
 1

Lock-based Concurrency Control for XML Document Models

Kuen-Fang Jea Shih-Ying Chen Sheng-Hsien Wang

Institute of Computer Science
National Chung-Hsing University

Taichung, Taiwan, R.O.C.

{kfjea, sychen, s9056014}@cs.nchu.edu.tw

Abstract

XML has become the most important technique to exchange data in WWW. Providing

efficient access to XML document databases is thus crucial. Concurrency control protocols allow

transactions to be executed concurrently to improve performance. In XML, XPath and DOM

(Document Object Model) are two widely used models to access XML documents. XPath is a

language to locate nodes in XML documents. DOM provides an interface allowing programs to

dynamically access and update both the content and structure of XML documents. XPath reveals

finer access behavior than DOM, but DOM provides a more convenient interface to access XML

documents. Based on XPath and DOM, we propose and compare two lock-based concurrency

control protocols for XML documents, called XLP and DLP, respectively. DLP is an extension of

our former research on XLP [7]. Both of them have the features of richer lock modes, refined

lock granularity, lower lock conflict and lock conversion. Our simulation results show that, for

XML documents of different sizes, XLP outperforms DLP by 109.24% on average. Other

performance comparison between XLP and DLP is also made in this study for various

transactions with different destination node sizes and read/write ratios.

Keywords: concurrency control, locking, XML, XPath, DOM

1. Introduction

With the features of self-describing and ease of exchanging data, XML has been used in

 This research is supported in part by NSC in Taiwan, R.O.C. under Grant No. NSC-90-2213-E005-014.

 2

more and more applications, such as Science, Biology and Business. Data in these fields are

usually very large. As a result, providing efficient access to XML documents is crucial.

Concurrency control is one of the most important techniques to improve the performance of

database systems by allowing transactions to be executed concurrently. Lock-based protocols

[1,4,5,6,8,9,10] are widely used in concurrency control since they are simple to implement and

provide acceptable level of concurrency. Lock-based protocols use different types of lock to

determine if a transaction can proceed. A transaction proceeds if the requested lock on the desired

object is compatible with locks held by other transactions on the same object.

Two-phase locking (2PL) protocol [1,6,9,10] is the most widely used one and suitable for all

databases. 2PL requires that each transaction only get locks in the growing phase and release

locks in the shrinking phase to ensure serializability. The major defect of 2PL is that a transaction

cannot release locks earlier so that the degree of concurrency is limited. In XML, many data

items (e.g. tags) are only tested but not really accessed. If 2PL is applied for XML transactions,

long duration locks on these data items may degrade the access performance for XML

documents.

Graph-based locking protocol [5,10], rather than distinguishing two phases to ensure

serializability, needs additional information from the database. By forming a partial ordering set

D={d1, d2,…, dn} for data items di, called database graph, graph-based locking protocol accesses

data item di first before dj if there exists a relation diàdj in set D. Tree locking protocol, whose

database graph forms a tree structure, is one special case of graph-based protocol. In tree locking

protocol, a data item can only be locked once by the same transaction and a transaction can

release a lock and subsequently obtain another lock. However, if a transaction released a lock on

a data item, it can no longer relock the data item. Due to these properties, the graph-based

protocol is not suitable for XML documents. For example, in XPath or DOM, nodes in XML

documents may be tested or accessed frequently. Long duration locks on nodes without early

release may degrade the performance.

 3

Multi-granularity locking protocol (MGL) [4,8] considers data items as an ordering

abstraction with different granularity. A data item with coarse granularity includes many smaller

ones with finer granularity. Locks on data items of coarse granularity allow a transaction to

access all of the decedent data items under the locked data items. Multi-granularity locking

protocol is not suitable for XML documents. For example, predicates in XPath refine the results

of each location steps in XPath. That is, not all decedent nodes of a node are accessed. The

locking policy mentioned above locks unnecessary nodes and thus lowers down the performance.

Graph-based locking, tree locking or multi-granularity locking protocols are not suitable for

XML documents since the access behavior of XML documents are not considered in these

protocols. For accessing XML documents, XPath and DOM are the two most important methods.

XPath [3] is a language to locate desired nodes in XML documents. DOM [11] is a platform- and

language-neutral interface that provides a standard set of objects to represent XML documents

and allows programs to dynamically access and update the content and structure of XML

documents. They both are recommendations of W3C.

Knowing the access behavior of XPath or DOM can help to achieve better performance for

accessing XML documents. In [7], a concurrency control protocol based on XPath, called XLP, is

proposed. XLP has the features of richer lock modes, refined lock granularity, lower lock conflict

and lock conversion. In [7], XLP is shown to outperform 2PL by 84.4% and the tree locking

protocol by 95.6% on average. Generally speaking, XPath reveals finer access behavior than

DOM, but DOM provides more convenient interface to access XML documents. The goal of this

study is to propose another new concurrency control protocol for DOM and to compare the two

protocols based on XPath and DOM, respectively.

The rest of this paper is organized as follows. Section 2 presents the XPath and XLP

protocol. Section 3 proposes a concurrency control protocol DLP based on DOM. Section 4

analyzes both XLP protocol and DLP protocol. Section 5 illustrates the simulation results of XLP

and DLP. Finally, Section 6 concludes this study.

 4

2. XPath Locking Protocol

 XPath is a language to locate desired nodes in XML documents. XPath locking protocol

(XLP) takes into consideration the access patterns in XPath. The XPath model and XLP protocol

are described shortly in this section. Correctness and serializability of XLP can be found in [7].

2.1 XPath

XPath models an XML document as a tree of nodes. XPath consists of a location path [3]. A

location path consists of a sequence of one or more location steps [3], which are separated by /.

Each location step begins with a set of nodes, called context nodes. A location step then generates

its result, a set of nodes, which in turn are the context nodes of the next location step in the path.

Each location step is represented by: Axis::Node-Test[Predicate], where Axis specifies the

tree relationship between the context node of the previous location step and the selected node

type is identified by Node-Test. Predicate is used to refine the results.

For example, the location path, /child::name[firstname=”CHEN”]/child::age, starts from

the root / and consists of two location steps with the first one predicated. The context node of the

first step is the root and the context nodes of the second step are predicated nodes of name

starting from / to name. Results of this location path are nodes of age starting from / to name and

age with a predication on firstname.

According to the XPath model, we classify three types of nodes: pass_by nodes, context

nodes and destination nodes. Pass_by nodes are those nodes involved in an XPath. Context nodes

with respect to each location step are those nodes to be tested by Node-Test and to be predicated

by predicate in an XPath expression. Destination nodes are the nodes to be processed for reading,

updating, inserting or deleting. Formal definitions for the three types of nodes are described as

follows.

Definition: The set of context nodes of a location step Si,j of location path Lj, denoted by C(Si,j),

includes nodes that Si,j begins with. In fact, C(S1,j) is the root if S1,j starts from the root. The set of

 5

mid-result nodes of a location step Si,j of location path Lj, denoted by M(Si,j), includes those nodes

satisfying Node-Test in Si,j. The set of result nodes of Si,j, denoted by R(Si,j), is the selection of

M(Si,j) after refining by the predicate of Si,j. In fact, R(Si,j) = C(Si+1,j).

Definition: The set of pass-by nodes in a location path Lj, denoted by Np(Lj), includes those nodes

involved in Lj. The set of destination nodes, denoted by Nd(Lj), is the search results of Lj. In fact,

Nd(Lj)=R(S|Lj|,j), where | Lj | is the length of Lj.

In the next subsection, we propose our XPath locking protocol (XLP) for concurrently

executing transactions on XML documents.

2.2 XPath Locking Protocol (XLP)

XLP is a lock-based protocol. In XLP, a transaction consists of location paths, which

consists of location steps. A transaction in XLP is defined as follows.

Definition: A transaction T, denoted by T={(Oi, Li)}, in XLP is defined as an ordered set of pairs

(Oi, Li) where the operation Oi operates on location path Li, and Oi∈{Read, Write, Insert, Delete}.

Lock modes in XLP and the XLP protocol is described as follows.

2.2.1 Lock Modes in XLP

There are five lock modes in XLP [7]. They are P-, R-, W-, I- and D- locks. Pass lock

(P-lock) is invented for Np(Lj). Only node types (i.e. tag name of the node) are checked for nodes

in Np(Lj). P-locks are invented to provide better concurrency for nodes in Np(Lj). Read lock

(R-lock), write lock (W-lock), insertion lock (I-lock) and deletion lock (D-lock) are applied to

Nd(Lj) in a location path Lj for reading, writing, inserting and deleting, respectively. The five lock

modes in XLP are stated as follows. Their lock compatibility matrix is listed in Table 1. The

matrix is symmetric.

n P-lock: In a location step Si,j, nodes in C(Si,j) are locked by P-lock before the execution of

Si,j. Nodes in M(Si,j) are locked by P-lock if they do not conflict with locks held by other

 6

transactions. P-locks on nodes in the difference of two sets, M(Si,j)-R(Si,j), are released

after the execution of Si,j because these nodes are no longer used. R(Si,j), whose nodes are

locked by P-lock, becomes C(Si+1,j). P-locks on nodes in C(Si,j) can be released after Si,j

for better performance.

P-locks on nodes in C(S|Lj|,,j) are upgraded to R-, W-, I- or D-locks as necessary. P-lock is

compatible with P-, R-, W- and I-lock but not compatible with D-lock.

n R-lock: Operation (Read, Lj) in a transaction T must receive an R-lock on destination

nodes in Nd(Lj). Only the last step S|Lj|,j may read destination nodes in Nd(Lj). Both of their

node types and contents (value and attributes) in Nd(Lj) are read. R-lock is compatible

with P-lock, R-lock and I-lock.

n W-lock: Operation (Write, Lj) in a transaction T must receive a W-lock on Nd(Lj). A

W-lock also implies an I-lock or D-lock. W-lock is compatible with P-lock and I-lock.

n I-lock: Operation (Insert, Lj) in a transaction T must receive an I-lock on Nd(Lj).

I-lock is not compatible with I-lock or D-lock since they both modify the structure of a

node.

n D-lock: Operation (Delete, Lj) in a transaction T must receive a D-lock on Nd(Lj). All

child nodes under the node are also deleted. D-lock is not compatible with D-lock.

Table 1. Lock compatibility matrix of XLP.

lock
being held

requested
lock

P R W I D

P ○ ○ ○ ○ ╳

R ○ ○ ╳ ○ ╳

W ○ ╳ ╳ ○ ╳

I ○ ○ ○ ╳ ╳

D ╳ ╳ ╳ ╳ ╳

 7

2.2.2 XLP Protocol

 XLP is defined by the following six rules.

Two-phase Locking Rule. XLP observes the two-phase locking protocol, except for P-locks.

Compatibility Rule. Each location step Si can receive a particular type of lock if the

compatibility matrix in Table 1 is respected. Once the appropriate lock is received, a

location step Si can be executed.

Granularity Rules.

(1) Locking granularity of P- or I- locks on a node is the node itself only.

(2) Locking granularity of R- or W- locks on a node includes the contents and attributes

of the node.

(3) Locking granularity of D-locks on a node is the node itself as well as the subtree

rooted at itself.

Lock Rule. Nodes in M(Si,j) in the location step Si are all locked in P-lock.

Upgrade Rules.

(1) The locks on Nd(Lj) are upgraded to I-locks directly before inserting nodes into

Nd(Lj).

(2) The locks on Nd(Lj) are upgraded to R- or W-locks if Granularity Rule (2) is

satisfied.

(3) The locks on Nd(Lj) are upgraded to D-locks if Granularity Rule (3) is satisfied.

Release Rules.

(1) P-locks on M(Si,j)-R(Si,j), the difference of M(Si,j) and R(Si,j), are released after the

location step Si,j finishes.

(2) P-locks on ∪C(Si,j), the union of C(Si,j) for all i and j, are released after the location

path Lj finishes.

(3) R-, W-, I- or D-locks are released only in the shrinking phase of a transaction.

 8

campus

address building building building

floor floor

room room

floor floor floor floor

room room room room

root

Figure 1. An XML document example for a campus.

Consider Figure 1 as an example. Figure 1 represents the buildings in a campus. There are

three buildings in the campus, where the first building has two floors, the second one has one

floor and the third one has three floors. Also, there are two rooms in the first floor of the first

building. Suppose that there are two transactions T1 and T2, where T1 reads the content of the

floor 2 in the building 1, for example, the description of the floor 2. T2 updates the content of the

building 1, for example, the history of the building 1. T1 and T2 are represented as follows.

T1={(Read, L1)}, where L1={S1,1, S2,1, S3,1}, S1,1=“child::campus”,

S2,1=“child::building[position()=1]”, and S3,1=“child::floor[position()=2]”. T2={(Write, L2)},

where L2={S1,2, S2,2}, S1,2=“child::campus”, and S2,2=“child::building[position()=1]”.

Figure 2(a) illustrates a possible schedule for transactions T1 and T2. For simplicity we write

Node-type|predicate to denote the selection of nodes of Node-type on predicate. S1,1 and S22,1 both

require P-locks on the nodes of type campus and building|position()=1. However, S2,2 upgrades

P-locks to W-locks on building|position()=1. According to Table 1, P-locks and W-locks are

compatible. Therefore, T1 and T2 can be executed concurrently.

Consider Figure 1 for another example. Suppose that there are two other transactions T3 and

T4, where T3 executes before T4, T3 writes the last floor of building 3, and T4 deletes building

3. T3 and T4 are represented as follows.

T3={(Write, L3)}, where L3={S1,3, S2,3, S3,3}, S1,3=“child::campus”,

S2,3=“child::building[position()=3]”, and S3,3=“child::floor[position()=last()]”. T4={(Delete, L4)},

 9

where L4={S1,4, S2,4}, S1,4=“child::campus”, and S2,4=“child::building[position()=3].”

Figure 2(b) illustrates a possible schedule for transactions T3 and T4. T3and T4 cannot be

executed concurrently since there is P-lock by S3,3 and a D-lock by S2,4. According to Table 1 and

the Granularity Rules (1) and (3) in XLP, P-locks and D-locks are not compatible. The deletion

can thus not be executed until T3 finishes and releases its P-locks on the root, C(S2,3), C(S3,3) and

W-locks on Nd(L3). Note that S2,4:Upgrade-D(building|position()=3) must be executed after

S3,3:Write(floor|position()=last()) since they are conflicting operations.

T1 T2
S1,1:Lock-P(campus)

S2,1:Lock-P(building|position()=1)

S1,1:unlock(campus)

S3,1:Lock-P(floor|position()=2)

S2,1:unlock(building|position()=1)
S3,1:Upgrade-R(floor|position()=2)
S3,1:Read(floor|position()=2)

S3,1:unlock(floor|position()=2)

S1,2:Lock-P(campus)
S2,2:Lock-P(building|position()=1)

S1,2:unlock(campus)
S2,2:Upgrade-W(building|position()=1)

S2,2:Write(building|position()=1)

S2,2:unlock(building|position()=1)

Figure 2(a). A schedule for transactions T1 and T2 under XLP.

T3 T4

S1,3:Lock-P(campus)

S2,3:Lock-P(building|position()=3)

S1,3:unlock(campus)

S3,3:Lock-P(floor|position()=last())
S2,3:unlock(building|position()=3)

S3,3:Upgrade-W(floor|position()=last())
S3,3:Write(floor|position()=last())

S3,3:unlock(floor|position()=last())

S1,4:Lock-P(campus)

S2,4:Lock-P(building|position()=3)

S1,4:unlock(campus)

S2,4:Upgrade-D(building|position()=3)
S2,4:Delete(building|position()=3)

S2,4:unlock(building|position()=3)
Figure 2(b). Another schedule for transactions T3 and T4 under XLP.

 10

3. DOM and DOM Locking Protocol

 In this section, we will describe the locking protocol for DOM model for accessing XML

documents by programs. The DOM locking protocol (DLP) is fundamentally modified from XLP.

3.1 Document Object Model (DOM)

DOM [11], which is one of the W3C recommendations, is a platform- and language-neutral

interface that provides a standard set of objects to represent XML documents and allows

programs to dynamically access and update the content and structure of XML documents [11].

Specifications of DOM are defined in OMG IDL (Interface Definition Language)[12] for

language-independency.

Basically speaking, DOM models documents as a logical structure like a forest, which can

contain more than one tree. Interfaces of DOM dominate the access behavior for accessing the

forest structure, including methods getparent(), getfirstchild(), nextsibling() and previoussibling(),

etc..

Unlike the regular behavior of accessing XML documents in XPath, DOM accesses XML

documents in programming ways. In other words, its access behavior, which depends on the

statements in programs, is numerous. This makes its access behavior among objects undetectable.

But, its access behavior to a single object is useful to get better degree of concurrency. We point

out three phases for DOM to access an object: entering, processing and exiting phases. Our DOM

locking protocol extends XLP by distinguishing the three phases for different access modes.

In the next section, we propose our DOM locking protocol (DLP) for concurrently executing

transactions on XML documents.

3.2 DOM Locking Protocol (DLP)

There are three phases for DOM to access an object: entering phase, processing phase, and

exiting phase. In the entering phase, DOM locates the node that is to be processed later for being

 11

read, written, deleted or inserted in the processing phase. In the exiting phase, DOM finishes the

processing phase.

DLP is an extension of XLP. The five lock modes in Table 1 are adopted in DLP. For better

concurrency, DLP locks nodes by different lock modes for different phases. In the entering phase,

a node is locked by P-lock first. In the processing phase, a node is to be read, written, deleted or

inserted. The node is locked by respective lock modes of R-, W-, D-, or I- locks. In the exiting

phase, the lock in the node is released. We classify accessing nodes of attributes parentnode,

firstchild, nextsibling or previoussibling described in DOM Level 1 [11] into the entering phases.

Execution of methods of replacechild(), appendchild(), removechilde() or insertbefore(), etc. is

classified into the processing phase. And, unfortunately none operation in DOM Level 1 exactly

indicates the end of accessing nodes. As a result, the exiting phase of a node is at the end of a

transaction. The scope of a transaction in DLP is defined to be the scope of a program.

DLP modifies XLP and includes the following six rules.

Two-phase Locking Rule.

DLP observes the two-phase locking protocol, except for P-locks.

Compatibility Rule.

Each node can receive a particular type of lock if the compatibility matrix is respected.

Once the appropriate lock is received, the node can be processed.

Granularity Rules.

(1) Locking granularity of P- or I- locks on a node is the node itself only.

(2) Locking granularity of R- or W- locks on a node includes the contents and attributes

of the node.

(3) Locking granularity of D-locks on a node is the node itself as well as the subtree

rooted at itself.

Lock Rule.

A node is locked by P-lock for its entering phase.

 12

Upgrade Rules.

(1) The lock of a node is upgraded to I-locks before inserting a new child node to the

node if Granularity Rule (1) is satisfied.

(2) The lock of a node is upgraded to R- or W-locks if Granularity Rule (2) is satisfied.

(3) The lock of a node is upgraded to D-locks if Granularity Rule (3) is satisfied.

Release Rules.

(1) P-lock of a node can be released in the exiting phase of the node and at any time of

the transaction.

(2) R-, W-, I- or D-locks of a node are released only in the exiting phase of the node and

the shrinking phase of the transaction.

Take Figure 1 as an example. Suppose that there are two transactions T1’ and T2’, where T1’

reads the content of the floor 2 in the building 1, and T2’ updates the content of the building 1.

Programs for accessing objects in T1’ and T2’ are listed in Figure 3(a).

In T1’, the program first gets the node ‘campus’ and searches all its children to get the node

‘building’ which is the first building. Then, the program searches all the children of the first

building to get the node ‘floor’ which is the second floor. Finally, the program reads the content

of the desired floor. In T2’, the program first gets the node ‘campus’ and searches all its children

to get the node ‘building’ which is the first building. Then, T2’ writes the new content to building

1. The comments shown in italic characters indicate the proper locks that the involved nodes

need.

A possible schedule for T1’ and T2’ is shown in Figure 3(b), in which nodes with the same tag

name are distinguished by numbering for clarity. In the schedule, Upgrade-W(building 1) for

writing building 1 and Upgrade-R(floor 2) for reading floor 2 in building 1 do not conflict

according to Table 1. Therefore, T1’ and T2’ can execute concurrently.

 13

T1’ T2’
campus=document.documentelement; //P-Lock
xnode=campus.firstchild; //P-Lock

// find building 1
bu=0;
While not (bu=1 or xnode=null) {
 If (xnode.nodename=’building’) {bu=bu+1;};
 If not (bu=1) {xnode=xnode.nextsibling;};

//P-Lock
};
If (xnode=null) {return;};

// find floor 2 in building 1
ynode=xnode.firstchild; //P-Lock
f=0;
While not (f=2 or ynode=null) {
 If ynode.nodename=’floor’ {f=f+1;};
 ynode=ynode.nextsibling; //P-Lock
};
If (ynode=null) {return;}
Else {
 read(ynode); //Upgrade to R-Lock
};

// release all locks here at the end of the program

campus=document.documentelement; //P-Lock
xnode=campus.firstchild; //P-Lock

// find building 1
bu=0;
While not (bu=1 or xnode=null) {
 If (xnode.nodename=’building’) { bu= bu+1;};
 If not (bu=1) {xnode=xnode.nextsibling;};

//P-Lock
};
If (xnode=null) {return;}
Else {
 write(xnode); //Upgrade to W-Lock
};

// release all locks here at the end of the program

Figure 3(a). Two transactions T1’ and T2’ by DOM.
T1’ T2’

Lock-P(campus)
Lock-P(address)
Lock-P(building 1)

Lock-P(building 2)

Lock-P(floor 1)

Lock-P(floor 2)
Upgrade-R(floor 2)

unlock(floor 2)
unlock(floor 1)
unlock(building 2)
unlock(building 1)
unlock(address)
unlock(campus)

Lock-P(campus)

Lock-P(address)
Lock-P(building 1)

Upgrade-W(building 1)

unlock(building 1)
unlock(address)
unlock(campus)

Figure 3(b). A schedule for transactions T1’ and T2’ in Figure 3(a) under DLP.

 14

Consider Figure 1 for another example. Suppose that there are two other transactions T3’ and

T4’, where T3’ executes before T4’. T3’ writes the last floor of building 3, and T4’ deletes

building 3. Programs for accessing objects in T3’ and T4’ are listed in Figure 4(a).

In T3’, the program first gets the node ‘campus’ and searches all its children to get the node

‘building’ which is the third building. Then, the program searches all the children of the third

building to get the node ‘floor’ which is the last one. Finally, the program writes the new content

to the last floor. In T4’, the program first gets the node ‘campus’ and searches all its children to

get the node ‘building’ which is the third building. Then, T4’ deletes building 3.

A possible schedule for T3’ and T4’ is shown in Figure 4(b). In the schedule,

Upgrade-W(floor 3) for writing the last floor in building 3 and Upgrade-D(building 3) for

deleting building 3 conflict according to Table 1 and the Granularity Rules (2) and (3) in DLP.

Therefore, T3’ and T4’ cannot execute concurrently.

In fact, the degree of concurrency for DLP will be influenced by the access manner in the

program. For example, if T1’ is written by DFS(depth first search), then all nodes of the XML

document are locked. But in fact only a few nodes are actually required and accessed.

Comparisons between XLP and DLP are discussed in the next section.

T3’ T4’

campus=document.documentelement; //P-Lock
xnode=campus.firstchild; //P-Lock

//find building 3
bu=0;
While not (bu=3 or xnode=null) {
 If (xnode.nodename=’building’) {bu=bu+1;};
 If not (bu=3) {xnode=xnode.nextsibling;};

//P-Lock
};
If (xnode=null) {return;};

//find the last floor in building 3
ynode=xnode.firstchild; //P-Lock

campus=document.documentelement; //P-Lock
xnode=campus.firstchild; //P-Lock

//find building 3
bu=0;
While not (bu=3 or xnode=null) {
 If (xnode.nodename=’building’) {bu=bu+1;};
 If not (bu=3) {xnode=xnode.nextsibling;};

//P-Lock
};
If (xnode=null) {return;}
Else {
 delete(xnode); //Upgrade to D-Lock
};

 15

f=0;
While not (ynode=null) {
 If ynode.nodename=’floor’ { f=f+1;};
 ynode=ynode.nextsibling; //P-Lock
};
If (f=0) {return;}
Else {
 write(ynode); //Upgrade to W-Lock
};

// release all locks here at the end of the program

// release all locks here at the end of the program

Figure 4(a). Two transactions T3’ and T4’ by DOM.

T3’ T4’
Lock-P(campus)
Lock-P(address)
Lock-P(building 1)

Lock-P(building 2)

Lock-P(building 3)
Lock-P(floor 1)

Lock-P(floor 2)
Lock-P(floor 3)
Upgrade-W(floor 3)
unlock(floor 3)
unlock(floor 2)
unlock(floor 1)
unlock(building 3)
unlock(building 2)
unlock(building 1)
unlock(address)
unlock(campus)

Lock-P(campus)

Lock-P(address)
Lock-P(building 1)

Lock-P(building 2)
Lock-P(building 3)

Upgrade-D(building 3)
unlock(building 3)
unlock(building 2)
unlock(building 1)
unlock(address)
unlock(campus)

Figure 4(b). A schedule for transactions T3’ and T4’ in Figure 4(a) under DLP.

 16

4. Comparisons of XLP and DLP

In this section, we compare XLP and DLP in two aspects: how early can a lock be released

and how many nodes should be locked.

First, XLP may release locks earlier than DLP. XLP has the finer control of a transaction

than DLP. In XLP, a transaction consists of location paths, each of which consists of location

steps. Each location step clearly identifies the types of nodes to be accessed. Also predicates help

refine the result of a location step. In DLP, the scope of a transaction is the scope of the program.

Only at the end of a program can DLP make sure that there is no more access to objects. No

further refinement of a transaction can help DLP release locks earlier. As a result, according to

Release Rule (1) in XLP, P-locks on undesired nodes may be released earlier at the end of a

location step. But, for DOM Level 1, P-locks in DLP can only be released at the end of a

transaction since there is no way to indicate the exiting phase in DOM Level 1. Also, Release

Rule (2) in XLP releases unnecessary P-locks after each location path of a transaction, but DLP

does not have the rule.

Secondly, XLP locks fewer nodes than DLP. Each location step clearly identifies the types of

nodes to be accessed, but the number of locks by DLP depends on the access manner in a

program. The question is twofold. The first is the access manner programmed by a programmer.

If a programmer uses the depth-first search for a simple query, for example transaction T2’ in

Figure 3(a), every node in an XML document is at least locked by P-lock and some nodes may be

upgraded to proper lock modes later. Too many unnecessary locks thus happen in DLP. The

second is the access manner for the desired results. For example, a user wants to read those

buildings having at least one floor, which in turn has at least one room. This query requires

traversing almost every ‘building’ node in the XML document. The depth-first search perhaps is

the simplest method for the query, but it costs too much since every node is locked by at least

P-lock and cannot be released earlier. In XLP, such a query can be expressed in the location path

“/child::campus/child::building[child::floor/child::room].” Only involved nodes are locked and

 17

unnecessary nodes can be released earlier. The advantage comes from the richer semantics

implied in the location path of XPath.

In the next section, XLP and DLP are compared by simulation.

5. Simulation Results

To illustrate the performance of XLP and DLP, we write a simulator to compare the two

protocols. In the simulation model, there are 100 transactions executing for each experiment.

Transactions by DOM use the depth-first search to traverse the XML document. Document size

ranges from 13 nodes to 137257 nodes. Three experiments are conducted to compare their

performance under different size of destination nodes, different read/write ratios and different

sizes of XML documents.

The first experiment illustrates the impact of different size of destination nodes (i.e. the

result nodes of a transaction). The result is shown in Figure 5 where 100 transactions are

executed with the write/read ratio of 0.33 in a transaction and the document size of 781 nodes.

The transaction execution time for both protocols is exponentially dependent on the destination

node size. This is because more locks are required if the number of destination nodes get larger

and also more conflicts result in performance degradation. In Figure 5, XLP performs faster than

DLP about 69% on average. The reason is that by Release Rules (1) and (2), XLP may release

locks earlier on nodes other than destination nodes after a location path finishes, but DLP must

hold locks on all nodes till the end of the transaction.

0

500

1000

1500

2000

2500

3000

20% 40% 60% 80% 100%

Percentage of result nodes in a query

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

XLP

DLP

Figure 5. Concurrency of XLP and DLP for different size of destination nodes.

 18

The second experiment illustrates the impact of different write/read ratio. Write operations in

the experiment includes update, insert and delete operations. The result is shown in Figure 6

where 100 transactions are executed with XPath length of 5. The XML document size for such

XPath length is about 800 nodes. Execution time of both protocols grows as the write/read ratio

grows. Two curves of XLP and DLP are almost parallel. This is because lock modes for the two

protocols are the same and execution time spent on unnecessary locks of nodes is small when

there are few destination nodes and low delete ratio. In Figure 6, XLP outperforms DLP by

68.7% on average.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

W r i t e /R e a d R a t io

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

X L P
D L P

Figure 6. Performance comparison under different read/write ratio.

The last experiment illustrates the overall performance under different XML document sizes.

The simulation result is shown in Figure 7. The write/read ratio for this experiment is 0.33 and

the number of destination nodes is 20% of total nodes in an XML document. In Figure 7, XLP is

not very sensitive to the document size but DLP is. XLP outperforms DLP about 109.2% on

average. This is because in this simulation the depth-first search is adopted to traverse the whole

document. Since DLP does not release locks earlier, such a situation generates more conflicts

when the document size increases.

0

1 0 0

2 0 0

3 0 0

1 3 8 5 7 8 1 9 3 3 1 1 3 7 2 5 7

D o c u m e n t S iz e (n o d e s)

Ex
ec

u t
i o

n
Ti

m
e

(s
e c

)

X L P

D L P

Figure 7. Overall performance under different document size.

 19

6. Conclusions

XML has become the most important technique to exchange data in WWW. Providing a

high degree of concurrency in XML databases is crucial in many applications. In this paper two

concurrency control protocols, XLP and DLP, are proposed and compared for XML documents.

XLP, based on XPath suggested by W3C, has the features of richer lock modes, refined lock

granularity, lower lock conflict and lock conversion. DLP, based on DOM model suggested also

by W3C, is extended from XLP. Simulation results show that XLP outperforms DLP. For XML

documents of different sizes, XLP outperforms DLPL by 109.2% on average. Future work

includes take the access behavior provided by DOM Level 2 and Level 3 into consideration for

DLP.

References

[1] P. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and Recovery in Database

System, Addison-Wesley, 1987.

[2] P. Bernstein, D. Shipman and W. Wong, “Formal Aspects of Serializability in Database

Concurrency Control,” IEEE Trans. on Software Engineering, Vol. 5, No. 3, pp.203-216,

1979.

[3] J. Clark, S. DeRose, “XML Path Language (XPath) Version 1.0,” World Wide Web

Consortium (W3C) Recommendation, 1999, available at http://www.w3.org/TR/XPath.

[4] J. Gray, R. Lorie, G.. Putzolu and I. Traiger, “Granularity of Locks and Degrees of

Consistency in a Shared Database,” Modeling in Database Management System, Elsevier

North-Holland, pp. 365-395, 1976.

[5] H. Korth, “Deadlock Freedom Using Edge Locks,” ACM Trans. Database System, Vol. 7, No.

4, pp. 632-652, 1982.

[6] H. Korth, “Locking Primitives in a Database System,” J.ACM, Vol.20, No. 1, pp. 55-79, 1983.

[7] K.-F. Jea, S.-H. Wang, S.-Y. Chen, “Concurrency Control in XML Document Databases:

 20

XPath Locking Protocol,” Proc. of 2002 Symposium on Digital Life and Internet

Technologies (Abstract Collections), pp.112, 2002.

[8] S.-Y. Lee and R.-L. Liou, “A Multi-granularity Locking Model for Concurrency Control in

Object-oriented Database Systems,” Proc. 2nd FAR-FAST Workshop on Future Database

Systems, pp.158-167, 1992.

[9] R. Ramakrishnan and J. Gehrke, Database Management, 2nd ed., McGraw-Hill, 2000.

[10] A. Silberschatz, H. Korth and S. Sudarshan, Database System Concepts, 4th ed.,

McGraw-Hill, 2001.

[11] “Document Object Model (DOM),” http://www.w3.org/DOM/.

[12] OMG (Object Management Group), http://www.omg.org/corba/corbiiop.htm.

