 0100000011 110

M4

F43 0000011100 001

F51 1110000001 100

F52 0001100010 010

M5

F53 0000011100 001

Figure 4. A matrix TM of five features for a table T

It’s necessary to keep the state of records for cleansing module in feature

selection phase. If a record is processed via cleansing module and the result shows it

should be further investigated, the record is valid; otherwise, the record is invalid.

Definition 6: Valid mask vector

The valid mask vector ValidMask is a bit string denoting whether the records of

 12

R are valid or not. ValidMask =b1b2…bn. Set bi to 1 if Ri is valid; otherwise set bi to 0,

where 1 ≤ i ≤ n. Initially, the ValidMask is set to ONEn.

As we can see, there are ten records in the target table T in Figure 3. The initial

valid mask vector is ValidMask = b1b2…b10 = "1111111111" = ONEn.

3.3 Feature Selection Phase

 The first step in Feature Selection Phase is a cleansing procedure. The difference

in cleansing procedure between bitmap-based feature selection method and

bitmap-based feature selection method with discernibility matrix is that the latter

completes the feature selection after a cleansing tree is generated. Thus, the

discernibility matrix is proposed to record the important features in cleansing module.

Unlike the original definitions of discernibility matrix in rough set which

concerns the relationship between records and features [7], we redefine the

class-based discernibility matrix to describe the relationship between classes and

features. The main idea is that the original discernibility matrix saves information

faithfully but may be time-consuming and space-waste, and feature-classes relation

seems to more intuitional to problem-solving. Thus we propose the new definition of

class-based discernibility matrix as below.

Definition 7: A class-based discernibility matrix

A class-based discernibility matrix D is denoted as

m
Cls

Cls

Cls

σ

M
2

1

, where Clsi is

 13

composed by (Cj, weightij) and weightij is the summary of Cj used to determine class i

where 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1.

Example 2.

 If there are four condition features and three classes, the possible class-based

discernibility matrix is shown in Figure 5. The weight11 and weight13 are 1 since the

first class needs one C1 and one C3 to determine. Similarly, the weight21 is 2, the

weight24 and weight31 are 1.

Cls1 Cls2 Cls3

(C1, 1)
(C2, 0)
(C3, 1)
(C4, 0)

(C1, 2)
(C2, 0)
(C3, 0)
(C4, 1)

(C1, 1)
(C2, 0)
(C3, 0)
(C4, 0)

Figure 5. A possible class-based discernibility matrix

Before the feature selection phase is triggered, the correctness of the target table

needs to be verified. In the target table, if there are some records with different

decision feature values but the same values of all condition features, these records

cannot be distinguished and thus are treated as noise. The first step of feature

selection phase is to filter out the noisy records from the target table. The intuitional

method to find out the inconsistent records in the target table is to compare every two

different records, it may take O(n2m) times, where n is the number of records and m is

the number of features. In order to reduce the time complexity of the above straight

forward method, a cleansing tree is proposed to decrease the time complexity to

O(nm).

A cleansing tree Ctree is a rooted tree (with root root[Tree]). The maximum of

height of the root[Tree] is m-1. Every node x has three pointers, including p[x],

 14

left-child[x] and right-sibling[x], which point to parent, to the leftmost child and to the

right sibling of x, respectively. Also, each node x contains some extra information; e.g.

record[x] and class[x] contained in node x indicate the associated record and class of x,

respectively. If node x has no child, then left-child[x] = NIL; if node x is the rightmost

child of its parent, then right-sibling[x] = NIL. A typical cleansing tree is shown in

Figure 6.

������ �����

������ ����� ������ ����� ������ �����

������ ����� ������ ����� ������ �����

����������

Figure 6. A cleansing tree structure

Definition 8: Spanned Feature Order

The spanned feature order O is a sequence consists with the m-1 condition

features {Cα1, Cα2,…,Cα(m-1)}, Cαi∈C-Cm, ∀Cαi and Cαj, Cαi≠Cαj, where 1 ≤ i ≤ m-1,

1 ≤ j ≤ m-1 and i ≠ j.

 In the cleansing tree Ctree, all nodes in the level i of root[Tree] are associated

with a unique condition feature Oi=Ck according to the Spanning Feature Order O,

where 1 ≤ i, k ≤ m-1. The spanned feature order O is initially set to <C1, C2,…,Cm-1>.

According to the above definitions, the Creating cleansing tree algorithm is proposed

to construct the cleansing tree.

 15

As we can see, a cleansing spanning tree with a better order can reduce the

space and time complexities. There are some famous tree structures for classification

such as decision tree [12], which is based on entropy theory to select the best feature

to span currently. In order to reduce the computational complexity for evaluating the

spanning order of features, the following heuristics are thus proposed.

Heuristic 1:

H1 : The more 1 bit the record vector has, the more weight the feature value has.

H2 : The more 1 bit the class vector has, the less weight the feature value has.

These two heuristics shows the relationship between feature values and classes.

If the feature value is contained in the most of records and only appears in the records

with a single class, the weight of this feature is thus relatively high. The following

SpanOrder algorithm is used to determine the spanned feature sequence O of all

condition features by evaluating the features weight according to Heuristic 1.

Algorithm 2: SpanOrder

Input : A bitmap indexing matrix TM

Output : Spanned feature order O.

Step 1: Initialize weightj ← 0, where 1 ≤ j ≤ m-1.

Step 2: For each Mj in TM, ∑
=

←
j

k jk

jk
j classFCount

recordFCount

n
weight

σ

1
2).(

).(1
, where

function Count(x) is used to count the number of 1 bit in bit vector x.

Step 3: Order Cj in O by weightj descent.

Step 4: Return O.

 16

According to TM in Figure 4, the weight of each feature is calculated in the

following and the spanning order is thus rearranged.

Feature Weight Old
order

New
order

C1 3/10*1/4+3/10*1/9+4/10*1/9=0.153 1 4
C2 3/10*1+4/10*1/4+3/10*1/9=0.433 2 2
C3 5/10*1/9+2/10*1+3/10*1/4=0.331 3 3
C4 4/10*1/4+3/10*1/4+3/10*1=0.475 4 1

After Creating cleansing tree algorithm is executed, the bitmap indexing matrix

TM in 3 with spanned feature order<C4, C2, C3, C1> can be used to generate the

cleansing tree. As we can see, the cleansing tree with new feature order O=<C4, C2,

C3, C1> in Figure 7 is much smaller than feature order O=<C1, C2, C3, C4> since the

explored node are decreased from 15 to 9. Therefore, the computational time of

generating and traversal the spanning tree can be largely reduced.

0000011100 00130100000011 11021011100000 1101

1010000000 1004 0001100000 0105 0000000011 1107

0000000011 1108

0100000000 1006

0000000011 1109

1111111111 111root

C4

C2

C3

C1

Figure 7. Cleansing tree with feature spanned order <C4, C2, C3, C1>

 17

 We create the cleansing tree with pre-selected feature order by SpanOrder

Algorithm. The algorithm, named Creating Cleansing Tree with Discernibility Matrix

Algorithm, filling in the class-based discernibility matrix in creating process. The

detail algorithms and examples are given as below.

Algorithm 3 Creating cleansing tree with discernibility matrix

Input : A bitmap indexing matrix TM, the valid mask ValidMask, spanned feature

order O.

Output : The valid mask ValidMask, the cleansing tree Tree, a class-based

discernibility matrix D.

Step 1: Initialize record[Tree[root]] ← ONEn, class[Tree[root]] ← ONEσm,

weightij← 0 for 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1 and r� 0 , dep← 0 where

dep is the depth of the active node x in the cleansing tree.

Step 2: x ← Allocate-Node(), x ←Tree[root].

Step 3: If class[x] = UNIQUEσm or dep = m-1, go to Step 6; otherwise, dep

← dep+1, do the following steps.

Step 4: For each Fjk in Mj, where Mj is the matrix of feature-value vectors of

Odep and 1 ≤ k ≤ σj. If record[x] & Fjk.record � ZEROn, do the

following sub-steps:

Step 4.1: y ← Allocate-Node().

Step 4.2: If r= 1, p[y] ← x, left_child[x] ← y, r� 0; otherwise p[y] ← p[x],

right_sibiling[x] ← y.

Step 4.3: record[y] ← record[p[y]] & Fjk.record,

 18

class[y] ←BelongToClass(record[y]).

Step 4.4: If record[y] ≠ record[p[y]], do the following sub-step:

Step 4.4.1: For each bi of class[y], weightij ← weightij+ 1 if bi is equal

to 1where 1 ≤ i ≤ σm.

 Step 4.5: x ← y.

Step 5: x ← left_child [p[x]]. Go to Step 3.

Step 6: If dep = m-1, do the following steps; otherwise, go to Step 8.

Step 7: ValidMask ← record[x] ^ ValidMask.

Step 8: If right_sibiling[x]=NIL, x ← p[x], dep ← dep-1 and do Step 9.

Otherwise go to Step 10.

Step 9: If x=Tree[root], return D, ValidMask and Tree; otherwise go to Step 8.

Step 10: x ← right_sibiling[x]. Go to Step 3.

Example 3

For the target table T given in Figure 3, a cleansing tree as shown in Figure 7 can

be obtained by applying Creating Cleansing Tree with Discernibility Matrix

Algorithm. When creating the tree, it fills in the class-based discernibility matrix D at

the same time. As the depth of the tree is one, there are three nodes, 1-st, 2-nd and3-rd

nodes, are all spanned by C4. The class value of 1-st node is "110", and the weight14

and in weight24 are increased by one since 1-st node is spanned by C4 which can

determine the first and second class. Similarly, the class value of 2-nd node is "110",

and the weight14 and in weight24 are all increased by one. The class value of 3-rd node

is "001", and weight34 is increased by one. The original class-based discernibility

matrix D is shown in Figure 8.

 19

Cls1 Cls2 Cls3

(C1, 0)
(C2, 3)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 2)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 0)
(C3, 0)
(C4, 1)

Figure 8. A class-based discernibility matrix

When any inconsistent record exists, it needs to cleanse the class-based

discernibility matrix to ensure no over-weighted. Thus, the Cleansing Discernibility

Matrix Algorithm is described as below.

Algorithm 4. Cleansing discernibility matrix

Input: The valid mask ValidMask, spanned feature order O, a class-based

discernibility matrix D, the cleansing tree Tree.

Output : A class-based discernibility matrix D.

Step 1: x ← Allocate-Node(), x ← left_child[Tree[root]] and dep ← 1 where

dep is the depth of the active node x in the cleansing tree.

Step 2: If (x = p[x]) go to Step 5; otherwise do the following steps

Step 3: If (record[x] & ValidMask) = record[x], go to Step 4; otherwise do

the following sub-steps:

Step 3.1: diffclass ← BelongToClass (record[x] & ValidMask) ^ class[x].

Step 3.2: weightij ← weightij -1, if the i-th bit of diffclass is equals to 1,

where 1 ≤ i ≤ σm and x is spanned by Odep, is equal to Cj.

Step 3.3: class[x] ← diffclass.

Step 3.4: Go to Step 5.

Step 4: If class[p[x]] =UNIQUEσm, weightij ← weightij -1, if the i-th bit of

 20

class[x] is equals to 1, where 1 ≤ i ≤ σm and x is spanned by Odep, is

equal to Cj. Otherwise go to Step 6.

Step 5: If left_child[x] = NIL, go to Step 6; otherwise x ← left_child[x], go to

Step 2.

Step 6: If right_sibiling[x] = NIL, x ← p[x], dep ← dep-1 and do Step 7.

Otherwise go to Step 8.

Step 7: If x=Tree[root], return D; otherwise go to Step 6.

Step 8: x ← right_sibiling[x]. Go to Step 2.

Example 4

Applying Cleansing discernibility matrix Algorithm on the cleansing tree shown

in Figure 7, the class value of 2-th node should be"100" not "110". Thus, the weight24

is decreased by one because of the spanning feature C4 and the second class wrong.

Finally, the cleansing class-based discernibility matrix is shown in Figure 9.

Cls1 Cls2 Cls3

(C1, 0)
(C2, 1)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 1)
(C3, 0)
(C4, 1)

(C1, 0)
(C2, 0)
(C3, 0)
(C4, 1)

Figure 9. A cleansing class-based discernibility matrix

 After constructing a class-based discernibility matrix, we can get the feature set

by uniting the class-based discernibility matrix. We propose a Union Class-Based

Discernibility Matrix Algorithm to do this job.

 21

Algorithm 5 Union class-based discernibility matrix

Input : A class-based discernibility matrix D

Output : The feature set FS

Step 1: For each Clsi in D.

 Step 2: For each weightij in Clsi. If weightij > 0, FS = FS �Cj.

 Step 3: Return FS

Example 5

According to Union Class-Based Discernibility Matrix Algorithm, the Cls1 is

first examined in D. FS is set to {C4, C2} since both weigh112 weight14 are grater than

0. Similarly, weigh122, weight24 and weigh134 are grater than 0 and FS is a union of

{C4}and {C2}, but FS is still {C4, C2}. Thus, {C4, C2} is our solution and feature

selection completes.

 As mentioned above, we find that the important features can be weighted in

class-based discernibility matrix when creating a cleansing tree. The order of feature

spanned is determined completely before the creating cleansing tree process, not

measured by each node dynamically. Since the measure will be more precise if the

feature spanned order is determined in each node, we propose a CurrestBestFeature

Algorithm to find the current best feature to span.

Algorithm 6 CurrentBestFeature

 22

Input : A bitmap indexing matrix TM, current node x, candidate features features.

Output : The condition feature Cj

Step 1: Initialize weightj � 0, where 1 ≤ j ≤ m-1.

Step 2: For each Mj in TM, ∑
=

←
j

k jk

jk
j classxclassFCount

recordxrecordFCount

n
weight

σ

1
2). &.(

). & .(1
, if

featuresC j ∈ .

Step 3: Return Cj with max weightj.

Algorithm 7 Creating cleansing tree with discernibility matrix and current best

feature

Input : A bitmap indexing matrix TM, the valid mask ValidMask

Output : The valid mask ValidMask, the cleansing tree Tree, a class-based

discernibility matrix D.

Step 1: Initialize record[Tree[root]] ��ONEn, class[Tree[root]]���ONEσm,

weightij←�
��
� 0 for 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1. r� 0. features ←

{C-Cm}, where features are the candidate features to span and C

is the feature domain of T. path ← ∅∅∅∅, where path is the sequence

of spanned features to active node x.

Step 2: x ��Allocate-Node(),�x �Tree[root].� �

Step 3: If class[x] � UNIQUEσm or dep = m-1, go to Step 7; otherwise, do

the following steps.

 23

Step 4: Call CurrentBestFeature(x, features) to get Cj, path ←path + Cj,

features ← features - Cj, and span all children of x using Mj.

Step 5: For each Fjk in Mj, where 1 ≤ k ≤ σj. If record[x] & Fjk.record �

ZEROn, do the following sub-steps:

Step 5.1: y ��Allocate-Node().

Step 5.2: If r= 1, p[y] ← x, left_child[x] ← y, r� 0; otherwise p[y] ← p[x],

right_sibiling[x] ← y.

Step 5.3: record[y] � record[p[y]] & Fjk.record,

class[y] �BelongToClass(record[y]).

Step 5.4: If record[y]�������� record[p[y]] and the i-th position of class[y] is

equals to 1 where 1 ≤ i ≤ σm, weightij ←����weightij+ 1.

 Step 5.5: x ��y.

Step 6: x ��left_child [p[x]]. Go to Step 3.

Step 7: If dep = m-1, do the following steps; otherwise, go to Step 9.

Step 8: ValidMask ��record[x] ^ ValidMask.

Step 9: If right_sibiling[x]=NIL, x � p[x], Cj ←last element in path,

features ← features + Cj, and do Step 10. Otherwise go to Step 11.

Step 10: If x=Tree[root], return D, ValidMask and Tree; otherwise go to Step 9.

Step 11: x ��right_sibiling[x]. Go to Step 3.

Example 6

 According to the Creating cleansing tree with discernibility matrix and current

best feature algorithm, it constructs a tree with the order of the feature with currently

highest weight. It first counts all feature weight and find the best feature to the root

node. According to CurrentBestFeature Algorithm, the weight of C1, C2, C3, C4, is

 24

"0.153", "0.433", "0.331", and "0.475" respectively. Thus, C4 will be selected and we

mark each spanning feature in the Figure 10.

0000011100 00130100000011 11021011100000 1101

1010000000 1004 0001100000 0105 0000000011 1107

0000000011 1108

0100000000 1006

0000000011 1109

1111111111 111root

C4

C2

C3

C1

C2

Figure 10. Cleansing tree with currently best spanned order

When creating the tree, it fills in the class-based discernibility matrix D at the

same time. The class value of 1-st node is "110", and the weight14 and in weight24 are

increased by one since 1-st node is spanned by C4 which can determine the first and

second class. Similarly, the class value of 2-nd node is "110", and the weight14 and in

weight24 are all increased by one since 2-nd node is also spanned by C4. The class

value of 3-rd node is "001", and weight34 are increased by one since 3-rd node is

spanned by C4 which can determine the third class. The original class-based

discernibility matrix D is shown as follows.

Cls1 Cls2 Cls3

(C1, 0)
(C2, 3)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 2)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 0)
(C3, 0)
(C4, 1)

According to Cleansing Discernibility Matrix Algorithm, the cleansing

class-based discernibility matrix is shown below.

 25

Cls1 Cls2 Cls3

(C1, 0)
(C2, 1)
(C3, 0)
(C4, 2)

(C1, 0)
(C2, 1)
(C3, 0)
(C4, 1)

(C1, 0)
(C2, 0)
(C3, 0)
(C4, 1)

Finally, applying Union Class-Based Discernibility Matrix Algorithm and

selected feature set FS is {C4, C2}. Thus, {C4, C2} is our solution and feature selection

completes. For the target table T, the solutions of two methods proposed in this

section are just the same. In fact, the solutions of them are not always the same.

4. Experiments

To evaluate the performance of our proposed method, we compare our methods

with other feature selection methods. Our target machine is a Pentium III 1G Mhz

processor system, running the Microsoft Windows 2000 multithreaded OS. The

system includes 512K L2 cache and 256 MB shared-memory.

In these experiments, several datasets are selected from the UCI Repository [12].

We choose datasets with various sorts to test if our method is robust. Some of datasets

are with known relevant features (Monks), some are with many classes (SoybeanL),

and some are with many instances (Mushroom). Each of them is described briefly as

below, and characteristics of the dataset used are shown in Figure 11.

• Monk1, Monk2, Monk3

There are three Monk's problems. The domains for all Monk's problems are the

same, which contain six condition features and two classes. Monk1 needs three,

 26

Monk2 needs all six, and Monk3 requires four features to describe the target concepts.

These datasets are used to show that relevant features should always be selected.

• Vote

This data set includes votes for each of the U.S. House of Representatives

Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac

(CQA). The dataset consists of 16 condition features, and 300 records.

• Mushroom

This data set includes descriptions of hypothetical samples corresponding to 23

species of gilled mushrooms in the Agaricus and Lepiota Family. The dataset consists

of 22 condition features, and 8124 records. Each feature can have 2 to 10 values, and

there is a feature having missing value.

• SoybeanL

The data set has 35 condition features to describe symptoms of 19 different

diseases in soybean plant. The values for attributes are encoded numerically, but all

have been nominalized. Each feature can have 3 to 6 values, and all but two features

have missing values.

Characteristics:

name : Database name

C : number of classes

M : number of condition features

N : number of records

miss : missing features (yes or no)

 27

Name C M N miss
Monk1 2 6 124 no
Monk2 2 6 169 no
Monk3 2 6 122 no
Vote 2 16 300 no
Mushroom 2 22 8124 yes
SoybeanL 19 35 683 yes

Figure 11. Experimental Dataset

In the following, the accuracy, number of selected feature set, and time issues

will be compared between our methods and the traditional rough set method. The

accuracy is measured by exams the classification results of the target table. If the

selected feature set can totally solve the problem without any error, 100% accuracy is

reached in this dataset; otherwise the accuracy is calculated by the number of records

which are successful in classification over the total number of records. At following,

we compare our proposed bitmap-based feature selection method with discernibility

matrix with different heuristic each other. The heuristics are named as overall best

feature and current best feature.

• Accuracy

We list the dataset name and the selected features for each method, respectively.

Both methods reach the 100% accuracy, and the result is shown in Figure 12. Note

that the selected features may result in various combination, we select the first

combination that can solve the problem (by alphabetical order) as the selected feature

set. The result shows that not all selected features of the two methods are the same,

and no definitely subset relation between them exists.

 28

 overall best feature current best feature
Dataset FS FS
Monk1 C1, C2, C5 C1, C2, C5
Monk2 C1-C6 C1-C6
Monk3 C1-C5 C1-C5
Vote C1-C12,C13,C16 C1-C4, C7-C13, C15-C16
Mushroom C5, C9, C11, C14, C15,

C19, C20, C21
C3, C5, C7, C8, C20

SoybeanL C1-C11, C13-C18, C21-
C26, C28-C31, C35

C1, C3-C7, C9-C10, C12-
C16, C18-C19, C22-C24,
C26, C29

Figure 12. Selected feature set for heuristic solution

• Selected feature set number

The selected feature number is shown in Figure 13. Generally speaking,

bitmap-based feature selection method with discernibility matrix and current

best feature gets the smaller feature set size than bitmap-based feature selection

method with discernibility matrix, and that meets our expectation.

Dataset overall best feature current best feature
Monk1 3 3
Monk2 6 6
Monk3 5 5
Vote 14 13
Mushroom 8 5
SoybeanL 28 20

Figure 13 Selected feature set number for heuristic solution

• Time

In Figure 14, the processing time from cleansing to final output had been

evaluated, and the unit is second. The time is rounded to 0 if the real time is less

than 0.001 seconds.

 29

Dataset overall best feature current best feature
Monk1 0 0
Monk2 0 0
Monk3 0 0
Vote 0 0
Mushroom 0.01 0.02
SoybeanL 0.01 0.09

Figure 14 CPU time for heuristic solution

It’s surprised that both of our proposed heuristic methods are extremely fast.

Even processing the complex dataset such like Mushroom and SoybeanL, the time

increases a little. That is good news for us due to the great scalability.

Moreover, we list all proposed methods to evaluate the quality of our proposed

heuristic methods. As we can see in Figure 15, the bitmap-based feature selection

method with discernibility matrix and bitmap-based feature selection method with

discernibility matrix and current best feature result in the larger size of selected

features than bitmap-based feature selection method and the traditional rough set, but

when is closer to optimal solution.

Dataset Traditional
RS

Bitmap-based Bitmap-based
and overall best
feature

Bitmap-based
and current best
feature

Monk1 3 3 3 3
Monk2 6 6 6 6
Monk3 4 4 5 5
Vote 8 8 14 13
Mushroom 4 4 8 5
SoybeanL - 28 20

Figure 15. The number of selected feature for proposed methods

In addition, we list all proposed methods to evaluate the performance of our

proposed heuristic methods in Figure 16. And the more complex the dataset it is, the

 30

more superiority the result shows.

Dataset Traditional
RS

Bitmap-based Bitmap-based and
overall best
feature

Bitmap-based
and current best
feature

Monk1 0.01 0 0 0
Monk2 0.04 0 0 0
Monk3 0.01 0 0 0
Vote 21.511 1.983 0 0
Mushroom 225.424 21.531 0.01 0.02
SoybeanL - - 0.01 0.09

Figure 16. CPU time of proposed methods

To summarize, the bitmap-based feature selection method with discernibility

matrix and current best feature seems to be a method with fast processing time and

will get the nearly optimal feature set.

5. Conclusion and Future Work

In this paper, we propose the nearly optimal feature selection method, which

employs a discernibility matrix to record the important features during the

construction of the cleansing tree to reduce the processing time. And the

corresponding indexing and selecting algorithms for such feature selection method are

also proposed. Finally, some experiments and comparisons are given and the result

shows the efficiency and accuracy of our proposed method.

In this paper, a high-speed feature selection method for large dimension space,

called bitmap-based feature selection method with discernibility matrix, has been

proposed for discovering the nearly optimal feature sets for decision–making

problems. Using such selection method, the values of features are not only encoded

into bitmap indices for searching the solution efficiently but also using the class-based

 31

discernibility matrix for reducing the searching time. Also, the corresponding

indexing and selecting algorithms are described for proposed method. Finally, some

experiments are given and comparisons to show the efficiency and accuracy.

In the future, the appropriated methodologies to smooth the distinct numeric

values to symbolic ones will be further investigated. Moreover, we will attempt to

design a mechanism to integrate our proposed methods to evaluate properties of

giving dataset and then automatically selects appropriate method for optimal or

near-optimal solution.

References

[1] R. Barletta, "An introduction to case-based reasoning", AI Expert, Vol. 6, No.8,

pp.42-49, 1991.

[2] W. C. Chen, S. S. Tseng, J. H. Chen, M. F. Jiang, "A Framework of Feature

Selection for the Case-based Reasoning", Proceeding of IEEE International

Conference on Systems, Man, and Cybernetics, 2000.

[3] W. C. Chen; S. S. Tseng; L. P. Chang, M. F. Jiang, “A Similarity Indexing

Method for the Data Warehousing-Bit-wise Indexing Method,” Proceeding of

PAKDD 2000, 2000.

[4] W. C. Chen; S. S. Tseng; L. P. Chang, T. P. Hong, “A parallelized indexing

method for large-scale case-based reasoning,” accepted and to appear in Expert

System with Applications, 2002.

[5] A. Gonzalez, R. Perez, "Selection of Relevant Features in a Fuzzy Genetic

Learning", IEEE Transaction on SMC-Part B, Vol. 31, No. 3, June 2001.

[6] M. Last, A. Kandel, O. Maimon, "Information theoretic algorithm for feature

selection", Pattern Recognition Letter, Vol. 22, pp.799-811, 2001.

[7] H. M. Lee, C. M. Chen, J. M. Chen, Y. L. Jou, "An Efficient Fuzzy Classifier

 32

with Feature Selection Based on Fuzzy Entropy", IEEE Transaction on

SMC-Part B, Vol. 27, No. 2, April 1997.

[8] H. Liu, R. Setiono, "Incremental Feature Selection", Applied Intelligence 9,

pp.217-230, 1998

[9] P. O’Neil; D. Quass, “Improved Query Performance with Variant Indexes,”

Proceeding of SIGMOD, Tucson, AZ, May, 1997

[10] Z. Pawlak, "Rough set", International Journal of Computer and Information

Sciences, pp.341-356, 1982.

[11] Z. Pawlak. "Rough Sets, Theoretical Aspects of Reasoning about Data", Boston,

MA: Kluwer Academic Publishers, 1991.

[12] J. Quinlan, "Introduction of decision trees", Machine Learning, Vol.1, No. 1,

pp.81-106, 1986.

[13] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, "Dimensionality

Reduction Using Genetic Algorithm", IEEE Transaction on Evolutionary

Computation, Vol. 4, No. 2, July 2000.

[14] UCI Repository : http://www.ics.uci.edu/~mlearn/MLRepository.html

[15] A. Skowron, C. Rauszer, "The discernibility matrics and functions in information

systems", Intelligent Decision Support, pp.331-362, 1992.

[16] I. Watson, "Case-based reasoning is a methodology not a technology",

Knowledge-Based Systems, Vol. 12, pp.303-308, 1999.

[17] M. C. Wu, P. B. Alejandro, "Encoded Bitmap Indexing for Data Warehouses",

Data Engineering 1998 Proceedings, pp.220-230, 1998.

[18] Y. Yang, T. C. Chiam, "Rule Discovery Based on Rough Set Theory",

Information Fusion, FUSION 2000. Proceedings of the Third International

Conference on , Vol. 1 , pp. TuC4_11 -TuC4_16, 2000.

[19] N. Zhong, J. Dong, S. Ohsuga, "Using Rough Sets with Heuristics for Feature

 33

Selection", Journal of Intelligent Systems, 16, 199-214, 2001.

