
 1

Framework-based Embedded Real -Time System Development

Hui-Ming Su., Jing Chen

E-Mail: ken@rtpc06.ee.ncku.edu.tw
jchen@mail.ncku.edu.tw

Department of Electrical Engineering,
National Cheng Kung University, Taiwan R.O.C.

Abstract
 The development of an embedded real-time system is a complicated task. Not only the
users’ requirements are difficult to capture but there are also the stringent timing constraints on
critical tasks. Reusing the successful developing experience is a shortcut. In this paper, a
framework-based approach is presented to help efficient design embedded real-time systems.
The approach is based on an object-oriented framework, which is a collection of collaborating
components that provide a set of services for a given domain. Our framework construct consists
of three packages, namely UsrApp, RTService and OSAbstract, to aid designers customize their
applications derived from the abstract classes in these packages.

Keywords: framework, UML, package, active class, reactive class

 2

1. Introduction
Object-oriented (OO) technology employs encapsulation and inheritance as basic reuse

techniques. In a system, objects are identified, encapsulated, and positioned in a hierarchy of classes
by taking into account their dependency. Class libraries are thus the basic structures for reusing
objects. System designers have found such libraries to be limited in their reuse capability due to their
generality. Recently, several application-domain techniques have been proposed, which significantly
improve the degree of reuse. Ordered in the ascending order of their degrees of reuse, design patterns,
components, and object-oriented application frameworks are widely used reuse techniques.

Design pattern is a problem-solution pair that captures successful development strategy. Patterns
aid in reusing successful design strategies by giving a more abstract view to concrete design strategies.
A component acts as a black box allowing designer to reuse it through knowledge of its interface only.
Components are self-contained instances of abstract data types that can be integrated into complete
applications.

An object-oriented application framework (OOAF) is a reusable, “semi-complete” application
that can be specialized to produce custom applications [11]. Within the OO arena, OOAF are
application-domain specific reuse methods, which have been proposed for general-purpose systems.
However there are relatively little works on application framework for the design of an embedded
real-time system. Motivated by this, we propose a framework-oriented concept to build an embedded
real-time system. This framework construct consists of a group of components: Analyzer, Task
Composer, Scheduler, OS Manager and Code Generator. It helps the developing process of embedded
real-time system from requirement analysis through code generation.

In the following, section 2 discusses related works. Section 3 explains the concept and overview
of this framework construct. Section 4 describes the implementation of a tool based on the concept of
this framework. This tool supplies a friendly user interface for the designer to model an application
system. Finally, section 5 summaries this work and briefly discusses future works.

2. Related Works

There have little works on embedded real-time system development using framework.
Object-Oriented Real-Time System Framework (OORTSF) [12] is a simple framework like class
library only lists the classes used in real-time application development. It is difficult comprehension
of the collaboration among the classes and developing an application using it.

RTFrame [9] is an application framework solution developed especially for real-time system
design. It consists of five components: Specifier, Extractor, Scheduler, Allocator, and Generator.
Within RTFrame, several design patterns have been proposed for real-time systems. It has a clear
process for designing an embedded real-time system. But the relationship between abstract classes is
not clear. RTFrame is not easy to extend.

Rhapsody [1] is a commercial development tool for embedded real-time system development
with a framework inside. It has defined a completely framework for code generation of embedded
real-time system, but lacks of schedule class and error handler.

 3

We therefore suggest a new framework with schedule class and error handler class for embedded
real-time development. Using this framework shows a significant increase in design productivity
through design reuse and reduction in both design time and effort.

3. Framework Construct
The concept of framework is expressed in figure 1 using UML notations. It is a composite

package consists of three logic packages, which are UsrApp, RTService and OSAbstract. The UsrApp
is the base class collection for application domain specific classes to inherit. Time and resources
management are the critical issues in real-time system. The RTService has well defined structures for
real time specific classes to inherit. The OSAbstract wraps the operating system service to aid
application domain classes and real-time specific classes.

3.1 UsrApp
The UsrApp package consists of a set of collaborative classes that form the fundamental

architecture of a reactive, multithreaded system. It is designed for implementing subclasses to
instantiate the domain specific application objects. An active object is an object that owns a thread
and can initiate control activity, which runs on its own task (thread), with a message queue available
on the object. A reactive object is one that has a mechanism for consuming events and triggered
operations. It has a clear lifetime whose current behavior is affected by its past [5]. The application
domain specific objects are made of active objects, reactive objects and main program showing in
figure 2.

3.1.1 Tasks

The tasks package consist three abstract classes, which is FWThread, FWReactive and FWMain.
A thread is represented by FWOSThread, which wraps an operating system thread belonging to the
OSAbstract package. FWThread contains code that manages an event queue. It executes an infinite

Fig. 1: The Architecture of the Framework

 4

event dispatching loop, taking events from the queue and injecting them to the target objects. The
FWThread class is the base class in the framework for each active class. User active classes inherit
from FWThread runs an event loop on its own thread and dispatches events to client reactive classes.

RWReactive is the framework base class for all reactive objects. Reactive objects can process
events via statecharts transitions. Essentially, a reactive class is one that reacts to events; that is, it is
an event consumer. Each reactive class must associate with an active class, from which its events are
dispatched.

The FWMain class is a special case of FWThread. It defines the default active class for an
application. The FWMain inherits from FWThread and only one instance is created. It represents the
main program.

3.1.2 Events

There are three types of events, signal events, triggered operations and timeout events. The
FWEvent class is the base class for all events. Events can trigger transitions between states in
statecharts and activity diagrams.
 FWTimeouts are a specialization of class FWEvent. The timeout class derives from FWTimeout
implements timeouts issued by statecharts or activity diagrams within reactive classes. The system
timer manages the timeouts and sends them to the reactive object. The timeouts objects are created
either entering states with timeout transitions or delay requests from user code.

Fig. 2: The Architecture of Application Domain Objects

 5

The FWTimerManager is responsible for managing the timeout. It is an additional thread that
provides timer support for the application. The FWTimerManager class manages timeout requests and
issues timeout events to the application objects. FWTimerManager is a singleton object in the
execution framework. The FWTimerManager has a timer, which notifies it periodically whenever a
fixed time interval has passed. At any given moment, the FWTimerManager holds a collection of
timeouts that should be posted when their time comes.

A reactive object has function members. A sender object to send an event to a receiver
object uses the genEvent. The takeEvent is used by the event loop (within the thread) to make
the reactive object process an event. The comsumeEvent is the main event consumption
method. The FWThread function member, exEvent is the thread main loop function. The
QueueEvent queues events to be processed by the thread event loop. For the FWEvent,
setDest sets the destination attribute to the reactive object. The getDest determine the reactive
object destination for the event.

3.2 RTService

The RTService package consists of a set of collaborative classes that manage the real time
requirements. The FWProtected is responsible for the protected resources manager. The FWSchedule
is responsible for schedule policy implementation.

A protected object is passive object. The active object must call the service of the FWProtected
object. Resources in a class can be monitored, which allows only one operation to access the resource
at any given time. A subclass derived from FWProtected can be used to model an exclusive resource:
at any given moment, only a single copy of a single guarded operation (of the class) can be executing.
The FWProtected class is the base class for all protected objects. It supports the operations lock and
unlock using FWOSMutex. One central characteristic of real-time system design is the existence of
resources that, in the presence of concurrency, must be managed. The framework includes
abstractions for concurrency control mechanisms. FWOSMutex is a wrapper class for an operating
system mutex. It supports the operations lock and unlock. A mutex is used for managing exclusive
resources.

The FWSchedule is responsible for providing the scheduling code for the scheduled tasks. There
are two kinds of priorities: fixed, dynamic. For fixed priority-based scheduling, the priority of a task is
decided before running such as rate-monotonic scheduling algorithm [13]. The priority is assigned
inverse to its period. For dynamic priority-based scheduling, the priority of a task is decides when
running such as deadline first scheduling algorithm [16], which priority is assigned inverse to its
remaining time to deadline.

 FWErrorHasndle has association relationship with FWSchedule and application objects. It has
an attribute, signal, which represents error number. The function member, errHandle processes errors
according to signal number. It is a virtual function. The error handler of user can override this
function member to extend capability of error handling.

 6

3.3 OSAbstract
The operating system OSAbstract package provides a abstraction layer through which the

framework and generated code access operating system services. Each one represents an operating
system object. In general, each target environment requires a custom implementation of the
OSAbstract.

The AbstractLayer package defines classes that describe basic operations and entities used by
the operating system, including FWOSThread, FWOSTimer, FWOSMutex, FWOSEventFlag and
FWOSSemaphore. The FWOSThread provides basic threading features. The FWOSTimer acts a
building block for OMTimerManager, which provides basic timing services. The FWOSMutex
protects critical sections within a thread using binary mutual exclusion. The FWOSEventFlag
synchronizes threads. Threads can wait on an event flag by calling wait. When some other thread
signals the flag, the waiting threads proceed with their execution. The FWOSSemaphore allows a
limited number of threads in one or more processes to access a resource. The semaphore maintains a
count of the number of threads currently accessing the resource.

4. A Tool based on the Framework

In order to realize the concept of this framework, a tool is under development. The tool
maintains a database of all analysis and design information and offers several views of that database.
It supplies a dedicated toolbox for each view to model the target system. The right window is the tree
view of all models. The right window is the detail diagrams and notations of the selected model.
Figure 3 is an overview of this tool.

The designer models the target system beginning with requirements analysis to capture
application domain objects. Use case diagrams are used to express main functions of the target system.
Scenarios and statecharts are used to express dynamic state for each use case. Objects and their
properties can be identified from use cases and scenarios. The designer representing the object
structure of the target system builds the object diagram. The behavior of each object is expressed in
the statecharts.

 The designer marks active objects and reactive objects in object diagram marking as
<<active>> and <<reactive>> stereotype. The task diagram shows only the active objects and reactive
objects. Task Composer composes all the tasks recording in the Task-Table. The process of analysis
and design is iterative. It means the designer selects the highest risk use case to elaborate first,
identifies the including tasks then elaborates the others.

 7

This framework can generate codes merging application objects and operating system services
after the scheduling test is successful completely.

5. Summary and Future Works

A framework is a collection of collaborating classes that provide a set of services for a given
domain. This paper proposes a framework-based approach to embedded real-time system
development. There are three logical packages in a framework. The UsrApp is designed for
application domain specific classes to inherit. The RTService is designed for resource management
and task schedule classes to inherit. The OSAbstract wraps the operating system service. It helps the
designer to save both time and effort during the design phases

A good framework contains classes with well-defined structures and concretely collaboration
between these classes. This framework focuses structures and functions description of the abstract
classes. In the future, we will enhance the structures of classes and the collaborating relationship
between classes to make it more flexible and expansible.

References
[1] “Execution Framework Reference Guide”, I-LOGIX home page, http://www.ilogix.com/.

[2] G. Booch, J Rumbaugh, and I. Jacobson, “The Unified Modeling Language User Guide”,
Addison-Wesley Longman, 1999. ISBN 0-201-57168-4

[3] B. P. Douglas: “Designing real-time systems with UML, parts 1,2 and 3”, Embedded Systems
Programming, March-May 1998.

[4] B. P. Douglass: “Doing hard-time: developing real-time systems with UML, objects, frameworks,
and patterns”, Addison-Wesley, 1999, ISBN 0-201-49837-5

[5] B. P. Douglass, “REAL-TIME UML: Developing Efficient Objects For Embedded Systems
Secondary Edition ”, Addison-Wesley Longman, 1999, ISBN 0-201-65784-8.

[6] M. Fayad and D.C. Schmidt. “Object-oriented application frameworks”, Communications of the
ACM, Special Issue on Object-Oriented Application Frameworks, 40(10), October 1997.

[7] M. Fowler, “UML Distilled: Applying the Standard Object Modeling Language”, Addison-Wesley

Fig. 3: A GUI of the Framework-Oriented Development Tool

 8

Longman, 1997, ISBN 0-201-32563-2.
[8] M. Gergeleit, J. Kaiser, and H. Streich. “Checking timing constraints in distributed object-oriented

programs,” ACM OOPS Messenger, 7(1):51–58, January 1996.
[9] P.A. Hsiung, “RTFrame: An Object-Oriented Application Framework for Real-time Application ”,

Proceedings of the 1998 IEEE, Technology of Object-Oriented Languages,pp. 138-147, 1998.
[10] I. Jacobson, G. Booch, J. Rumbaugh: “The unified software development process”,

Addison-Wesley, 1999, ISBN 0-201-57169-2.
[11]R. Johnson and B. Foote. “Designing reusable classes,” Journal of Object-Oriented Programming,

1(5):22–35, June 1988.
[12] T.-Y. Kuan, W.-B. See, and S.-J. Chen. “An object-oriented real-time framework and

development environment,” In Proc. OOPSLA’95 Workshop #18, 1995.
[13] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real time

environment. Journal of the Association for Computing Machinery, 20(1):46–61, January 1973.
[14] Michael J. McLaughlin and Alan, “Real-Time Extension to UML” Dr. Dobb’s Journal December

1998.
[15] Terry Quatrani, “Visual Modeling with Rational Rose 2000 and UML,” Addison-Wesley.1999

ISBN 0-201-69961-3

[16] N.C. Audsley, A. Burns , A.J. Wellings, Deadline Monotonic Scheduling Theory and
Application, Control Engineering Practice, Vol. 1(1), pp. 71-78 ,1993

