
1

GBDU: An Effective Method to Achieve Load Balancing for Web Server System
Design

Shang-Wei Huang, Yi-Hsuan Lee, Tzu-Han Tsao, and Cheng Chen*

Department of Computer Science and Information Engineering

National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Tel: (8863) 5712121 ext: 54734, Fax: (8863) 5724176

E-mail: {huangsw, yslee, thtsao, cchen}@csie.nctu.edu.tw

Abstract

Recently, with the growth of network, many applications on it have been developed to

improve the human life. One of the powerful applications is the World Wide Web system.

Nowadays, many enterprises develop web applications to service clients, such as stock trading

and E-commerce. Therefore, to have a high performance web server system is important. In

this paper, we design a web system based on the network infrastructure and propose an

effective method called Grouping Based Dynamic Updating method to improve loading

balance on web servers. In our method, we will use it to group the strongly related documents

together. Then we distribute the groups among web servers and keep them to handle the same

number of client requests. Finally, we dynamically update dispatch table, and sustain the

loading balance on web servers constantly. According to the performance evaluations, our

method is superior to other schemes in response time and loading balance status.

Keywords: Web server, Load balance, Grouping, Dispatching, LBM

1. Introduction

Recently, with the growth of the World Wide Web, many services have been developed

2

on them [6-8]. Hence, the rapid expansion of the web service has led to exponential growth in

the request rate to some popular sites [5]. In order to prevent web system from crashing down

caused by mass requests, many web systems try to use clustered web servers to improve their

performance and then upgrade their QoS [1, 4, 9]. One of the most important issues to design

these systems is how to keep loading balance on web servers.

In this paper, we design a web system based on the network infrastructure today. This

system includes a Dispatcher Server, a Monitor Server, and Clustered Web Servers. The

Dispatcher Server focuses on receiving requests from clients and dispatches them to

appropriate web servers. The Monitor Server manages the documents, and monitor the

loading status. The Clustered Web Servers are responsible for handling the requests of clients,

and send appointed data back to clients. In order to achieve loading balance, we also propose

an effective loading balance method named Grouping Based Dynamic Updating (GBDU).

This method includes grouping algorithm, group distribution algorithm, and dynamically

update dispatch table techniques to achieve load balancing on our web system. We also

construct a simulation and evaluation environment to evaluate it. According to the simulation

results, we can show that our algorithm can achieve load balancing effectively.

The organization of this paper is as follows. In section 2, some fundamental background

knowledge will be introduced. Our system architecture and design issues will be described in

section 3. In section 4, we focus on expressing our proposed algorithm. In section 5, we

3

introduce our simulation environment and compare our method with other schemes. Finally,

we will give a conclusion and future work in section 6.

2. Fundamental Background and Related Work

2.1 Survey of Load Balancing Methods

With the rapid development of the WWW, how to achieve load balancing on web servers

becomes more important when designing the web server system. Generally, we can classify

the load balancing approaches based on different architectures or content availabilities [5, 7].

In the following, we give a brief survey on them.

There are four kinds of approach about the architecture. Client-based approach uses the

software modification on the client side to decide how to achieve load balancing. DNS-based

approach controls the URL-to-IP mapping to play an important role in load balancing [5].

Dispatcher-based approach uses a centralized request scheduling and completely controls the

request routing [4]. Server-based approach lets all servers to participate in load balancing [1].

As for content availability, two approaches were proposed. Mirror-based approach

copies contents to every node in the clustered web servers [3, 7]. It can increase the content

availability, but suffers from the worse disk space utilization if the number of data sets

increases. Content-based approach places different data sets on different web servers, and the

client requests will be dispatched to a web server only if it contains that data set [7].

2.2 Related Work

4

2.2.1 National Center for Supercomputing Applications (NCSA) [3]

NCSA belongs to DNS-based and mirror-based approaches described in section 2.1. It

comprises a couple of web servers, distributed file systems, and a primary DNS. The

commonly used technique in NCSA to achieve load balancing is Round-Robin Domain Name

Server (RR-DNS) technique. In order to reduce the message exchanging traffic in name

servers, during a predefined time period, Time-To-Live (TTL), requests from the same client

will be served by the same web server. Recent studies about NCSA RR-DNS have shown that

it works well only when request rates of all clients are the same.

2.2.2 Extensible Web Server Architecture (EWS) [1]

EWS consists of multiple distributed web servers and a redirection server installed in the

central site. When the first request in a new session comes to this system, the central site will

choose a suitable web server to handle all requests in this session and redirect requests to the

web server.

In EWS, a new document distribution algorithm has been adopted, which can distribute

migrating units among web servers to fulfill the load balancing. The redirection mechanism

used in EWS also can reduce the redirection cost and decrease the access latency. Besides,

using migrating unit can save a lot of message exchanging overhead, and related files in the

migrating unit can increase the hit ratio on web servers. However, the drawback of EWS

system is that it cannot adjust the number of replicas according to server loading in real time.

5

Cluster Web Servers

WS1WS2Repository

Request
Queue

Data
response

Load
R

esponse

Request
Queue

Data
response

Load
R

esponse

Request
Queue

Data
response

Load
Response

Replication
Processor

Request
Dispatch
Message

Load Status
Message

Replication
Control Message

Response
Message

ACCESS
LOG

Dispatch
Table

Monitor Server

Dispatch Table Generator

Dispatch Table Updater

Replication Manager

Load Monitor

Clock

File
Hierachical

Dispatcher Server

Admission Control

Job Scheduling

Dispatch Agent

Request Queue

Client
Requests

User

Hit Rate
Monitor

Loading
Monitor

Download Time
Monitor

3. System Architecture Design

3.1 Overview of System Architecture

According to our previous survey, we find that the dispatcher-based approach has higher

ability to control the clustered web server system in load balancing status. Besides, in order to

increase the space utilization, a content-based approach is a good method to be adopted.

Content-based approaches are also appropriate for large-scale web server system that can

efficiently increase the throughput of web servers by using well-designed content placement

algorithm. Thus, in order to increase the performance, we will propose a system based on both

dispatcher-based and content-based approaches. As shown in Figure 1, our system is

composed of a dispatcher server, a monitor server, and clustered web servers. We will further

Figure 1. Proposed architecture of web server system.

6

introduce each server on our system in the following subsections.

3.1.1 Dispatcher Server

Dispatcher Server in our system can be regarded as a doorkeeper of the whole system

and is usually the bottleneck of a web server system. In our system, we implement the

scheduling algorithm in monitor server, which can upgrade the dispatch ability of dispatcher

server. The dispatch ability here indicates the dispatch speed directly. If the dispatcher server

has faster dispatch speed, the dispatch delay will be decreased.

3.1.2 Monitor Server

In our system design, the monitor sever plays an important role. It can communicate

with the web servers to avoid them falling into overloaded status. The monitor server consists

of Dispatch Table Generator, Load Monitor, Replication Manager, and Dispatch Table

Updater. The dispatch table generator refers to the file hierarchy and access log and generates

an appropriate dispatch table initially. The load monitor manages the loading status collection.

If one of the web servers is near overloading, the load monitor will trigger replication

manager to replicate contents on other servers to share the requests loading efficiently.

Replication manager is responsible for replication action. We will propose an algorithm to

decide how many replicas should be placed on web servers and how to adjust their counts in

the next section.

3.1.3 Clustered Web Servers

7

Recently, many web sites use clustered web servers instead of one powerful web server.

The most important advantage by using clustered web servers is that when one web server

crashes, the others can still service normally. In our system design, web servers store different

data sets in their local disks, and the more popular data have more replicas stored on different

web servers. We also use a repository server to store all documents as a backup server and to

service light requests from clients. When a document is not popular enough to be stored on

any web server, the repository will service the requests.

3.2 Operational Scenario

Figure 2 shows the overall procedure when a client wants to query a web page. The

sequence shows the processing steps in sequence when the clients start to

send a request. Steps represent the request message flow, and indicate the

internal message control.

Client

Computer

Dispatch table
Access log

Dispatcher server

Internet

iMac

Monitor server

Workstation

Web server

Workstation

Web server

Workstation

Web server

Workstation

Repository server

Et
he

rn
et

Operational sequence:
1. send request
2. check if the data exists
3. send back the server ID
4. redirect request
5. send data back to client
6. loading check
7. loading information
8. update dispatch table

and process replication

Figure 2. System operation sequence.

8

4. Grouping Based Dynamic Updating (GBDU) Method

In this section, we describe our Grouping Based Dynamic Updating (GBDU) method

completely. GBDU is designed to achieve the following goals: (1) to increase the disk space

utilization, (2) to minimize the download time of the client, and (3) to keep the loading

balance among web servers.

4.1 Overview of GBDU Method

The main principle of our GBDU consists of three processing stages to achieve above

goals. First, we propose a documents grouping method used to determine the migrating unit.

In this stage, we define the relation of documents and find suitable threshold values to group

documents. In the second stage, a Grouping Distribution technique and dispatch table is used

to distribute requests among web servers in balance. Finally, we apply the Dynamic and Static

Updating techniques to keep the load of each web server in balance. We explain each stage in

the following sections clearly.

4.2 Documents Grouping Stage

Our documents grouping algorithm is similar to that used in EWS architecture [1]. In

our algorithm, we partition documents of the system into many migrating units, and all files in

a migrating unit may have some relationship among each other. When a client requests a web

page belonging to one group, it has high probability to request other files in the same group

later. This feature will increase the hit ratio on a web server and the utilization of disk space.

9

Index.File
1000

World.News
860

Business.News
840

Sports.News
880

Search.CGI
900

Asia.
news
820

Europe
.news
750

Africa.
news
720

Taiwan
.news
800

Japan.
news
760

Baseball
.news
860

Tennis
.news
775 …

…
..

…
…
..…
…
..

…
…
..

…
…
..

…
…
..

Stock
810

Funds
805

…
…
..

…
…
..

Entry Point

Link

Access Counts

4.2.1 Definition of Documents Relation

The relation of documents plays an important role in designing a partition algorithm. As

shown in Figure 3, we use a relation tree to define the relation of documents. The root of the

relation tree represents the main web page of this system, and its child nodes represent the

link files of the root page. Only files stored in the web system can be contained in the relation

tree. Without loss of generality, we assume that most of the clients request from the root file

first, and parent files always have more request counts than that their child nodes.

4.2.2 Threshold Values Selection

After defining the relation of documents, we have to decide some threshold values.

Threshold values are a list of numbers recorded in a sorted array and used to determine which

documents should be placed in the same group. Smaller group may lead to higher miss ratio

when clients request many related documents, and larger group may waste the disk usage. In

Figure 3. Example of grouping relation tree.

10

our system, we select threshold values based on the access distribution and the limitation of

server disk space. First, we generate the relation graph of access count and accumulative

document size. Then, we partition the request frequency into several areas according to the

ratio of total size of documents and the minimal disk space of web servers. Finally, we check

all areas and divide them if their documents sizes are larger than the minimal disk space of

web servers. Figure 4 shows the threshold selection steps.

4.2.3 Grouping Method

After defining the relation of documents and selecting threshold values, we can begin to

group documents. Our main idea is to traverse the relation tree by Depth First Search method.

As shown in Figure 3, for example, we traverse the relation tree from index.file. Assume that

our threshold values are {Threshold #1=900, Threshold #2=800, Threshold #3=700}. Using

Access counts

A
cc

um
ul

at
iv

e
si

ze

1 2 3 4 5 6

2GB 3GB 4GB 2GB

A

4GB
4GB

4GB 3GB
4GB

B C D E IF G H

(c) Threshold decision in step 3

Step 3: Total document size = 30 GB
The minimum web server = 5 GB

Step 1: According to the Access Log. We can
draw the access counts distribution and
the accumulative file size

Access counts

A
cc

um
ul

at
iv

e
si

ze

(a) Access counts vs. Accumulative size

Access counts

A
cc

um
ul

at
iv

e
si

ze

1 2 3 4 5 6

2GB 3GB 8GB 11GB 4GB 2GB

(b) Threshold decision in step 2

Step 2: Total document size = 30 GB
The minimum web server = 5 GB

Threshold decision results:
9 Access count thresholds
A, B, C, D, E, F, G, H, I

Figure 4. Threshold selection processing.

11

DFS method, we can obtain 8 groups as shown in Figure 3. Our method can group documents

into appropriate migrating units with the following features. (1) The size of each migrating

unit cannot exceed the disk space of any web servers. (2) Documents in a migrating unit are

strongly related. (3) According to our grouping method, migrating unit containing lower level

nodes usually has smaller size. This feature can lead the disk space to not being wasted when

we place the less popular migrating unit on servers.

4.3 Group Distribution Stage

We directly let a group as a migrating unit. We have to well distribute migrating units to

appropriate web servers and dispatch requests from clients among web servers in balance.

4.3.1 Group Distribution Method

In our group distribution method, we focus on achieving the following goals. (1) The

total size of documents in a web server satisfies the disk space constraint. (2) Documents are

distributed to appropriate web servers such that all servers are loading balance. (3) More

popular documents have more replicas placed on different web servers. This can reduce the

loading of a single web server. Figure 5 shows the algorithm used to determine the number of

replicas of a document during distributing.

4.3.2 Construction of Dispatch Table

After distributing groups to web servers, a hash table is constructed to store the mapping

information between documents and servers. In our system, we use the basic collision

resolution by chaining and division methods to construct hash table and hash function

respectively. Formula 4-1 is used to calculate the hash table size. In order to reduce the table

size, we don’t need to store all files and their mapping. This is because that if a request misses

12

in the hash table, it can be redirected to and service the repository server. Hence, information

of file placed on repository server is unnecessary to be stored in dispatch table.

4.4 Dynamic and Static Update Dispatch Table Stage

After grouping and distributing documents to web servers, we still can’t guarantee that

Input:
A group array: Group[0], Group[1], Group[2], …, Group[m]

Web Server array: WS[0], WS[1], WS[2], …, WS[N-1]

Output:
New dispatching table T such that every access count on web servers is equivalent

Program:
Group_Distribute (*Group, *AC, N){

do{

GID = Highest_average_AccessCount(Group);

WS_ID = min_ac_webserver(N);

do{

WS_ID=next_min_ac_web(N); // find the 2nd, 3rd,…. Nth mini access count web

If(WS_ID==Null && EVERY_WS_SAPCE>0) GID=next_high_avg_AccessCount();

If(WS_ID==Null) goto final_step; // if can’t find enough space to place, then to final step

}while(WS[WS_ID].freespace()<group[GID].size || WS[WS_ID].contain(GID)==TRUE)

WS[WS_ID].add(group[GID].files); Group[GID].replica++;

Group[GID].now_avg_ac = Group[GID].original_avg_ac / Group[GID].replica;

}while(min_free_space(N) >0)

final_step:

WS_ID=min_free_space_webserver(N); // find out the web server owns the min free space

Expect=WS[WS_ID].total_access_count;

for(i=0; i<N; i++){

if(WS[i].total_access_count>Expect) WS[i].remove_replica();

if(WS[i].total_access_count<Expect) WS[i].add_group();

}}

(4.1)
countserverweb:

WSofcountgroup
WSongroupofcountfile

where
1 0

= ∑∑

= = n
iCi

ijFCij
FCijX

n

i

Ci

j

:
:

Figure 5. Group distribution algorithm.

13

the balance status will sustain for a long time. This is because popularities of documents will

be changed according to the access behavior. Hence, in our system, we propose both static

and dynamic methods to keep the load balancing for a long time.

The idea of statically updating dispatch table is based on the message exchanging in a

predefined time period. By communicating with web servers periodically, we can obtain

loading information of every web server and adjust the dispatch table statically. According to

the access log file, if any web server is under imbalance status, we must adjust the replicas

placed on all web servers. A suitable time period can be chosen based on the access behavior.

In addition, we also must prevent single server from receiving mass requests. This

situation occurs when a document becomes popular suddenly but it has only one replica in the

system. In our dynamically updating method, web servers are asked to alarm when they are

near overloading. We can use the double threshold (Thr2) mechanism to avoid this crashing

situation. When a server is near overloading, it should be suspended to allow us to adjust

contents of web servers and prevent another server to overload again.

Finally, in order to response current popularity of documents and avoid the repository

server overloading, we should dynamically update the web server contents and group contents.

If a group stored in the repository server becomes popular, it should replace the less popular

group in web servers. Besides, if only one document in a group stored in the repository server

becomes popular, it should be moved to its parent’s group that can keep documents in a group

14

still strongly related. This updating technique can increase the hit ratio on web servers. The

overall flowchart of our system design is shown in Figure 6.

5. Simulation Environment and Performance Evaluations

5.1 Simulation Parameters

We construct a simulation environment based on system architecture proposed in section

3. Figure 7 contains the overall architecture of our simulation environment. In order to

evaluate the system performance, we define some related parameters in Table 1 and list some

important factors as follows. (1) Assume that the total document size is always larger than the

web server space. So we must control the relation among parameters to prevent all documents

from being put on the same web server like mirror-based system. (2) According to the web

server access log of NCTU CSIE, we found the average access counts are 200 and 300 per

minute and a large-scale web system may exceed 400 access counts per second. Without loss

Figure 6. Overall flowchart of our system design.

15

Cluster Web Servers

WS1WS2Repository

Request
Queue

Data
response

Load
R

esponse

Request
Queue

Data
response

Load
R

esponse

Request
Queue

Data
response

Load
Response

Replication
Processor

Request
Dispatch
Message

Load Status
Message

Replication
Control Message

Response
Message

ACCESS
LOG

Dispatch
Table

Monitor Server

Dispatch Table Generator

Dispatch Table Updater

Replication Manager

Load Monitor

Clock

File
Hierachical

Dispatcher Server

Admission Control

Job Scheduling

Dispatch Agent

Request Queue

Client
Requests

User

Hit Rate
Monitor

Loading
Monitor

Download Time
Monitor

Parameter Notation Value
Web Server Counts Wn 2 ~ 32
Number of Documents Dn 100000

Web Server Storage Swi 800MB ~ 1024MB
Document Size Dsi 100KB ~ 1024KB
Request Arrival Rate R 100, 200, 400, 800
Probability of Request Document [10] P PureZipf, Zipf 90/10, Zipf 80/20
Processing Power PW 1 ms/KB
Redirection Delay RD 0.1 ms/request

of generality, we set the parameter as 100 to 800 per minute.

5.2 Performance Evaluations

5.2.1 Load Balance Metrics (LBM) [2]

Figure 7. Overall architecture of our simulation environment.

Table 1. Parameters used in our simulation environment.

16

0

0.2

0.4

0.6

0.8

1

PureZipf Zipf 80/20 Zipf 90/10

H
it

R
at

io EWS
NCSA
GBDU

In order to evaluate the load balance status, we adopt the LBM (Load Balance Metric) to

measure our system performance. The value of the LBM ranges from 1 to n, where n is the

number of web server. Smaller values of the LBM indicates the better loading balance

performance. The measure function is shown in the following.

∑ ∑
∑

= =

=
m

j

n

i

m

j

njloadi

loadjpeak

1 1

1

),(

_

5.2.2 Comparison of GBDU with Other Schemes

Before comparing with other schemes, two scheduling methods are cooperated with our

GBDU method. One is called GBDU with Round Robin (GBDU_RR) method and the other is

GBDU with Least Loading (GBDU_LL) method. GBDU_RR method services the clients by

using round robin method. GBDU_LL method chooses a server with the least loading to

service. In the following, we compare and evaluate those of GBDU_LL, GBDU_RR, EWS,

and NCSA methods.

As shown in Figure 8, we can find that our GBDU method is superior to EWS and

NCSA methods in hit ratio. It is because we keep the document relation and group them

(5-1)

Figure 8. Hit ratio vs. Access distribution.

17

0
0.5
1

1.5
2

2.5
3

3.5

PureZipf Zipf 80/20 Zipf 90/10

se
co

nd
s EWS

NCSA
GBDU_RR
GBDU_LL

0.0000
2.0000
4.0000
6.0000
8.0000
10.0000
12.0000
14.0000
16.0000
18.0000

2 4 8 16 32

of Web Server

LB
M

EWS
NCSA
GBDU_RR
GBDU_LL

together. The hit ratio of GBDU_RR and GBDU_LL are the same because they are based on

the same grouping method. Figure 9 shows results of different schemes under different

request distribution. According to the observation from the status of web servers, we can find

that requests are queued in repository server under Pure Zipf distribution. In this case, our

GBDU_LL method can save about 65% and 52% download time than EWS and NCSA

methods respectively. In Figure 10, we show the LBM under different schemes and change

the number of web servers. It is obvious that GBDU_LL still performs well no matter in

small-scale or large-scale web system.

Finally, we trace the loading status of different schemes and evaluate their LBM values

Figure 9. Download time vs. Access distribution.

Figure 10. LBM vs. Number of web server.

18

LBM VS. Time

2

2.5

3

3.5

4

4.5

5

5.5

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461

Time since start to trace (minutes)

L
oa

d
B

al
an

ce
M

et
ri

cs

EWS
GBDU_RR
GBDU_LL

in different time stamp. In Figure 11, we trace the loading status on the grouping based

methods for 8 hours. It shows that our method can short about 25% of the time than EWS

method to enter stable status.

6. Conclusions and Future Work

In this paper, an effective grouping algorithm named GBDU has been proposed. It

groups strongly related files into a group as a migrating unit, which can increase the hit ratio

of web server. GBDU also contains a popularity-based distributing algorithm, which let the

more popular documents have more replicas on different web servers to share their requests.

We also construct a simulation environment to evaluate our algorithm. Based on the

simulation results, GBDU can improve the LBM value about 30% and 36% better than NCSA

and EWS method respectively. On the other hand, it can save about 52% and 65% download

time compared to NCSA and EWS methods, and achieve better QoS no matter in small-scale

or large-scale web systems.

Figure 11. LBM vs. Trace time.

19

In order to enhance the ability of our system, there are still some attractive issues can be

exploited in the future. First, an effective and accurate access behavior predicting method is

important to the web system nowadays. By accurate predicting the access behavior, we can

determine the number of replicas more precisely. Second, with the growth of web system,

web can offer many different type of service. How to provide better QoS under this

circumstance become one of the most attractive research issues in web system design. Finally,

with the different service in web system, relations among documents will become much

complex. If these relations can be analyzed and defined more precisely, we can develop a

more effective method to achieve loading balance in web system.

References

[1]. Ben Chung-Pun Ng and Ch-Li Wang, “Document Distribution Algorithm for Load

Balancing on an Extensible Web Server Architecture”, Proc. of the First IEEE/ACM

International Symposium on Cluster Computing and the Grid, pp. 140 –147, 2001.

[2]. Richard B. Bunt et al., “Achieving Load Balance and Effective Caching in Clustered

Web Servers”. Proc. of the fourth International Web Caching Workshop, pp.159-169,

1999.

[3]. T. T. Kwan, R. McGrath, and D. A. Reed, “NCSA’s World Wide Web Server: Design and

Performance”, Computer, Vol. 28, No. 11, pp. 68-74, Nov. 1995.

[4]. L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web Servers: Using

20

Distributed Packet Rewriting”, Proc. of the IEEE International Conference on

Performance, Computing, and Communications, pp. 24–29, 2000.

[5]. V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic Load Balancing on Web-server

Systems”, IEEE Internet Computing, Vol. 3, Issue 3, pp. 28–39, May-June 1999.

[6]. V. Cardellini, E. Casalicchio, and M. Colajanni, “A Performance Study of Distributed

Architectures for the Quality of Web Services”, Proc. of the 34th Annual Awaii

International Conference on System Sciences, pp.3551-3560, 2001.

[7]. Cheng Zen Yang, Yi Shou Lin, and Cheng Chen, “An Effective Request Distribution

Mechanism for Improving Load Balance in Web Server System”, Proc. of the

International Computer Symposium, Taiwan, R.O.C., Workshop on Computer Network,

Internet and Multimedia, pp.191-198, 2000.

[8]. E. Casalicchio and M. Colajanni, “Scalable Web clusters with static and dynamic

contents”, Proc. of IEEE International Conference on Cluster Computing, pp. 170–177,

2000.

[9]. Microsoft Visual Studio, http://msdn.microsoft.com/vstudio/default.asp

[10]. Reference on Zipf’s Law. http://linkage.rockefeller.edu/wli/zipf/

