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Abstract 

Feature selection is about finding useful (relevant) features to describe an 

application domain. The problem of finding the minimal subsets of Features that can 

describe all of the concepts in the given data set is NP-hard. In the past, we had 

proposed an feature selection method, that originated from rough set and bitmap 

indexing techniques, to select the optimal (minimal) feature set for the given data set 

efficiently. Although our method is sufficient to guarantee a solution’s optimality, the 

computation cost is very high when the number of features is huge. In this paper, we 

propose the nearly optimal feature selection method, called bitmap-based feature 

selection method with discernibility matrix, which employs a discernibility matrix to 

record the important features during the construction of the cleansing tree to reduce 

the processing time. And the corresponding indexing and selecting algorithms for 

such feature selection method are also proposed. Finally, some experiments and 

comparisons are given and the result shows the efficiency and accuracy of our 

proposed method.  

Keywords: bitmap feature selection method, performance, feature selection, bitmap 

indexing, rough set. 
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1. Introduction 

 

 Feature selection is about finding useful (relevant) features to describe an 

application domain. Generally speaking, the function of feature selection is divided 

into three parts: (1) simplifying data description, (2) reducing the task of data 

collection, and (3) improving the quality of problem solving. The benefits of having a 

simple representation are abundant such as easier understanding of problems, and 

better and faster decision-making. In the case of data collection, having less features 

means that less data should be collected. As we know, collecting data is never an easy 

job in many applications because it could be time-consuming and costly. Regarding 

the quality of problem solving, the more complex the problem is if it has more 

features to be processed. It can be improved by filtering out the irrelevant features that 

may confuse the original problem, and it will win the better performance. There are 

many discussions about feature selection, and many existing methods to assist it, such 

as bit-wise indexing[2][3][4], GA technology [1][12], entropy measure[7][6], and 

rough set theory[19][12]. 

 In the past, we had proposed an efficient feature selection method, that originated 

from rough set and bitmap indexing techniques, to select the optimal (minimal) 

feature set for the given data set. Although our method is sufficient to guarantee a 

solution’s optimality, the computation cost is very high when the number of features is 

huge. In this paper, we propose the nearly optimal feature selection method, called 

bitmap-based feature selection method with discernibility matrix, which employs a 

discernibility matrix to record the important features during the construction of the 

cleansing tree to reduce the processing time. And the corresponding indexing and 

selecting algorithms for such feature selection method are also proposed. Finally, 

some experiments and comparisons are given and the result shows the efficiency and 
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accuracy of our proposed method.  

This paper is organized as follows. The reviews of the relative work are given in 

Section 2. The bitmap-based feature selection method with discernibility matrix and 

its corresponding definitions and algorithms are proposed in Section 3. In Section 4, 

some experiments and discussions are made. At last, the conclusions are given in 

Section 5.  

 

2. Related Work 

 

 Feature selection is about finding useful (relevant) features to describe an 

application domain. The problem of feature selection can formally be defined as 

selecting minimum features M’ from original M features where M’� M such that the 

class distribution of M’ features is as similar as possible to M features [8]. Generally 

speaking, the function of feature selection is divided into three parts: (1) simplifying 

data description, (2) reducing the task of data collection, and (3) improving the quality 

of problem solving. The benefits of having a simple representation are abundant such 

as easier understanding of problems, and better and faster decision-making. In the 

case of data collection, having less features means that less data should be collected. 

As we know, collecting data is never an easy job in many applications because it 

could be time-consuming and costly. Regarding the quality of problem solving, the 

more complex the problem is if it has more features to be processed. It can be 

improved by filtering out the irrelevant features that may confuse the original problem, 

and it will win the better performance. There are many discussions about feature 

selection, and many existing methods to assist it, such as bit-wise indexing[2][3][4], 

GA technology [1][12], entropy measure[7][6], and rough set theory[19][12]. 

The rough set theory, proposed by Pawlak in 1982 [7], can serve as a new 
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mathematical tool for dealing with data classification problems. It adopts the concept 

of equivalence classes to partition training instances according to some criteria. Two 

kinds of partitions are formed in the mining process: lower approximations and upper 

approximations. Rough sets can also be used for feature reduction and the features 

that do not contribute towards the classification of the given training data will be 

removed. The problem of finding the minimal subsets of attributes that can describe 

all of the concepts in the given data set is NP-hard. Thus, researchers proposed several 

heuristic algorithms to reduce the computation time for such problem. In this paper, a 

new, efficient feature selection method originated from rough set is proposed. 

Moreover, the bitmap indexing techniques are also applied in this method for 

accelerating the feature selection procedure.  

The bitmap-based feature selection method is a feature selection method, that 

originated from rough set and bitmap indexing techniques, to select the optimal 

(minimal) feature set for the given data set efficiently. This method consists of Bitmap 

Indexing Phase and Feature Selection Phase. In the Bitmap Indexing Phase, the target 

table is first transformed into a bitmap indexing matrix with some further 

classification information. In the Feature Selection Phase, a feature-based spanning 

tree is first built for cleansing the bitmap indexing matrix and the cases with noisy 

information are thus filtered out. After that, a class-based table generated from the 

correct bitmap indexing matrix is built, and the bitwise operators "AND" and "OR" 

are thus applied to get optimal feature sets for decision making. The flowchart of the 

proposed method is shown in Figure 1.  
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Figure 1. Flowchart of bitmap-based feature selection method 

 

 

3. Bitmap-based feature selection method 

 

In Chapter 3, the bitmap-based feature selection method for feature selection is 

proposed to combine features to check if the new feature set is good enough to solve 

the problem. As we know, when the number of features is large, the optimal solution 

becomes impractical. Although an exhaustive search is sufficient to guarantee a 
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solution’s optimality, the computation cost is very high in many real problems. 

Therefore, we propose the bitmap-based feature selection method with discernibility 

matrix which employs a discernibility matrix to record the important features during 

the construction of the cleansing tree to reduce the processing time. Based upon the 

cleansing tree, the discernibility matrix of bitmap-based feature selection is generated 

and the nearly optimal solution will be obtained. The flowchart of bitmap-based 

feature selection method with discernibility matrix is shown in Figure 2. 
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Figure 2. Flowchart of bitmap-based feature selection method with discernibility 

matrix 

 

The definitions of proposed method are described in detail in the following 

sub-section. 

 

3.1. Problem Definitions 
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 Assume that there is a target table in a database, denoted as T. Set R is the set of 

records in T, denoted as R= {R1, R2, …, Rn} where n is the number of records in T. 

Assume C is the features domain of T, denoted as C={C1, C2, …, Cm} and m is the 

number of features in T. All features except Cm, a decision feature, are condition 

features. For each feature Cj of record Ri, its feature value is denoted as Vj(i) and Vj(i) 

≠ null. Denote the feature value domain of Cj as Vj={Vj1, Vj2, …,Vj j
σ }, where each 

element in Vj is a possible feature value of Cj and σj is the number of distinct values of 

Cj. In the next two sub-sections, the bitmap indexing phase and feature selection 

phase are described in detail with their corresponding definitions and algorithms. 

 

3.2 Bitmap Indexing Phase 

 

In this sub-section, the target table is first transformed into a bitmap indexing 

matrix with some further classification information. Initially, denote ONEk and ZEROk 

as the bit strings with length k, and all bits in the vector are set to 1 and 0 respectively. 

Denote UNIQUEk as a bit string with length k, and only one bit in the vector is set to 1 

and the others are set to 0. In Figure 3, the target table T which shows a dataset 

containing ten records R={R1, R2, …, R10} and five features C={C1 ,C2 ,C3 ,C4} � 

{ C5}, where C5  is a decision feature and others are condition features. 

 

 C1 C2 C3 C4 C5 
R1 M L 3 M 1 
R2 M L 1 H 1 
R3 L L 1 M 1 
R4 L R 3 M 2 
R5 M R 2 M 2 
R6 L R 3 L 3 
R7 H R 3 L 3 
R8 H N 3 L 3 
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R9 H N 2 H 2 
R10 H N 2 H 1 

Figure 3. Target table T 

 

Definition 1: Record vector 

The record vector Fjk.record is a bit string denoting the associated relationships 

of the k-th feature value of feature Cj in record set R, where 1 ≤ j ≤ m. Fjk.record = 

b1b2…bn. Set bi to 1 if Vj(i) equals to Vjk ; otherwise set bi to 0. 

 

According to the definition of Record vector, the BelongToClass algorithm is 

proposed to get the corresponding Class vector by given record vector. 

 

Algorithm 1: BelongToClass 

Input : Record vector Fjk.record 

Output : Class vector classjk 

Step 1: Set classjk to ZEROσm. 

Step 2: For each i, where 1 ≤ i ≤ σm, set the i-th bit of classjk to 1 if the result 

of using "AND" bitwise operator on recordjk and Fmi.record is not 

equal to ZEROn; otherwise, set it to 0. 

Step 3:  Return classjk. 

 

Definition 2: Class vector 

The class vector Fjk.class is a bit string denoting the class distribution of 

Fjk.record, where 1 ≤ j ≤ m and 1 ≤ k ≤ σj. Fjk.class = b1b2…b
m

σ , σm is the number of 

distinct values of Cm. Class vector can be obtained via applying BelongToClass 

algorithm. 



 10

 

Definition 3: Feature-value vector 

The feature-value vector Fjk consists of record vector and class vector with the 

k-th feature value of the j-th feature, where 1 ≤ j ≤ m and 1 ≤ k ≤ σj. 

 

Definition 4: A matrix of feature-value vectors 

A matrix Mj of its feature-value vectors for feature Cj is denoted as





















jj

j

j

F

F

F

σ

M

2

1

, where 

σj is the number of distinct values of Cj.  

 

Applying bitwise operator "OR" on all record vectors of feature-value vector in 

Mj can get the ONEn vector, and applying bitwise operator "AND" on any two record 

vectors of feature-value vector in Mj can get the ZEROn vector. According to the 

above definitions and notations, it can be easily seen that Fj1.record OR Fj2.record 

OR…OR Fj j
σ .record = ONEn, and Fja.record AND Fjb.record = ZEROn, where 1 ≤ a,b 

≤ σj and a≠b. Obviously, Fj1.record XOR Fj2.record XOR …XOR Fj j
σ .record = 

ZEROn.  

 

Definition 5: A matrix of all features for a table T  

A matrix TM of all features for a table T is denoted as



















mM

M

M

M
2

1

, where m is the 

number of the features. 
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Example 1: 

As shown in Figure 3, there are five features in the target table. According to 

Definitions 4 and 5, the matrix TM is shown in Figure 4. 

 

 

Feature Feature-value Record Class 

F11 1100100000 110 

F12 0011010000 111 

 
M1 

F13 0000001111 111 

F21 1110000000 100 

F22 0001111000 011 

 
M2 

F23 0000000111 111 

F31 1001011100 111 

F32 0110000000 100 

 
M3 

F33 0000100011 110 

F41 1011100000 110 

F42 0100000011 110 

 
M4 

F43 0000011100 001 

F51 1110000001 100 

F52 0001100010 010 

 
M5 

F53 0000011100 001 

Figure 4. A matrix TM of five features for a table T 

 

It’s necessary to keep the state of records for cleansing module in feature 

selection phase. If a record is processed via cleansing module and the result shows it 

should be further investigated, the record is valid; otherwise, the record is invalid.  

 

Definition 6: Valid mask vector 

The valid mask vector ValidMask is a bit string denoting whether the records of 
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R are valid or not. ValidMask =b1b2…bn. Set bi to 1 if Ri is valid; otherwise set bi to 0, 

where 1 ≤ i ≤ n. Initially, the ValidMask is set to ONEn. 

 

As we can see, there are ten records in the target table T in Figure 3. The initial 

valid mask vector is ValidMask = b1b2…b10 = "1111111111" = ONEn. 

 

3.3 Feature Selection Phase 

 

 The first step in Feature Selection Phase is a cleansing procedure. The difference 

in cleansing procedure between bitmap-based feature selection method and 

bitmap-based feature selection method with discernibility matrix is that the latter 

completes the feature selection after a cleansing tree is generated. Thus, the 

discernibility matrix is proposed to record the important features in cleansing module.  

 

Unlike the original definitions of discernibility matrix in rough set which 

concerns the relationship between records and features [7], we redefine the 

class-based discernibility matrix to describe the relationship between classes and 

features. The main idea is that the original discernibility matrix saves information 

faithfully but may be time-consuming and space-waste, and feature-classes relation 

seems to more intuitional to problem-solving. Thus we propose the new definition of 

class-based discernibility matrix as below.  

 

Definition 7: A class-based discernibility matrix 

 

A class-based discernibility matrix D is denoted as





















m
Cls

Cls

Cls

σ

M
2

1

, where Clsi is 
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composed by (Cj, weightij) and weightij is the summary of Cj used to determine class i 

where 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1.  

 

Example 2. 

 If there are four condition features and three classes, the possible class-based 

discernibility matrix is shown in Figure 5. The weight11 and weight13 are 1 since the 

first class needs one C1 and one C3 to determine. Similarly, the weight21 is 2, the 

weight24 and weight31 are 1. 

 

Cls1 Cls2 Cls3 

(C1, 1) 
(C2, 0) 
(C3, 1) 
(C4, 0) 

(C1, 2) 
(C2, 0) 
(C3, 0) 
(C4, 1) 

(C1, 1) 
(C2, 0) 
(C3, 0) 
(C4, 0) 

Figure 5. A possible class-based discernibility matrix 

 

Before the feature selection phase is triggered, the correctness of the target table 

needs to be verified. In the target table, if there are some records with different 

decision feature values but the same values of all condition features, these records 

cannot be distinguished and thus are treated as noise. The first step of feature 

selection phase is to filter out the noisy records from the target table. The intuitional 

method to find out the inconsistent records in the target table is to compare every two 

different records, it may take O(n2m) times, where n is the number of records and m is 

the number of features. In order to reduce the time complexity of the above straight 

forward method, a cleansing tree is proposed to decrease the time complexity to 

O(nm). 

A cleansing tree Ctree is a rooted tree (with root root[Tree]). The maximum of 

height of the root[Tree] is m-1. Every node x has three pointers, including p[x], 
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left-child[x] and right-sibling[x], which point to parent, to the leftmost child and to the 

right sibling of x, respectively. Also, each node x contains some extra information; e.g. 

record[x] and class[x] contained in node x indicate the associated record and class of x, 

respectively. If node x has no child, then left-child[x] = NIL; if node x is the rightmost 

child of its parent, then right-sibling[x] = NIL. A typical cleansing tree is shown in 

Figure 6. 

 

������ �����

������ ����� ������ ����� ������ �����

������ ����� ������ ����� ������ �����

����������

 

Figure 6. A cleansing tree structure 

 

Definition 8: Spanned Feature Order 

The spanned feature order O is a sequence consists with the m-1 condition 

features {Cα1, Cα2,…,Cα(m-1)}, Cαi∈C-Cm, ∀Cαi and Cαj, Cαi≠Cαj, where 1 ≤ i ≤ m-1,  

1 ≤ j ≤ m-1 and i ≠ j.  

 

 In the cleansing tree Ctree, all nodes in the level i of root[Tree] are associated 

with a unique condition feature Oi=Ck according to the Spanning Feature Order O, 

where 1 ≤ i, k ≤ m-1. The spanned feature order O is initially set to <C1, C2,…,Cm-1>. 

According to the above definitions, the Creating cleansing tree algorithm is proposed 

to construct the cleansing tree. 
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As we can see, a cleansing spanning tree with a better order can reduce the 

space and time complexities. There are some famous tree structures for classification 

such as decision tree [12], which is based on entropy theory to select the best feature 

to span currently. In order to reduce the computational complexity for evaluating the 

spanning order of features, the following heuristics are thus proposed. 

 

Heuristic 1: 

H1 :  The more 1 bit the record vector has, the more weight the feature value has. 

H2 :  The more 1 bit the class vector has, the less weight the feature value has. 

 

These two heuristics shows the relationship between feature values and classes. 

If the feature value is contained in the most of records and only appears in the records 

with a single class, the weight of this feature is thus relatively high. The following 

SpanOrder algorithm is used to determine the spanned feature sequence O of all 

condition features by evaluating the features weight according to Heuristic 1. 

 

Algorithm 2: SpanOrder 

Input : A bitmap indexing matrix TM 

Output : Spanned feature order O. 

Step 1:  Initialize weightj ← 0, where 1 ≤ j ≤ m-1. 

Step 2:  For each Mj in TM, ∑
=

←
j

k jk

jk
j classFCount

recordFCount

n
weight

σ

1
2 ).(

).(1
, where 

function Count(x) is used to count the number of 1 bit in bit vector x. 

Step 3:  Order Cj in O by weightj descent. 

Step 4:  Return O. 
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According to TM in Figure 4, the weight of each feature is calculated in the 

following and the spanning order is thus rearranged. 

 

Feature Weight Old 
order 

New 
order 

C1 3/10*1/4+3/10*1/9+4/10*1/9=0.153 1 4 
C2 3/10*1+4/10*1/4+3/10*1/9=0.433 2 2 
C3 5/10*1/9+2/10*1+3/10*1/4=0.331 3 3 
C4 4/10*1/4+3/10*1/4+3/10*1=0.475 4 1 

 

After Creating cleansing tree algorithm is executed, the bitmap indexing matrix 

TM in 3 with spanned feature order<C4, C2, C3, C1> can be used to generate the 

cleansing tree. As we can see, the cleansing tree with new feature order O=<C4, C2, 

C3, C1> in Figure 7 is much smaller than feature order O=<C1, C2, C3, C4> since the 

explored node are decreased from 15 to 9. Therefore, the computational time of 

generating and traversal the spanning tree can be largely reduced. 

 

0000011100 00130100000011 11021011100000 1101

1010000000 1004 0001100000 0105 0000000011 1107

0000000011 1108

0100000000 1006

0000000011 1109

1111111111 111root

C4

C2

C3

C1

 

Figure 7. Cleansing tree with feature spanned order <C4, C2, C3, C1> 
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 We create the cleansing tree with pre-selected feature order by SpanOrder 

Algorithm. The algorithm, named Creating Cleansing Tree with Discernibility Matrix 

Algorithm, filling in the class-based discernibility matrix in creating process. The 

detail algorithms and examples are given as below.  

 

Algorithm 3 Creating cleansing tree with discernibility matrix 

 

Input :  A bitmap indexing matrix TM, the valid mask ValidMask,  spanned feature 

order O. 

Output :  The valid mask ValidMask, the cleansing tree Tree, a class-based 

discernibility matrix D. 

 

Step 1:  Initialize record[Tree[root]] ← ONEn, class[Tree[root]] ← ONEσm, 

weightij← 0 for 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1 and r� 0 , dep← 0 where 

dep is the depth of the active node x in the cleansing tree. 

Step 2: x ← Allocate-Node(), x ←Tree[root]. 

Step 3: If class[x] = UNIQUEσm or dep = m-1, go to Step 6; otherwise, dep 

← dep+1, do the following steps. 

Step 4: For each Fjk in Mj, where Mj is the matrix of feature-value vectors of 

Odep and 1 ≤ k ≤ σj. If record[x] & Fjk.record � ZEROn, do the 

following sub-steps: 

Step 4.1:  y ← Allocate-Node().  

Step 4.2:  If r= 1, p[y] ← x, left_child[x] ← y, r� 0; otherwise p[y] ← p[x], 

right_sibiling[x] ← y. 

Step 4.3:  record[y] ← record[p[y]] & Fjk.record, 
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class[y] ←BelongToClass(record[y]).  

Step 4.4:  If record[y] ≠ record[p[y]], do the following sub-step: 

Step 4.4.1: For each bi of class[y], weightij ← weightij+ 1 if bi is equal 

to 1where 1 ≤ i ≤ σm. 

  Step 4.5:  x ← y.  

Step 5:  x ← left_child [p[x]]. Go to Step 3. 

Step 6:  If dep = m-1, do the following steps; otherwise, go to Step 8. 

Step 7:  ValidMask ← record[x] ^ ValidMask. 

Step 8:  If right_sibiling[x]=NIL, x ← p[x], dep ← dep-1 and do Step 9.  

Otherwise go to Step 10.  

Step 9: If x=Tree[root], return D, ValidMask and Tree; otherwise go to Step 8. 

Step 10:  x ← right_sibiling[x]. Go to Step 3. 

    

Example 3 

For the target table T given in Figure 3, a cleansing tree as shown in Figure 7 can 

be obtained by applying Creating Cleansing Tree with Discernibility Matrix 

Algorithm. When creating the tree, it fills in the class-based discernibility matrix D at 

the same time. As the depth of the tree is one, there are three nodes, 1-st, 2-nd and3-rd 

nodes, are all spanned by C4. The class value of 1-st node is "110", and the weight14 

and in weight24 are increased by one since 1-st node is spanned by C4 which can 

determine the first and second class. Similarly, the class value of 2-nd node is "110", 

and the weight14 and in weight24 are all increased by one. The class value of 3-rd node 

is "001", and weight34 is increased by one. The original class-based discernibility 

matrix D is shown in Figure 8.  
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Cls1 Cls2 Cls3 

(C1, 0) 
(C2, 3) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 2) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 0) 
(C3, 0) 
(C4, 1) 

Figure 8. A class-based discernibility matrix 

 

 

When any inconsistent record exists, it needs to cleanse the class-based 

discernibility matrix to ensure no over-weighted. Thus, the Cleansing Discernibility 

Matrix Algorithm is described as below.   

 

Algorithm 4. Cleansing discernibility matrix 

 

Input: The valid mask ValidMask, spanned feature order O, a class-based 

discernibility matrix D, the cleansing tree Tree. 

Output : A class-based discernibility matrix D. 

 

Step 1:  x ← Allocate-Node(), x ← left_child[Tree[root]] and dep ← 1 where 

dep is the depth of the active node x in the cleansing tree. 

Step 2:  If (x = p[x]) go to Step 5; otherwise do the following steps  

Step 3:  If (record[x] & ValidMask) = record[x], go to Step 4; otherwise do 

the following sub-steps: 

Step 3.1:  diffclass ← BelongToClass (record[x] & ValidMask) ^ class[x]. 

Step 3.2:  weightij ← weightij -1, if the i-th bit of diffclass is equals to 1, 

where 1 ≤ i ≤ σm and x is spanned by Odep, is equal to Cj. 

Step 3.3: class[x] ← diffclass. 

Step 3.4: Go to Step 5. 

Step 4:  If class[p[x]] =UNIQUEσm, weightij ← weightij -1, if the i-th bit of 
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class[x] is equals to 1, where 1 ≤ i ≤ σm and x is spanned by Odep, is 

equal to Cj. Otherwise go to Step 6. 

Step 5:  If left_child[x] = NIL, go to Step 6; otherwise x ← left_child[x], go to 

Step 2. 

Step 6:  If right_sibiling[x] = NIL, x ← p[x], dep ← dep-1 and do Step 7.  

Otherwise go to Step 8.  

Step 7:  If x=Tree[root], return D; otherwise go to Step 6. 

Step 8:  x ← right_sibiling[x]. Go to Step 2. 

 

 

Example 4  

Applying Cleansing discernibility matrix Algorithm on the cleansing tree shown 

in Figure 7, the class value of 2-th node should be"100" not "110". Thus, the weight24 

is decreased by one because of the spanning feature C4 and the second class wrong. 

Finally, the cleansing class-based discernibility matrix is shown in Figure 9. 

 

Cls1 Cls2 Cls3 

(C1, 0) 
(C2, 1) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 1) 
(C3, 0) 
(C4, 1) 

(C1, 0) 
(C2, 0) 
(C3, 0) 
(C4, 1) 

Figure 9. A cleansing class-based discernibility matrix 

 

 

 After constructing a class-based discernibility matrix, we can get the feature set 

by uniting the class-based discernibility matrix. We propose a Union Class-Based 

Discernibility Matrix Algorithm to do this job. 
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Algorithm 5 Union class-based discernibility matrix 

 

Input : A class-based discernibility matrix D 

Output : The feature set FS 

 

Step 1:  For each Clsi in D. 

 Step 2:  For each weightij in Clsi. If weightij > 0, FS = FS �Cj. 

 Step 3:  Return FS 

 

Example 5  

According to Union Class-Based Discernibility Matrix Algorithm, the Cls1 is 

first examined in D. FS is set to {C4, C2} since both weigh112 weight14 are grater than 

0. Similarly, weigh122, weight24 and weigh134 are grater than 0 and FS is a union of 

{C4}and {C2}, but FS is still {C4, C2}. Thus, {C4, C2} is our solution and feature 

selection completes. 

 

 As mentioned above, we find that the important features can be weighted in 

class-based discernibility matrix when creating a cleansing tree. The order of feature 

spanned is determined completely before the creating cleansing tree process, not 

measured by each node dynamically. Since the measure will be more precise if the 

feature spanned order is determined in each node, we propose a CurrestBestFeature 

Algorithm to find the current best feature to span. 

 

 

Algorithm 6 CurrentBestFeature 
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Input : A bitmap indexing matrix TM, current node x, candidate features features. 

Output : The condition feature Cj 

   

Step 1:  Initialize weightj � 0, where 1 ≤ j ≤ m-1. 

Step 2:  For each Mj in TM, ∑
=

←
j

k jk

jk
j classxclassFCount

recordxrecordFCount

n
weight

σ

1
2 ). &.(

). & .(1
, if 

featuresC j ∈ . 

Step 3:  Return Cj with max weightj. 

 

 

Algorithm 7 Creating cleansing tree with discernibility matrix and current best 

feature 

 

Input : A bitmap indexing matrix TM, the valid mask ValidMask 

Output : The valid mask ValidMask, the cleansing tree Tree, a class-based 

discernibility matrix D. 

 

Step 1:  Initialize record[Tree[root]] ��ONEn, class[Tree[root]]���ONEσm, 

weightij←�
��
� 0 for 1 ≤ i ≤ σm and 1 ≤ j ≤ m-1. r� 0. features ← 

{C-Cm}, where features are the candidate features to span and C 

is the feature domain of T. path ← ∅∅∅∅, where path is the sequence 

of spanned features to active node x. 

Step 2:  x ��Allocate-Node(),�x �Tree[root].� �

Step 3:  If class[x] � UNIQUEσm or dep = m-1, go to Step 7; otherwise, do 

the following steps. 
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Step 4:  Call CurrentBestFeature(x, features) to get Cj, path ←path + Cj,  

features ← features - Cj, and span all children of x using Mj. 

Step 5:  For each Fjk in Mj, where 1 ≤ k ≤ σj. If record[x] & Fjk.record � 

ZEROn, do the following sub-steps: 

Step 5.1:  y ��Allocate-Node().  

Step 5.2:  If r= 1, p[y] ← x, left_child[x] ← y, r� 0; otherwise p[y] ← p[x], 

right_sibiling[x] ← y. 

Step 5.3:  record[y] � record[p[y]] & Fjk.record, 

class[y] �BelongToClass(record[y]).  

Step 5.4:  If record[y]�������� record[p[y]] and the i-th position of class[y] is 

equals to 1 where 1 ≤ i ≤ σm, weightij ←����weightij+ 1.  

  Step 5.5:  x ��y.  

Step 6:  x ��left_child [p[x]]. Go to Step 3. 

Step 7:  If dep = m-1, do the following steps; otherwise, go to Step 9. 

Step 8:  ValidMask ��record[x] ^ ValidMask. 

Step 9:  If right_sibiling[x]=NIL, x � p[x], Cj ←last element in path, 

features ← features + Cj, and do Step 10. Otherwise go to Step 11.  

Step 10: If x=Tree[root], return D, ValidMask and Tree; otherwise go to Step 9. 

Step 11:  x ��right_sibiling[x]. Go to Step 3. 

 

Example 6 

 According to the Creating cleansing tree with discernibility matrix and current 

best feature algorithm, it constructs a tree with the order of the feature with currently 

highest weight. It first counts all feature weight and find the best feature to the root 

node. According to CurrentBestFeature Algorithm, the weight of C1, C2, C3, C4, is 
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"0.153", "0.433", "0.331", and "0.475" respectively. Thus, C4 will be selected and we 

mark each spanning feature in the Figure 10.  

0000011100 00130100000011 11021011100000 1101

1010000000 1004 0001100000 0105 0000000011 1107

0000000011 1108

0100000000 1006

0000000011 1109

1111111111 111root

C4

C2

C3

C1

C2

 

Figure 10. Cleansing tree with currently best spanned order  

 

When creating the tree, it fills in the class-based discernibility matrix D at the 

same time. The class value of 1-st node is "110", and the weight14 and in weight24 are 

increased by one since 1-st node is spanned by C4 which can determine the first and 

second class. Similarly, the class value of 2-nd node is "110", and the weight14 and in 

weight24 are all increased by one since 2-nd node is also spanned by C4. The class 

value of 3-rd node is "001", and weight34 are increased by one since 3-rd node is 

spanned by C4 which can determine the third class. The original class-based 

discernibility matrix D is shown as follows. 

 

Cls1 Cls2 Cls3 

(C1, 0) 
(C2, 3) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 2) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 0) 
(C3, 0) 
(C4, 1) 

 

According to Cleansing Discernibility Matrix Algorithm, the cleansing 

class-based discernibility matrix is shown below. 
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Cls1 Cls2 Cls3 

(C1, 0) 
(C2, 1) 
(C3, 0) 
(C4, 2) 

(C1, 0) 
(C2, 1) 
(C3, 0) 
(C4, 1) 

(C1, 0) 
(C2, 0) 
(C3, 0) 
(C4, 1) 

 

Finally, applying Union Class-Based Discernibility Matrix Algorithm and 

selected feature set FS is {C4, C2}. Thus, {C4, C2} is our solution and feature selection 

completes. For the target table T, the solutions of two methods proposed in this 

section are just the same. In fact, the solutions of them are not always the same. 

 

4. Experiments 

 

To evaluate the performance of our proposed method, we compare our methods 

with other feature selection methods. Our target machine is a Pentium III 1G Mhz 

processor system, running the Microsoft Windows 2000 multithreaded OS. The 

system includes 512K L2 cache and 256 MB shared-memory. 

 

In these experiments, several datasets are selected from the UCI Repository [12]. 

We choose datasets with various sorts to test if our method is robust. Some of datasets 

are with known relevant features (Monks), some are with many classes (SoybeanL), 

and some are with many instances (Mushroom). Each of them is described briefly as 

below, and characteristics of the dataset used are shown in Figure 11.   

 

• Monk1, Monk2, Monk3 

There are three Monk's problems. The domains for all Monk's problems are the 

same, which contain six condition features and two classes. Monk1 needs three, 
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Monk2 needs all six, and Monk3 requires four features to describe the target concepts. 

These datasets are used to show that relevant features should always be selected. 

 

• Vote 

This data set includes votes for each of the U.S. House of Representatives 

Congressmen on the 16 key votes identified by the Congressional Quarterly Almanac 

(CQA). The dataset consists of 16 condition features, and 300 records. 

 

• Mushroom 

This data set includes descriptions of hypothetical samples corresponding to 23 

species of gilled mushrooms in the Agaricus and Lepiota Family. The dataset consists 

of 22 condition features, and 8124 records. Each feature can have 2 to 10 values, and 

there is a feature having missing value.  

 

• SoybeanL 

The data set has 35 condition features to describe symptoms of 19 different 

diseases in soybean plant. The values for attributes are encoded numerically, but all 

have been nominalized. Each feature can have 3 to 6 values, and all but two features 

have missing values.  

 

Characteristics: 

name : Database name 

C : number of classes 

M : number of condition features 

N : number of records 

miss : missing features (yes or no) 
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Name C M N miss 
Monk1 2 6 124 no 
Monk2 2 6 169 no 
Monk3 2 6 122 no 
Vote 2 16 300 no 
Mushroom 2 22 8124 yes 
SoybeanL 19 35 683 yes 

Figure 11. Experimental Dataset 

 

In the following, the accuracy, number of selected feature set, and time issues 

will be compared between our methods and the traditional rough set method. The 

accuracy is measured by exams the classification results of the target table. If the 

selected feature set can totally solve the problem without any error, 100% accuracy is 

reached in this dataset; otherwise the accuracy is calculated by the number of records 

which are successful in classification over the total number of records. At following, 

we compare our proposed bitmap-based feature selection method with discernibility 

matrix with different heuristic each other. The heuristics are named as overall best 

feature and current best feature. 

 

• Accuracy 

We list the dataset name and the selected features for each method, respectively. 

Both methods reach the 100% accuracy, and the result is shown in Figure 12. Note 

that the selected features may result in various combination, we select the first 

combination that can solve the problem (by alphabetical order) as the selected feature 

set. The result shows that not all selected features of the two methods are the same, 

and no definitely subset relation between them exists.  
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 overall best feature current best feature  
Dataset FS FS 
Monk1 C1, C2, C5 C1, C2, C5 
Monk2 C1-C6 C1-C6 
Monk3 C1-C5 C1-C5 
Vote C1-C12,C13,C16 C1-C4, C7-C13, C15-C16 
Mushroom C5, C9, C11, C14, C15, 

C19, C20, C21 
C3, C5, C7, C8, C20 
 

SoybeanL C1-C11, C13-C18, C21- 
C26, C28-C31, C35  

C1, C3-C7, C9-C10, C12- 
C16, C18-C19, C22-C24, 
C26, C29 

Figure 12. Selected feature set for heuristic solution 

 

• Selected feature set number  

The selected feature number is shown in Figure 13. Generally speaking, 

bitmap-based feature selection method with discernibility matrix and current 

best feature gets the smaller feature set size than bitmap-based feature selection 

method with discernibility matrix, and that meets our expectation. 

 

Dataset overall best feature current best feature  
Monk1 3 3 
Monk2 6 6 
Monk3 5 5 
Vote 14 13 
Mushroom 8 5 
SoybeanL 28 20 

Figure 13 Selected feature set number for heuristic solution 

 

• Time  

In Figure 14, the processing time from cleansing to final output had been 

evaluated, and the unit is second. The time is rounded to 0 if the real time is less 

than 0.001 seconds. 
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Dataset overall best feature current best feature  
Monk1 0 0 
Monk2 0 0 
Monk3 0 0 
Vote 0 0 
Mushroom 0.01 0.02 
SoybeanL 0.01 0.09 

Figure 14 CPU time for heuristic solution 

 

It’s surprised that both of our proposed heuristic methods are extremely fast. 

Even processing the complex dataset such like Mushroom and SoybeanL, the time 

increases a little. That is good news for us due to the great scalability.   

 

Moreover, we list all proposed methods to evaluate the quality of our proposed 

heuristic methods. As we can see in Figure 15, the bitmap-based feature selection 

method with discernibility matrix and bitmap-based feature selection method with 

discernibility matrix and current best feature result in the larger size of selected 

features than bitmap-based feature selection method and the traditional rough set, but 

when is closer to optimal solution.  

   

Dataset Traditional 
RS  

Bitmap-based  Bitmap-based 
and overall best 
feature 

Bitmap-based 
and current best 
feature 

Monk1 3 3 3 3 
Monk2 6 6 6 6 
Monk3 4 4 5 5 
Vote 8 8 14 13 
Mushroom 4 4 8 5 
SoybeanL  - 28 20 

Figure 15. The number of selected feature for proposed methods 

 

In addition, we list all proposed methods to evaluate the performance of our 

proposed heuristic methods in Figure 16. And the more complex the dataset it is, the 
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more superiority the result shows.  

 

Dataset Traditional 
RS  

Bitmap-based Bitmap-based and 
overall best 
feature 

Bitmap-based 
and current best 
feature 

Monk1 0.01 0 0 0 
Monk2 0.04 0 0 0 
Monk3 0.01 0 0 0 
Vote 21.511 1.983 0 0 
Mushroom 225.424 21.531 0.01 0.02 
SoybeanL - - 0.01 0.09 

Figure 16. CPU time of proposed methods 

 

To summarize, the bitmap-based feature selection method with discernibility 

matrix and current best feature seems to be a method with fast processing time and 

will get the nearly optimal feature set. 

 

 

5. Conclusion and Future Work 

 

In this paper, we propose the nearly optimal feature selection method, which 

employs a discernibility matrix to record the important features during the 

construction of the cleansing tree to reduce the processing time. And the 

corresponding indexing and selecting algorithms for such feature selection method are 

also proposed. Finally, some experiments and comparisons are given and the result 

shows the efficiency and accuracy of our proposed method. 

In this paper, a high-speed feature selection method for large dimension space, 

called bitmap-based feature selection method with discernibility matrix, has been 

proposed for discovering the nearly optimal feature sets for decision–making 

problems. Using such selection method, the values of features are not only encoded 

into bitmap indices for searching the solution efficiently but also using the class-based 
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discernibility matrix for reducing the searching time. Also, the corresponding 

indexing and selecting algorithms are described for proposed method. Finally, some 

experiments are given and comparisons to show the efficiency and accuracy. 

In the future, the appropriated methodologies to smooth the distinct numeric 

values to symbolic ones will be further investigated. Moreover, we will attempt to 

design a mechanism to integrate our proposed methods to evaluate properties of 

giving dataset and then automatically selects appropriate method for optimal or 

near-optimal solution.  
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