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Abstract 

In view of real world data may be interfered with noise which leads data to contain faults. 

Besides, we may hope that the knowledge discovered is more general and can be applied to find 

more interesting information. Hence, FT-Aprori was proposed for fault-tolerant data mining to 

discover information over large real-world data. However, FT-Apriori which generates and tests 

candidates based on Apriori property is not so efficient.  

In this paper, we develop memory-based algorithm FTP-mine which is based on the concept 

of pattern growth to mine fault-tolerant frequent patterns efficiently. In FTP-mine the table, 

STable, is designed to count the item support and FT-support of the k-length patterns which 

have the same prefix of length k-1. As to mining in a large database which is too large to fit in 

memory, FTP-mine also can be adopted by means of database partition. Since there might exist 

a large number of fault tolerant frequent patterns and some may be contained in others, we also 

focus on the finding of maximal FT-frequent patterns by extending the FTP-mine algorithm. 

Our study shows that FTP-mine has higher performance than FT-Apriori in various datasets. 

The empirical evaluations show the proposed method has good linear scalability and 

outperforms than FT-Apriori in various settings in the discovery of FT-frequent pattern. 
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1. Introduction 

Data mining [16], which discovers non-trivial and potential useful information in large 

databases, has been an active research topic in recent years. The discovered knowledge can be 

applied to information management, query processing, decision making, process control and 

many other applications. The domain which data mining involves is very extensive, such as 

database systems, artificial intelligence, machine learning, statistics, and data visualization. 

However, much research in this field has focused on the mining of frequent patterns[2, 5, 13], 

because frequent pattern mining plays a fundamental role in many data mining skills, such as 

association rules [6, 7, 12], sequential patterns [3, 4, 10], maximal patterns[8, 11, 14], closed 

patterns[9], classification and clustering.  

Generally speaking, algorithms to mine frequent patterns efficiently can be classified into 



three categories. The first category is candidate generation-and-testing. The well-known 

algorithm is Apriori which is based on an anti-monotone Apriori property [6]. The main idea is 

that a pattern can not be frequent if there exists a sub-pattern which is not frequent. In other 

words, once a pattern is not frequent, its super-pattern would not be frequent any more. 

According to this idea, the algorithm reduces the size of candidates to be generated. However, it 

is still unavoidable  to generate a large number of candidates, especially when 2-itemsets are 

generated or when the length of frequent patterns is long.  

The second category is pattern growth method of which the typical algorithm is FP-growth 

[6]. Instead of generating candidates, FP-growth builds a FP-tree to compact the information of 

transactions and find frequent patterns by traversing FP-tree. Once the FP-tree is too large to fit 

into memory, FP-growth finds local frequent patterns in partition databases which are divided 

by prefix path of FP-tree to assemble to longer ones. However, if the database is large and 

sparse, FP-tree will be large and the space requirement for recursion is a challenge.  

Another concept proposed recently is space-preserving method which suggests loading the 

transactions into memory initially. The typical approach is H-mine [2], which designs a 

hyperlink structure, H-struct, to dynamically adjust links in the mining process. Undoubtedly, 

the execution sequence of H-mine is some kind of a pattern growth approach. Unlike FP-growth, 

H-mine neither maintains FP-tree nor creates physical databases. However, the method has to 

maintain a header table in each level and adjusts links to form a queue which collects the 

transactions containing the same prefix before counting the supports of items.  

Although much work has been done on frequent pattern mining, little research has been 

devoted to fault-tolerant frequent mining. Fault-tolerant frequent pattern mining is to discover 

approximate patterns from the real-world data, which is tend to be dirty and diverse. In some 

situation, data may be disturbed by noise or some uncontrolled environment factors. We would 

like to find the frequent patterns which may contain some faults. For example, because of 

mutation, the nucleic acid of DNA sequences in a gene database may be modified, or may be 

incorrectly distinguished during the experiment. So fault-tolerant frequent pattern mining can be 

applied to the datasets, such as scientif ic dataset or web log which contains unanticipated errors. 

In addition, sometimes we may want to find more general rules. Take data mining for 

example, the related courses are AI, data structure, algorithm, and DBMS. It is not easy to 

discover the association between the four courses and data mining, because not all students take 

and do well in all of the four courses. However, if a user specified support is too low, many 

rules which are irrelative or uninteresting will be found. So fault-tolerant frequent pattern 

mining is necessary.  



Jian Pei pointed out the problems and challenges of fault-tolerant frequent pattern mining [1] 

and extended Apriori to FT-Apriori to discovery them. However, it still needs to generate a large 

number of candidates, which wastes time in combining and checking sub-patterns. In this thesis, 

we adopt the concept of space-preserving and propose an algorithm, FTP-mine, which caches 

transactions in main memory and processes the data more efficiently by maintaining one table .  

The remainder of this paper is organized as follows. Some background knowledge and 

related work in fault-tolerant frequent pattern mining are introduced in Section 2. FTP-mine 

algorithm is presented in Section 3. In Section 4, we describe experimental results that validate 

the effectiveness of FTP-mine. In Section 5, the conclusion and future works are presented.   

2. Problem Definition  

2.1 Frequent pattern mining 
Let I={i1, i2, … , in} be a set of items and |I| means the cardinality of I. An itemset is a 

non-empty subset of I, and k-itemset is an itemset with k items. A transaction T=(tid, t) is 
2-tutple, where tid is transaction-id and t⊆I. We say a transaction T contains itemset X if X⊆t. 

A transaction database TDB is a set of transactions. The total number of transactions in TDB 
containing itemset X is called support of X, denoted as support(X). The min_sup is a user 
specified support threshold to decide if an itemset is a frequent pattern by support(X) ≥ min_sup. 
The problem of frequent pattern mining is to find the complete set of frequent patterns in a 
given transaction database with respect to a given support threshold. The set of all candidates 
with k items is denoted as Ck and frequent patterns with k items is denoted as Lk. 

Example 2.1 (Frequent pattern): 

An example transaction database TDB is given in Table 2.1, and user specified min_sup is 2. 
An itemset X={a, d, e} is contained in transactions whose TID are 200 and 500 and the support 
of X, support(X)=2. Because of support(X)≥min_sup, X is a frequent pattern. 

 

 

2.2 Fault-tolerant frequent pattern 

Because faults are allowed, we notate the fault tolerance as δ (δ>0). Besides, the definition of 

contain need to redefined to FT-contain. A transaction T=(tid, t) is said to FT-contain itemset 

X iff there exists an itemset x, which is a subset of X and also a subset of t at the same time, 

such that |X|-|x|≤δ. FT-support of pattern X, denoted as supFT(X), is the total number of 

Table 2.1 Example transaction database TDB 



transactions in transaction database FT-containing itemset X. For an itemset X to be a 

fault-tolerant frequent pattern, except for FT-support counting, the support of each item in the 

FT-containing transactions also needs to be checked. B(X) is the collection of transactions 

which are FT-containing itemset X, and an itemset X is a fault-tolerant frequent pattern 

(denoted as FT-frequent pattern) iff 

1. supFT(X) ≥ min_supFT    

2. for each item x∈X, supB(x)(x) ≥min_supitem, where sup B(x)(x)is the number of transactions 

containing item x in B(X)  

In other words, there are at least min_supFT transactions FT-containing X, and each item of X 

must have appeared at least min_supitem times in these FT-containing transactions. 

Example 2.2(Fault tolerant frequent pattern): 

Let us take TDB in Table 2.1 for example. Suppose the frequent-item support threshold 

min_supitem=2, the FT-support threshold min_supFT=3 and one fault allowed (δ=1). X= {a, b, d, 

e} is FT-contained by transactions 100, 200 and 500. That is to say supFT(X)=3, and the B(X) 

includes transaction 100, 200, and 500. Besides, each item in X appears at least in two 

transactions in B(X), respectively. Thus, {a:2, b:2, d:3, e:3 } is an FT-frequent pattern.       

2. 3 Frequent pattern vs. FT-frequent pattern 

  Table 2.2 shows the complete set of frequent patterns and FT-frequent patterns. The min_sup 

of frequent patterns is 2, and the min_supitem, min_supFT and δ of FT-frequent pattern is 2, 3, and 

1 respectively. From this table we can discover the truth that fault-tolerant frequent mining can 

find more and longer patterns with high support than frequent pattern mining. Besides, since the 

FT-frequent patterns must be δ+1 to make sense, so the FT-frequent patterns do not include 

1-itemset. 

 Frequent patterns FT-frequent patterns(δ=1) 

1-itemset a, b, c, d, e, g, h  

2-itemset {a, d } {a, e } {b, d } {b, e } 

{ b. g} {b, h} { d, e } {e, g} 

{e, h} {g, h } 

{a, b} {a, c}{a, d} {a, e} {a, g} {a, h} {b, c} {b, d} 

{b, e} {b, g} {b, h} {c, d} {c, e} {c, g} {c, h} {d, e} 

{d, g} {d, h}{e, g} {e, h} {g, h} 

3-itemset {a, d, e } { b, d, e } { b, e, g } 

{ b, e, h} 

{a, b, d} {a, b, e} {a, c, h} {a, d, e} {a, e, g} {a, e, 

h} {b, d, e} {b, d, g} {b, d, h} {b, e, g} {b, e, h} {b, 

g, h} {c, d, g} {c, d, h} {c, e, g} {c, e, h} {d, e, g} 

{d, e, h} {d, g, h} {e, g, h} 

4-itemset  {a, b, d, e} {b, d, e, g} {b, d, e, h} {b, d, g, h} {b, e, 

g, h} {d, e, g, h}  

5-itemset  {b, d, e, g, h} 

 Table 2.2 the complete set of frequent patterns and FT-frequent patterns 



3. Mining FT-frequent Pattern 

  In this section, the FTP-mine algorithm will be presented. In Section 3.1, we assume the 

transaction database can fit into memory, and use STable to count the FT-support and item 

support. In Section 3.2, large database is taken into account, and the FTP-mine is extended to 

mining FT-frequent patterns in large databases. Finally, the method to mine maximal 

FT-frequent patterns is also introduced in Section 3.3 

3.1 FTP-mine  

The candidate-generation-and-test approach will produce a large number of candidates which 

need extra time in generating candidates and checking whether they are frequent. Furthermore, 

because mismatches are allowed in FT-frequent pattern mining, FT-frequent pattern mining will 

generate more candidates and longer patterns than frequent patterns mining. In this way, the 

mining process will become inefficient. Therefore, we propose FTP-mine which takes 

advantage of pattern growth and space-preserving to mine FT-frequent patterns. In FTP-mine, 

we apply the pruning strategy to reduce the comparison times. This is justified by the following 

lemmas: 

  Lemma 1: 

An itemset, prefix, which attempts to append suffix item s to become FT-frequent pattern with 

|prefix|+1 items( denoted as prefix’ ), and MN is the number of items which appear both in prefix 

and the transaction t. t FT-contains the pattern (prefix  ∪ s) iff 

1. MN > |prefix| - δ  (s ∉ t). 

or  

2. MN ≥ |prefix | - δ  (s ∈ t). 

Proof:  

When s appends to prefix , if s∈t, MN will increase, else the number of faults will increase. 

We discuss these two conditions respectively.  

 Condition 1:  

Because s ∉ t and in this stage the pattern length will increase to |prefix| + 1. At the 

moment there are (|prefix | + 1- MN) faults and only δ faults are allowed. If t FT-contains prefix’, 

then (|prefix | + 1- MN)≤ δ which can lead to (|prefix | - MN) < δ. 

 Condition 2: 

Because s ∈ t and in this stage the length of the pattern will grow to |prefix| + 1. At the 

moment there are (|prefix| + 1- (MN+1)) faults and only δ faults are allowed. If t FT-contains 

prefix’, then (|prefix | - MN)≤ δ.                                                  ? 

Lemma 2: 



During the process of pattern growth, appending s to prefix  continuously, t does not 

FT-contain the patterns any more which start with prefix, once MN < |prefix | - δ. 

Proof: 

Once MN <|prefix |-δ, the length of prefix in the next round will increase. No matter how MN 

increases, it is always smaller than |prefix|-δ. That is to say that there are (|prefix|-MN) faults 

which exceed the fault tolerant threshold δ and t will not contain any itemset which starts with 

prefix                                        .                          ? 

Lemma 3 

If t does not contain s and MN = | prefix| - δ, then the extending pattern (prefix  ∪ s) will 

change from FT-frequent into none FT-frequent. In other words, t FT-contains prefix, but does 

not FT-contain (prefix ∪ s). The prefix  is a FT-frequent pattern previously, but due to the 

increasing length of pattern (prefix  ∪ s), the pattern would not be FT-frequent any more.     ?                         

  

From Fig 3.2, we can discover the fact that the number of FT-containing transactions will 

decrease as the suffix item (denoted as s_item briefly) appends to the prefix. Besides, each item 

support of prefix  will reduce after appending s_item as the number of FT-containing transactions 

decreases. Therefore we have to take the item support of prefix into account when we design the 

structure to count all kinds of supports of s_items with the same prefix. 

We first consider the case that all the transactions can load into main memory. We use depth 

first search execution sequence to examine the lexicographic sequence to demonstrate the 

finding of FT-frequent patterns. Only one table, STable, need to be maintained in memory. 

STable is to count FT support and item support of each s_item which will append to prefix . 

Because the appending s_item may cause a FT-containing transaction not to FT-contain the 

pattern (prefix ∪s_item) any more, STable also records item support of the prefix for each 

Fig 3.2 The changes of FT-containing transactions after appending s 



s_item. We will extend the proposed mechanism to apply to a large database later. In brief, there 

are three steps for each transaction in the scheme.  

Step 1: Find the number of matching items of a transaction which FT-contains prefix. 

We first count how many items match prefix  in the transaction. However there are two phases 

to count the matching items of prefix .  

Phase 1(initial):  

Because there are δ faults allowed in prefix , we compare the first δ items of prefix with 

items whose lexicographic order is less than the δth item of prefix  in the transaction and 

count how many items matching (denoted MN). 

Phase 2(pattern growth):  

We continue to check the patterns from length δ to |prefix|. When the MN is figured out, 

we can decide whether the pattern of prefix  should continue to extend according to Lemma 2. 

Because there are over δ faults, the transaction does not FT-contain the prefix .    

Example 3.1 (Find MN) A prefix P (a, b, c, d, e) and a transaction t (a, c, e, f, g) is given. Let 

fault tolerance δ=1. 

Phase 1: 

Because δ=1 and a is matching. MN=1. 

Phase 2: 

Let us think of b in P. Because it is not contained in t, we go on to check next item in P and 

there is a mismatch to t. Considering item c, Because t contains c, MN=2. We continue to 

take item d into account, MN= |abc|-δ=2 and t does not contain d, that is to say there are 2 

faults. The transaction is impossible to FT-contain P according to Lemma 3, and it need not 

to be checked any more.  

Step 2: Count all kinds of supports of suffix. 

After MN of prefix has been calculated, the extending s_items are taken into account to 

generate the patterns whose length is |prefix|+1 in the next step. At first, if MN is less than 

|prefix|-δ, the transaction will not to be checked, because the growth of pattern will lead to the 

transaction does not FT-containing the transaction anymore. Next, we compare each s_item to 

the items which are not checked in the transaction previously. If matching, increase the item 

support and FT-support of the item; if not matching but MN is greater than |prefix|-δ (that 

means the itemset (prefix∪ s_item) is still a FT-frequent pattern, because this fault still can be 

tolerated.), we add the FT-support of that itemset; if not matching but MN is equal to 

|prefix|-δ(that means appending this item to prefix  will lead the itemset to be not FT-frequent), 

the item support of  the items which appear both in t and prefix  need to be decreased for the 

s_item in STable. The rules to fill the STable are summarized as follows 

1. If MN <|prefix|-δ then read next transaction. 



2. If MN >|prefix|-δ  

increment the FT-support of each suffix item. 

If item s∈ t, increment the item support. 

3. If MN =|prefix|-δ�� 

If item s∈t, increment the FT-support and item support of each suffix item. 

If item s∉t, decrement the item support of the items in (prefix∩t). 

Step 3: Decide the FT-frequent pattern 

  This step is to filter the FT-support and item support of each item in STable with min_supFT 

and min_supitem respectively. If the conditions above are met, the related item supports of prefix 

are still checked in STable. We describe the main idea by running the following example. 

Example 3.2 ( FTP-mine): Let us mine FT-frequent patterns in the transaction database TDB 

(first two columns of table 1) in Fig 3.3, which is sorted by lexicographic order, with 

min_supitem=2, min_supFT=3, and δ=1.  

TID Items  Frequent items  

100 b  d  e  g b  d  e  g 

200 a  c  d  e a  c  d  e 

300 b  e  f  g  h b  e  g  h 

400 c  g  h c  g  h 

500 a  b  d  e  h a  b  d  e  h 

 

In the beginning, we scan the TDB once to find global frequent items with the item support 

threshold, min_supitem. The complete set of global frequent items{a:2 , b:3, c :2, d:3, e:4, g:3, h :3} 

can be collected. Due to FT-Apriori property, f’s support does not achieve frequent item support 

threshold, so f will be pruned and will not be loaded to memory. The initial stage of STable to 

mine a-prefix, and transactions in memory are shown in Fig 3.4. 

 

Frequent items of each transaction are loaded into memory and the execution sequence is by 

the lexicographic order of frequent items. The complete set of frequent patterns is divided into 

Fig 3.4 Initial stage for STable, and the transactions in memory to mine a-prefix  

Fig 3.3 Transaction database TDB and frequent items 



several sets by the prefix . For example, a-prefix which means the FT-frequent patterns which 

contain a, and the set of a-prefix  frequent patterns also can be separated into subsets by the 

prefix, such as ab-prefix, ac-prefix, … , etc. As the same way, the b-prefix means the FT-frequent 

patterns which include b or the items whose lexicographic order is greater than.  

  Initially, because the length of the FT-frequent pattern must be at least (δ+1) to make sense, 

the depth first execution sequence is adopted to decide whether the prefix is appended by 

s_items. If the length of prefix  is less than δ, then append s_item and go a step further to 

increase the length of prefix by depth first traversal method. We start prefix with δ items to scan 

the transactions in memory to determine length-(δ+1) patterns, and each item support of prefix 

in STable is global item support initially. For example, if δ=2, the FT-frequent patterns of 

ab-prefix are discovered, and then find the FT-frequent patterns of ac-prefix, ad-prefix , 

ae-prefix , … , and ah-prefix are found subsequently.  

To take a-prefix for example, the mining process is to fill out the STable to check FT-supports 

and item support furthers. Considering TID=100, MN=0 can be calculated first by the step 1 in 

FTP-mine. Because MN = |prefix| - δ, the transaction need to be checked further. If the 

transaction contains the suffix item, then increase the items support and FT-support of that 

s_item, else decrease the item support of items in (prefix∩t). FT-support, item support of s_item 

and the item supported of each item in prefix after checking TID=100 can be consulted in Table 

1 of Fig 3.6. Considering TID=200, because MN=1>|prefix|- δ, that means one fault can be 

allowed further, The FT-support of each s_item is increased by 1 no matter the transaction 

contains s_item or not. If the s_item is contained by the transaction, increase the item support of 

that s_item. The result after scanning TID=200 is consulted in Table 2 of Fig 3.6. 

  Fig 3.6 The flow chart for mining a-prefix 



After all transactions are scanned, the FT-support and item support of each s_item can be 

resulted. Except for checking FT-support and item support of s_item, each item support of prefix 

for s_item can be found in STable, Table 5 of Fig 3.6. For example, the item support of a in {a, 

b} is 2. Now the FT-frequent pattern {a: 2, b: 3}, {a: 2, c: 2}, {a : 2, d: 3}, {a : 2, e: 4}, {a : 2, g: 

3}, and {a: 2, h: 3} are generated. There is a phenomenon that when the pattern grows from 

length δ to length δ+1, the item support of prefix must be the same as global item support. 

Because if the transaction contains one item of the pattern of length δ+1, the transaction 

FT-contains the pattern. So each item support of prefix will not be influenced by appending the 

s_item.    

Depth-first traversal path is adopted to go on to check patterns whose prefix  is {a, b}. We also 

take the first transaction {b, d, e, g} to explain briefly. Firstly, we find the number of items in 

transaction which match prefix (MN=1). Because MN = |ab|-δ, the s_items still need to be 

checked. If the transaction contains the s_item, add FT-support and item support to that 

corresponding item, such as d, e, and g. If the transaction doesn’t contain the s_item, the item 

support of item in (prefix∩t) should be decreased by 1 for the s_item in STable . After scanning 

first transaction once, the table 1 in Fig 3.7 can be filled. The process of filling table shows as 

follow. 

 

In terms of the Table 5 of Fig 3.7, the step 3 in FTP-mine is used to filter FT-support and item 

support in STable with min_supFT and min_supitem. Besides, we also have to check item supports 

of prefix which accompanies the s_item. For example, although g achieves min_supFT and 

min_supitem threshold, the difference of corresponding item support to prefix  are still taken into 

account. The item support of a in pattern {a, b, g} is 1 and does not achieve min_sup item, so {a: 

1, b: 3, g: 2} is not a FT-frequent pattern. 

Fig 3.7 The flow chart for mining ab-prefix 



Lemma 4: Given a prefix and s_item, the set of transactions which FT-contain prefix  is the 

superset of transactions which FT-contain (prefix ∪ s_item).  

Proof: 

  It is heuristic that if |prefix ∪ s_item | ≤ δ, then all transactions FT-contain prefix. Now let us 

consider when |prefix ∪ s_item | >δ. There are only δ faults allowed for each transaction. As the 

pattern grows, if the transaction contains the s_item and there are faults less than or equal to δ, 

then prefix must have chance to grow. Once the transaction does not FT-contains the s_item, the 

transaction may not FT-contain prefix  any more because of the number of faults. So the set of 

transactions which FT-contain will reduce as the pattern grows.                    ? 

In the stage, {a: 2, b : 2, d 3} and {a : 2, b: 3, e: 4} are determined to be FT-frequent patterns. 

Based on FT-Aproiri property [1], there is no need to continue traversing the abc-prefix , 

abg-prefix and abh-prefix subtrees. Besides, according to Lemma 4, since the s_items are not 

FT-frequent in ab-prefix, the s_items are neither FT-frequent in abd-prefix nor in abe-prefix. For 

example, h will not be FT-frequent in abd-prefix, because the set of transactions which 

FT-contain {a, b} is a superset of those transactions which FT-contain {a, b, d}. Since h is not 

FT-frequent in transactions which FT-contain {a, b, h} is also not FT-frequent in transactions 

which FT-contain {a, b, d}. So when we further check abd-prefix , we just have to check s_item 

e. Similarly, the mining goes along the traversal path, and then a FT-frequent pattern {a, b, d, e} 

is generated. There are 48 FT-frequent patterns of which the length of is greater than δ and {b, d, 

e, g, h} is the longest pattern.  

FT-mine algorithm 
Input: Transaction database TDB, frequent item support threshold min_sup item, FT-support 
threshold min_supFT, and fault tolerance δ. 
Output: The complete set of FT-frequent patterns. 
Method: 
   1. Scan TDB once. Find the set L1= {i1, i2, … ,in}of global frequent items with the item 
support s1,  s2, … and sn respectively, and sorted by lexicographic order. An item i is global 
frequent iff sup(i)≥min_supitem. 
   2. Load those items which are global frequent in a transaction into memory. All transactions 
which are composed of global frequent items in memory are denoted MDB.  
   3. For each item i∈ L1 do begin 

  DepthFirst (i, L1| i);  // L1| i is the set of items in L1 whose lexicographic order are 
greater // than i 

end 
 

Subroutine  DepthFirst(Prefix , Suffix) 
Input: Prefix={ ia1, ia2, … ,iap} and Suffix={ ib1, ib2, … ,ibq} are two sets of items where iak< ia(k+1),  

ibh< ib(h+1 ) and (iap< ib1). 
 
if |Prefix|<δ then  

          For each item i∈Suffix  do begin  
      DepthFirst (Prefix∪i, Suffix |i); 



end 
end 
ϕ=Pattern-Grow ( Prefix , Suffix); 
For each pattern i∈ϕ do begin 
DepthFirst(Prefix∪i, ϕ |i); 
end 

Subroutine  Pattern-Grow(Prefix, ISUP, Suffix ) 
Input: Prefix⊆I , Suffix⊆I  
Output: a set of items which can append to become FT-frequent. To collect the set of 
FT-frequent patterns and record whose item supports.  
       

 Create STable. 
/*initialize the item support of Prefix in STable*/ 
For each item i∈Suffix do begin 
   For each item j∈Prefix do begin 

    STable(i).j=Prefix(j).s  // Prefix(j).s is the item support of j in Prefix    
                    // if |Prefix|=δ, Prefix(j).s=sj  
end  

end 
ϕ={} 
For each transaction t∈MDB do begin 
    To find the cardinality of t∩Prefix (denoted as MN ) 
     if (MN<|Prefix | -δ) then 
           continue to read next transaction 

  end  
     if MN>|Prefix | -δ then 
         STable(i).ftsup++; 
           For each item i∈Suffix do begin 

  if i∈t then 
   STable(i).itemsup++; 
   end 
end 

             else if MN=|Prefix| -δ then 
For each item i∈Suffix do begin 
    if i∈t then 
      STable(i).itemsup++; 

                  STable(i).ftsup++; 
    else 

                  STable(i).j--, where j∈t∩Prefix .  
    end 
end 

             end 
end 
     For each item i∈Suffix do begin 
        if STable(i).itemsup≥min_supitem and STable(i).ftsup≥min_supFT  
         and each item j∈ Prefix STable(i).j ≥ min_supitem then 
             insert Prefix∪i into the set of FT-frequent patterns and record the item 

support of the pattern {STable(i).j1, STable(i).j2, … , STable(i).jk, 

STable(i).itemsup}; 
ϕ←ϕ∪i; 

         end 
     end 
return ϕ 

  3.2 Mining FT-frequent patterns in Large Databases 



  FTP-mine is efficient when the transactions and tables can fit into main memory. However, 

the transaction database is often too large for FTP-mine to load into memory. Analogous to 

H-mine [2] approach, the database is divided into several sub-databases to mine local 

FT-frequent patterns with local min_supFT. After local FT-frequent patterns are collected, scan 

database again to check whether the local FT-frequent patterns are the global FT-frequent 

patterns. We describe the method in details as follows. 

  Suppose that there are n transactions in the transaction database, TDB, and the min_supitem 

and min_supFT are the support thresholds. We divide TDB into k partitions (P1, P2, ..., Pk), where 

Pi( 1≤ i ≤k) has ni transactions, and nn
k

i

i =∑
=1

. First, we scan TDB once to find global frequent 

items L1. For each partition database Pi, we load items which are global frequent in transactions 

into memory. Secondly, FT-mine is applied to mine the local potential FT-frequent patterns with 

local 



 ×=

n
n

min_sup  min_sup 
iFTFT

i . In this stage, the item support would not be checked. 

If the item support is taken into account, some FT-frequent patterns may be ignored because of 

the item support threshold. For example, TDB is divided into 2 equal partitions, and we assume 

the the local min_supitem=3. If the pattern {a, b, c, d} has achieved the local min_supFT, and the 

item supports of the pattern in each partition are {a:1, b: 4, c: 2, d:5} and {a:6, b:3, c:5, d:2} 

respectively. If we consider the item support threshold in mining partition databases, the pattern 

will be ignored. However {a, b, c, d} is a FT-frequent pattern when the partitions are assembled. 

After all local potential frequent FT-frequent patterns are found in each Pi, we scan database 

again to decide whether a local potential FT-frequent pattern is a global FT-frequent pattern by 

scanning database once again with min_supitem and min_supFT.  

3.3 Mining maximal FT-frequent patterns  

  Because the number of FT-frequent patterns is usually large and the length of patterns is 

usually longer than the length of frequent patterns, the maximal FT-frequent is needed to 

discovery the general rules.  We extend the step 1 in FTP mine to find the maximal 

FT-frequent patterns. For each transaction, we keep the MN and append the s_item one by one. 

For example, an itemset {a, b, c, d, e, g, h} is given and sorted by lexicographic order. We 

consider the first δ (assume δ=1) items in the itemset, and count MN in every transaction. If 

matching a, the item support of a is increased by 1. Further, we consider appending b, c, d, e, g, 

and h subsequently. If the appended s_item will lead the prefix to be not FT-frequent, the s_item 

is discarded. 

  Our main idea is that an itemset is given and sorted by lexicographic order, and we want to 

find the maximal FT-frequent pattern under the lexicographic sequence. There are two phases to 



test the itemset. The itemset to extend is called prefix, and the appending item is s_item. For 

example, the itemset {a, b, c} extends to {a, b, c, d} by appending d. We call {a, b, c} the prefix, 

and d the s_item. There ae two phase in the process to check the itemset as follows. 

Phase 1(initial):  

We compare the first δ items of the itemset to the transaction, count how many items 

matching (denoted MN), and increase the item support of items in (prefix ∩ t). 

Phase 2(pattern growth):  

We continue to grow the patterns from length δ to length of itemset. To compare the 

remaining s_items of itemset subsequently. When the previous MN is figured out, we can 

decide whether the prefix should continue to extend according to Lemma 2.  If |prefix|-MN 

≤ δ and a transaction contains the s_item, then MN and item support of the s_item are 

increased by 1 respectively. If |prefix |-MN = δ and the transaction does not contain the s_item, 

the item support of previous matching item has to be decreased, and the transaction is not 

checked further. Because there are over δ faults, the transaction does not FT-contain the 

prefix. After the MN of each transaction is counted, we figure out the FT-support of (prefix∩ 

s_item) by counting the number of transactions whose MN≥ |prefix|+1-δ. If the item support 

of (prefix ∪ s_item) or FT-support does not achieve min_supitem or min_supFT, each item 

support of prefix  and the MN of each transaction have to recover to previous status. In 

addition, we use memory index to indicate the next start point for each transaction to check. 

The rules are listed as follows: 
For each transaction 

If MN <|prefix|-δ�� then read next transaction 
If MN >|prefix|-δ  

If item s∈ t, increment the MN and item support 
If MN =|prefix|-δ 

If item s∈ t, increment the MN and item support 
If item s∉ t, decrement the item support in (t ∩ prefix) 

We describe the main idea by running Example 3.2. When we get the set of global frequent 

items, we collect all the global items to form the itemset to test. The itemset {a, b, c, d, e, g, h} 

is determined to decide the maximal FT-frequent pattern when the items are appended 

subsequently. Initially, because δ faults are allowed, the prefix grows to first δ items. The MN of 

each transaction is counted with prefix a, such as step 1 in Fig. 3.8. Next, considering item b, 

the pattern growth phase can apply to count MN and item support of prefix . Besides, the 

memory index still needs to be adjusted to the item whose lexicographic order is greater than or 

equal to s_item. The FT-support is checked by accumulating the number of MN which is greater 

than or equal to |prefix |+1-δ, so FT-support of {a, b} is 4. Take c into account. Because the item 

support and FT-support do not achieve the respective threshold, the item supports of prefix  and 

MN have to recover to previous status respectively and c will not append to prefix. As the same 



way, g and h will not be appended to grow the pattern. After all items are considered, the 

maximal FT-frequent pattern {a, b, d, e} is determined.  

 

 

The next candidate is the itemset whose lexicographic order is next to abde and is a leaf of 

the lexicographic tree conceptually. Next issue is to generate this kind of candidate itemset? We 

just substitute the last item of the previous maximal FT-pattern by the frequent items whose 

lexicographic order is greater than the last one item. If the length of candidate itemset is less 

then δ+1 or the subset of previous maximal FT-patterns, we find the next candidate by deleting 

the last two items of previous maximal FT-pattern and by appending frequent items whose 

lexicographic order is greater than the last second item. By the same way, the candidate itemset 

can be found for testing. Then we need to confirm whether {a, b, d, e} is a maximal FT-pattern. 

If there exists a maximal FT-frequent pattern which is a superset of {a, b, d, e}, then the path of 

that maximal pattern is in the left hand side of the path a-b-d-e in Fig. 3.9 or the extension of 

abde-prefix . It is impossible  to find such patterns when we grow the pattern depending on the 

prefix and fault-tolerant Apriori property. Besides, any subset of the {a, b, d, e} need not be 

checked again, due to {a, b, d, e} is a maximal one. Therefore, the next candidate to be checked 

is {a, b, d, g, h}. However, the result of the candidates testing may be a subset of those maximal 

FT-frequent patterns which were found previously, and we have to drop the result. After all, the 

maximal FT-frequent patterns are generated: {a, b, d, e}, {a, c, h}, {a, e, g}, {b, c}, {b, d, e, g, 

h}, {c, d, g}, {c, e, g}. 

Fig 3.8 The process to find the maximal FT-frequent pattern 
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  If the lexicographic tree is expressed by the increasing frequent order instead of alphabetic 

order, then the algorithm will be more efficient, because there are a lot of candidates pruned. 

4. Experimental Result and Analysis  

We implemented the FT-Apriori and FTP-mine algorithms using Microsoft C++ 6.0 .To 

evaluate impartially, we improve the FT-Apriori algorithm by loading the transaction database 

into memory. All the experiments were conducted on a PC with an Intel Pentium 4 1.6GHZ 

CPU and 256MB of RAM. Our data resource is from the synthetic dataset generator which is 

available in IBM web site [17] and the parameters shown in Table 5.1. In the following 

experiments, we aim at the influence of the parameters, min_supitem, min_supFT, and fault 

tolerance δ, in the mining of fault tolerant frequent patterns respectively. Besides, we also 

assume the database is too large to load into memory to design an experimental by partition the 

database and observe the performance trend as the transaction database increasing. 

 

4.1 Experimental result 

  We use the dataset T10I8D10kN1k to observe the influence of the min_supitem and min_supFT.  

We set the fault tolerance δ = 1, and min_supFT = 5%Fig 4.1 shows the run time of FT-Apriori 

and FTP-mine with respect to item support.  As we can see from Fig 4.1, the run time 

increases as the frequent item support threshold goes down and FTP-mine outperforms 

FT-Apriori. As to FT-Apriori, when the item support is low, the number of patterns as well as 

candidates increase exponentially, and the cost would increase dramatically. On the contrary, 

Fig 3.9 The lexicographic tree to find the next candidate 

Table 5.1 Parameters 



FTP-mine does not generate candidates by sub-patterns like FT-Apriori, so the curve is smooth 

and steady. The variation in run time over the FT-support threshold is shown in Fig 4.2. It seems 

that the run time increases as the FT-support decreases. FTP-mine also has better performance 

than FT-Apriori under all condition. Because the number of frequent items is determined by 

item support threshold, the min_sup item is the critical factor to determine the size of candidates 

generated. The closer the FT-support is to item support, the less the candidates can be pruned, 

and the number of candidates to be FT-frequent patterns increases. Although the run time is 

increasing as the item support goes down, the increasing rate is slower. The FTP-mine 

algorithm is also more stable than FT-Apriori no matter what the item support is. 

  As to evaluate the influence of the parameter fault tolerance, we adopt another dataset 

T15I10D10kN1k. We set the min_supitem=8% and min_supFT=10%. As the fault tolerance 

increases, the run time required is dramatically increasing especially in FT-Apriori. Because the 

length and the number of FT-frequent patterns increase as the fault tolerance increases, it seems 

inefficient for FT-Apriori to generate candidates and testing. In contrast to FTP-mine, which 

starts to traverse the level of length δ, FTP-mine will check the appended s_items instead of 

generating candidates, so the trend does not increase dramatically as FT-Apriori.   

Fig 4.3: FT-Apriori vs. FTP-mine with different
fault tolerance
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Fig 4.4: FT-Apriori and FTP-mine w.r.t different
transaction size
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Fig 4.2: Scalability of FT-Apriori and FTP-mine w.r.t
FT-support threshold
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Fig 4.1 Scalability of FT-Apriori and FTP-mine w.r.t. item
support threshold
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We use another dataset T10I8D10kN1k to evaluate the impact of transaction size. Regarding 

to the parameters, we set min_supitem=5%, min_supFT=7% and 1 mismatch allowed. Fig 4.4 

presents that run time of FT-Apriori and FTP-mine with respect to different transaction database 

size. The performance is linearly scalable and FTP-mine always outperforms FT-Apriori. In 

order to observe the influence of the size of transaction database which can not be loaded into 

memory, we assume that the transaction database is divided into several subdatabases in which 

there are 50K transactions individually. In the experiment, FT-Apriori will mine FT-frequent 

patterns in disk file instead of in memory. The experimental result is shown in Fig 4.5.  

4.2 Performance Analysis and Discussion 

Obviously, FTP-mine outperforms FT-Apriori in all condition. Considering FT-Apriori, it 

takes much time in candidate generation and in testing whether a candidate is frequent to reduce 

the size of candidates pass by pass. On the other hand, FTP-mine checks the s_items with the 

same prefix  by comparing each transaction only once and according to the Lemma 2 to decide 

whether a transaction need to be compared further. FTP-mine just has to keep one table , STable, 

in memory and the space required is about O (L1
2).  

  There is another approach to extend the FTP-mine to mine large databases. If the database is 

too large to load into memory, FTP-mine checks each transaction in disk file and project the 

transactions which FT-contains (prefix ∪ s_item) to sub-databases, For example, we intend to 

extend the a-prefix to {a, b} {a, c} {a, d} {a, e}{a, g} and {a, h}. After FTP-mine check 

transactions in disk, the FT-frequent patterns are determined. Next, we project a transaction to 

each sub-databases when the transaction FT-contains the FT-frequent pattern. So there is a 

projection database for each FT-frequent pattern. We go on to use FTP-mine to check 

transactions in disk until the projection database can fit in memory. Once the projection 

database can load into memory, the FTP-mine proposed in Section 3.1 is applied to mine 

FT-frequent pattern. 

Fig. 4.5 the scalability of FT-Apriori and FTP-mine with partition database
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5. Conclusion and Future work 

  In this thesis, we have proposed a new mechanism, FTP-mine, to mine fault tolerant frequent 

patterns with depth first execution sequence and a special designed table, STable, which keep 

trace the FT-support, item support, and each item support of prefix  for s_item and is 

space-saving. Besides, we also extend the algorithm to mine maximal FT-frequent patterns in 

memory and find the maximal FT-frequent patterns. Unlike FT-Apriori to generate candidates 

and test, FTP-mine adopts the nice feature of FP-growth and space-preserving to keep 

transactions in memory and determine the s_item with the same prefix by scanning each 

transaction only once. We conducted performance evaluation with respect to compare the 

efficiency of FTP-mine with FT-Apriori. The result showed that FTP-mine outperforms 

FT-Apriori in various settings and is linear scalable. Some problems are worth further 

investigation in the future. 

u Mining maximal FT-frequent patterns in large database. The approach we proposed 

to mine maximal FT-frequent patterns is considering the case that all transactions can 

be loaded in the memory. However, if the approach extends to a large database, there 

are some difficulties. Because local maximal FT-frequent patterns may not be global 

maximal FT-frequent patterns, that does not mean their sub-patterns are not the global 

maximal FT-frequent patterns. It is inefficient to determine which sub-pattern is the 

global maximal FT-patterns. 

u Fault-tolerant sequential pattern mining. It is difficult to formulate the problem, 

because the fault allowed may be in inter transactions or intra transactions for 

sequential pattern miming. How to define formally is a challenge, and the mining 

process may require large mount of CPU time. So the performance is also the factor 

need to be taken into account in the mining of fault-tolerant sequential patterns. 

Reference 

[1] J. Pei, A. K. H. Tung, and J. Han, “Fault-Tolerant Frequent Pattern Mining: Problems and 

Challenges ”, Proceedings of ACM-SIGMOD International Workshop on Research Issues 

on Data Mining and Knowledge Discovery (DMKD'01), Santa Barbara, CA, May 2001,  

[2] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Hyper-Structure Mining of 

Frequent Patterns in Large Databases”, Proceedings of International Conference on Data 

Mining (ICDM'01)}, San Jose, CA, Nov. 2001, pp. 441-448. 

[3] . Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, “PrefixSpan: Mining Sequential 

Patterns Efficiently by Prefix-Projected Pattern Growth”, Proceedings of International 

Conference on Data Engineering (ICDE'01), Heidelberg, Germany, April 2001, pp. 

215-226. 

[4] R. Srikant and R. Agrawal, "Mining Sequential Patterns: Generalizations and Performance 

Improvements," 5th International Conference on Extending Databases Technology,  1996, 

pp. 3-17. 



[5] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation '', 

Proceedings of ACM-SIGMOD International Conference on Management of Data 

(SIGMOD'00), Dallas, TX, May 2000, pp. 1-12. 

[6] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, Proceedings of 

the 20th VLDB Conference Santiago, Chile, 1994, pp. 487-499. 

[7] H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient Algorithms for Discovering 

Association Rules”, KDD-94: AAAI Workshop on Knowledge Discovery in Databases, 

Seattle, Washington, July 1994, pp.181-192. 

[8] R. J. Bayardo Jr., “Efficiently Mining Long Patterns from Databases”, Proceedings of ACM 

SIGMOD, 1998, pp. 85-93. 

[9] J. Pei, J. Han, and R. Mao, “CLOSET: An Efficient Algorithm for Mining Frequent Closed 

Itemsets”, Proceedings of ACM-SIGMOD International Workshop on Data Mining and 

Knowledge Discovery (DMKD'00), Dallas, TX, May 2000, pp. 11-20. 

[10] Mohammed J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent Sequences”, 

Journal of Machine Learning, special issue on Unsupervised Learning, Vol. 42 Nos. 1/2, 

Jan/Feb 2001, pp 31-60. 

[11] Karam Gouda, Mohammed J. Zaki, “Efficiently Mining Maximal Frequent Itemsets”, 

Proceedings of IEEE International Conference on Data Mining (ICDM’01), San Jose, 

November 2001, pp. 163-170.  

[12] M. J. Zaki, “Generating Non-Redundant Association Rules”, Proceedings of 6th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, 

August 2000, pp 34-43. 

[13] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme and L. Lakhal, “Mining Frequent Patterns 

with Counting Inference”, Journal of SIGKDD Explorations, Vol. 2, No. 2, Dec. 2000, pp. 

66-75. 

[14] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “Depth First Generation of Long 

Patterns”, Proceedings of International Conference on Knowledge Discovery & Data 

Mining, Boston, USA, Auguest 2000, pp. 108-118. 

[15] W. Wang, J. Yang, and P. S. Yu, “Mining Patterns in Long Sequential Data with Noise”, 

Journal of SIGKDD Explorations, Vol. 2, No. 2, Dec. 2000, pp. 28-33. 

[16] M. S. Chen, Jiawei Han and Philip S. Yu, “Data mining: an overview from a database 

perspective”, Journal of IEEE Transaction on Knowledge And Data Engineering, Vol. 8, 

Dec. 1996, pp. 866-883. 

[17] IBM inc. http://www.almaden.ibm.com/cs/quest/syndata.html. 


