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ABSTRACT 

 

A content-based image retrieval algorithm based on a new edge detection technique is 

proposed. Both the query and database images are divided into non-overlapping square 

blocks and coded by the mean in each uniform block and by edge information in each 

non-uniform block. The coded blocks of a query image are then used to find matches from an 

image database. The edge feature in a given block is detected by applying the 

moment-preserving principle to the image data. The edge directions are approximated by 

multiples of 45º to speed up the matching process without introducing obvious distortion. For 

a larger database, a selective filtering strategy based on the visual-pattern histograms is also 

described to further speed up the retrieval process. The solution to the edge detection problem 

in a given block is also analytic. This algorithm can be performed very fast for large-database 

applications with no need for special hardware. 
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1. INTRODUCTION 

With the rapidly increasing use of the Internet, the demands for storing multimedia information 

(such as text, image, audio, and video) have increased. Along with such databases comes the need for 

a richer set of search facilities that include keywords, sounds, examples, shape, color, texture, spatial 

structure and motion. Traditionally, textual features such as filenames, captions, and keywords have 

been used to annotate and retrieve images. As they are applied to a large database, the use of 

keywords becomes not only cumbersome but also inadequate to represent the image content. Many 

content-based image retrieval systems have been proposed in the literature [1-4]. To access images 

based on their content, low-level features such as colors [5-8], textures [9,10], and shapes of objects 

[11,12] are widely used as indexing features for image retrieval. Although content-based image 

retrieval is extremely desirable in many applications, it must overcome several challenges including 

image segmentation, extracting features from the images that capture the perceptual and semantic 

meanings, and matching the images in a database with a query image based on the extracted features. 

Due to these difficulties, an isolated image content-based retrieval method can neither achieve very 

good results, nor will it replace the traditional text-based retrievals in the near future. 

Edge features, which are recognized as an important aspect of human visual perception, are 

commonly used in shape analysis. Decomposition of images into low-frequency blocks and blocks 

containing visually important features (such as edges or lines) suggest visual continuity and visual 

discontinuity constraints. A block is visually continuous if the values of all the pixels in the block are 

almost the same. In contrast, if the variations of the pixel values in the block are noticeable, it is a 

visually discontinuous block. The mean of a visually continuous block is enough to represent the 

block. If a block is visually discontinuous and if a strong orientation is associated with it, then it 

should be coded as a kind of visually important feature. Using coded edges, we can represent the 

structure of an image without explicitly extracting visual features. 

   In this paper, a new image retrieval algorithm is proposed based on the application of the 

moment-preserving technique to detect a visually important feature, namely an edge in a given image 

block. Each given image is divided into non-overlapping square blocks and coded block by block. 

 1



Edge features used to code an ordinary image, produce excellent image quality according to human 

perception and provide a promising approach for the representation of the image content with a 

compact code [13]. Furthermore, simple and analytical formulae to compute the parameters of the 

edge feature for both gray and color images are also derived in this study, which makes the 

computation very fast. The potential of using edge information for image retrieval was observed by 

Jain and Vailaya [12]. They proposed a retrieval technique by matching a query image with each 

image in a database on the basis of the edge direction and color histograms, and the similarity 

between two images can be assessed by combining the color- and shape-based similarity.  

In contrast to the integrated color- and shape-based method mentioned above, in this paper we 

propose the usage of block-based visual patterns of an image as the features for identification. In this 

system, thirty-seven types of visual pattern including a uniform pattern and 36 edge patterns are 

defined to classify 4 x 4 image blocks of a given image. A simple approach for image retrieval on the 

basis of visual patterns is to encode both a database image and a query image and then compute the 

difference between the visual-pattern codes of the two images. In certain classes of images, the image 

details are very rich and do not lend themselves well to being indexed by simple visual features. Such 

images require a detailed search of the image content to be made as part of the query. For speed and 

efficiency, we use the visual-pattern histogram of a query image to extract a pool of candidates from a 

large database, and then to match the visual patterns block by block on the candidates. 

The remainder of this paper is organized as follows. Section 2 presents the use of the 

moment-preserving principle to detect edges. Section 3 presents the similarity measurement with edge 

information. The proposed image matching strategy is shown in Section 4 followed by some 

experimental tests to illustrate the effectiveness of the proposed image retrieval method in Section 5. 

Finally, conclusions are drawn in Section 6. 

2. PROPOSED MOMENT-PRESERVING EDGE DETECTION 

 A given image is partitioned into a set of non-overlapping square blocks. Each block is coded as 

either a uniform block or an edge block. The edge in each block is detected by the proposed edge 

detection technique, and the image can be reconstructed according to the parameters of these blocks. 

2.1 Review of moment-preserving principle 
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 Gray-level moment-based operators have been successfully developed for image processing 

[14-16]. Delp and Mitchell [14] first proposed block truncation coding (BTC), which used a two-level 

moment-preserving quantizer to compress monochrome image. Tabatabai and Mitchell [15] also 

proposed an operator, which can compute edge location by fitting first three gray-level moments to 

the input data. Compared with traditional edge operators such as those proposed by Robert and Sobel 

[17], the precision to subpixel accuracy has been reported. Applying this technique to image 

segmentation, Tsai [16] used the moment-preserving principle to select thresholds of input gray-level 

image. The threshold values were determined in such a way that the gray-level moments of an input 

image are preserved. In contrast to Tsai [16], a new moment-based operator, based on a thresholding 

technique called binary quaternion-moment-preserving (BQMP) thresholding was reported by Pei and 

Cheng [18]. The BQMP thresholding generalizes conventional gray-level moment-based operators 

[14-16] to be multi-dimensional by expressing the input color space as a quaternion-level space. An 

analytic solution for the BQMP thresholding is also obtained by the use of quaternion arithmetic. Pei 

and Cheng [18] also applied the BQMP thresholding technique to detect color edges with the 

precision to subpixel accuracy. There are no analytical formulae for the edge detection algorithms 

proposed in Tabatabai [15] and Pei [18], so their methods are not unified approaches for detecting 

edges of gray and color images, respectively. 

2.2 Proposed edge detector 

 Figure 1 shows the aspects used for edge detection in this approach, including a continuous 

two-dimensional edge model specified by four parameters, two representative gray (color) values h1 

and h2, an edge translation l, and an orientation angle θ for an edge in square block B. The edge is 

simply a step edge transition from representative value h1 to representative value h2. The edge 

translation l is defined as the length from the center of the edge model to the transition, and is 

confined within the range of -1 to +1. The parameter θ specified the direction of the edge and is 

confined within the range of 0 to 360 degrees. The value of θ can be computed individually first, as 

described next. 
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Fig. 1. An edge model in a 4 x 4 block B. The circle C is inscribed in B, and ( yx, ) are the 

coordinates of the centers of gravity of the gray (color) values inside C. 

 The x-mass moment Mx and y-mass moment My defined within the cycle C inscribed B are as 

follows: 

∫∫=
C

x dydxyxxfM ),( ,        (1) 

∫∫=
C

y dydxyxyfM ),(         (2) 

where f(x,y) is the gray level and the vector norm at (x,y) for a gray-level image and a color image, 

respectively. The vector norm of the pixel at (x,y) of a color image is computed as 

222 ),(),(),(),( yxByxGyxRyxf ++=     (3) 

where (R(x,y), G(x,y), G(x,y)) denotes the color value (R, G, B) of the pixel at (x,y) for a color image. 

The value of θ can be easily obtained from the values of Mx and My. Let ( )yx,  be the coordinates of 

the center of gravity of the gray (color) values inside C. Then  

),(),(
00 M

M
M
M

yx yx=          (4) 

where M0 is the mean of C and is computed by 

∫∫=
C

dydxyxfM ),(0 .        (5) 

It has been found that the direction of the edge is perpendicular to the direction of the vector from the 
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origin to ( yx, ) [19]. So,  

22
sin

yx
y
+

=θ          (6a) 

22
cos

yx
x
+

=θ          (6b) 

and angle θ can be calculated by  









=






= −−

x

y

M
M

x
y 11 tantanθ .       (7) 

The moments M0, Mx and My are also useful to judge whether C and therefore B are visually uniform. 

Notice that if C is uniform, ( yx, ) will be very close to the origin of C. So, if the distance between 

the center of gravity ( yx, ) and the origin of C is less than a threshold τ, then it is considered that 

there is no edge involved in C, and B is determined to be a uniform block. This criterion for judging 

the uniformity of a given block is actually equivalent to the following: 

.0
22 MMM yx τ<+         (8) 

 To compute each of the moments M0, Mx and My, a more convenient way is to correlate the pixel 

values in the block with a mask. Each mask represents the value resulting from performing the 

integration (1), (2), or (5) over each pixel in C, assuming f(x,y) is constant over that pixel. The circular 

limits are also included in the integration. The resulting set of masks is shown in Fig. 2. 
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Fig. 2. Set of three masks for computing moments of a 4 x 4 block. 

 5



 Once the value of θ is obtained, the solutions for h1, h2, and l can be found by applying the 

moment-preserving technique. Given the orientation of an edge of an input block, the edge might 

intersect the block at either opposite or neighboring sides, according to the variation of the pixel 

values within the block as shown in Fig. 3. The values of h1, h2, and l and the type of intersection can 

be decided by preserving the first three moments of the input block in the following manner: 

   ,  k=1, 2, 3       (9) kk
k hphpm 2211 +=

where p1 = A1/A, A1 is the area of B covered by pixel value h1, A is the total area of B and is equal to 4, 

,  and  is the kth gray (quaternion) moment of the 

original block B and is computed as follows: 

12 1 pp −= },1||,1|:|),{( ≤≤= yxyxB km

  ∫∫=
B

k
k dydxyxg

A
),(1

'm .       (10) 

The value of A’, which is the area of B, is also 4 and g(x,y) is the gray value of (x,y) for gray-level 

images and the quaternion number of (x,y) for color images. For the methods to model a color vector 

as a quaternion number and compute the kth quaternion moment of a block please refer to [18]. 
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Fig. 3. Given the orientation θ of an edge of a block, the edge might intersect the sides of the 
block in the following two ways: (a) the intersection points are located on opposite sides; (b) the 
intersection points are located on neighboring sides. 

 

 By assuming that g(x,y) takes a constant value over each grid, the integral in (10) becomes a 

weighted sum of the pixel values in block B and can be written as: 

∑∑=
x y

k
xyk yxgwm ),,(   k= 1, 2, 3      (11) 
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where wxy is the weighting coefficient associated with (x,y) ( if the size of block is 4 x 4, then wxy = 

1/16). Applying the moment-preserving [16] and quaternion-moment-preserving [18] thresholding 

techniques to a gray-level block and a color block, respectively, the unknown parameters h1, h2, p1 and 

p2 in equation (9) can be derived in closed form.  

 It is simple to calculate the remaining unknown parameter l from the value of p2 in each case 

of the edge-block intersection patterns. First, 

A
Ap 2

2 =          (12) 

where A2 is the area covered by the pixel value h2 in B and A = 4 is the area of B. Next, the value of 

A2 can be computed by 

)cos1(22 θ
lA −=         (13) 

for the case as seen from Fig. 3(a), and 

θθ
θθ

sincos2
)sincos( 2

2
−−= lA        (14) 

for the case as seen from Fig. 3(b). From equations (12), (13) and (14), we get 

θcos)21( 2pl −=         (15) 

for the former case, and 

θθθθ sincos8sincos 2pl ±+=      (16) 

for the latter case. Note that the sign of the third term of equation (16) should be negative because the 

value of θ is within the interval ( 2/,0 )π  and the value of l is between 0 and 2  in Fig.3(b). 

Moreover, the value of l is negative if the value of p2 is larger than 0.5.  

 Although the edges of the block B in Fig. 3 are located in the first quadrant of the x-y 

coordinates of B, the edge models can be applied to compute the translations of edges located at other 

quadrants by adjusting the values of edge orientation as follows 

θπθ −×=
2

' i , if i = 2, 4, and     (17a) 

,
2

)1(' πθθ ×−−= i  if i = 3       (17b) 
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where the value of i denotes which quadrant contains the center of gravity ( )yx, . 

 The final question to answer is that given a block, how is it decided should equation (15) or 

(16) be used to compute the edge parameter l? The edge as seen from Fig. 4 intersects the block B on 

opposite sides when the value of translation within the interval (-t, t) and the value of t can be 

computed as 

θθθπ sincos)
4

sin(2 −=−×=t .      (18) 

Combining equations (15) and (18), we get 

)sin(coscos)21()cos(sin 2 θθθθθ −≤−≤− p .      (19) 

And hence, if 

θθ tan5.01tan5.0 2 ×−≤≤× p         (19) 

then the edge shown in Fig. 4 intersects the block B on opposite sides of B; otherwise, the edge 

intersects B on neighboring sides of B. 
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Fig. 4. Edges intersecting the block B on opposite sides, with the values of translation confined to 
the interval (-t,t). 

 

 An algorithm is given below to summarize the proposed moment-preserving edge detector. 

Algorithm 1. Proposed moment-preserving edge detection technique (MPED). 

Input. Square block B containing an edge feature. 

Output. Parameters of the edge. 

Method. 
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1. Compute the values of Mx, My and Mo from the circle inscribed inside B. 

2. Calculate the value of θ using equation (7) and adjust θ using equation (17) to shift edges 

located at other quadrants of the x-y space to the first quadrant. 

3. Apply the moment-preserving technique to find the solutions of the parameters h1, h2, p1, and 

p2 of the edge. If B is a gray-level block, apply the moment-preserving threshlding(16) 

technique, else use the quaternion-moment-preserving thresholding [18] technique. 

4. Apply equation (19) to test how the edge intersects B. If the edge intersects B at opposite sides, 

use equation (15) to compute the value of translation l, else use equation (16). 

As an example, suppose a gray-level block with size 4 x 4(as shown in Fig. 5(a)) is given and the 

detected edge and its parameters are shown in Fig. 5(b).  

23  23  56  57
22  54  58  56
20  55  57  53
21  55  50  54

M0 = 167.11,
Mx = 10.61,
My = -1.66.

cosθ  = 0.9880,
sinθ  = -0.155,  

              = 0.9880,
              = 0.155,
              = 0.1569.

(a)
22  22  55  55
22  55  55  55
22  55  55  55
22  55  55  55

h1 = 22,
h2 = 55,

1-0.5*                   >p2 >0.5*                   ,  

l= -0.3565.
(b)

)2cos( θπ −
)2sin( θπ −
)2tan( θπ −

)2tan( θπ −

p1 = 0.3196
p2 = 0.6804

)2tan( θπ −

 

Fig. 5. Applying the proposed moment-preserving edge detector to a gray-level block: (a) the original 
block and its computed values of moments M0, Mx, My and normal vector (cosθ, sinθ) of the edge; (b) 
the detected edge and the values of parameters h1, h2, p1, p2, and l. 
 
2.3 Visual pattern mapping 

The proposed moment-preserving edge detector can detect an edge along any direction in a 

given image block. The difference between two edges with very close directions is not perceivable 

when the image resolution is high and the block size is small. In this paper, the block size 4 x 4 is 

adopted, which can be assumed to be small for high-resolution images. Instead of representing edges 

in any directions, the detected edges are mapping to 37 types of visual pattern, as shown in Fig. 6 This 

assumes that the possible directions of an edge in a 4 x 4 block are limited to multiples of 45º, or 

equivalently, , i= 0, 1, …, 7. If the actual direction of an edge is not a multiple of 45°× 45i º, it is 
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quantized to be the nearest multiple of 45º. After the direction of an edge is given, we use the value of 

translation to map the edge to the nearest visual pattern. Note that each pixel in a visual pattern is 

either classified as a Class0 pixel or a Class1 pixel. A visual pattern is coded by a bitmap, consisted of 

0s (pixels in Class0) and 1s (pixels in Class1) and two representative gray (color) values h1 and h2 for 

the Class0 and Class1, respectively. 

1 2 3 4 5 6 8

9 10 11 12

7

0
: Class0 pixel; : Class1 pixel. 

14 15 16

17 18

13

20 21 22 23 2419

25 28 29 30 312726 32

33 34 35 36

 

Fig. 6 Possible thirty-seven types of visual patterns in a 4 x 4 block. 
 
 The main reason for mapping an edge feature to a visual pattern is to encode an image with 

visual patterns block by block. The pixels of a visual pattern are divided into two classes, each of 

which is represented by a representative gray (or color) value. And hence, a given image block can be 

encoded by two representative gray (or color) values and an index to indicate which visual pattern the 

block is mapped. Both the edge and intensity (color) features of an image block are included in a 

visual pattern. Therefore, no extra information needs to be stored in the image database. The 

block-based visual pattern coding has two clear advantages: short computing time and less storage 

space (codes can be generated in realtime). 

3. SIMILARITY MEASUREMENT WITH VISUAL PATTERNS 

 Using the scheme discussed in the last section, an image is represented with the visual-pattern 

codes of image blocks. In other words, the image content can be uniquely determined by the 

visual-pattern codes. Thus, it is possible to retrieve images that are similar to a query image based on 

a similarity measurement between the visual patterns of the database images and those of the query 
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image. More identical pieces in the visual-pattern codes suggest more identical blocks, and therefore 

the two images are more similar. Consequently, the mean square error (MSE) of two visual-pattern 

codes, in which one is from a database image and the other is from a query image, can measure the 

similarity of two images with a lower MSE, indicating a greater degree of similarity. A lookup table L, 

referred to as pattern-similarity table can be constructed in advance to record the level of similarity of 

all pairs of visual-pattern types in terms of bitmaps for the purpose of efficiently computing the value 

of MSE of two images. Let bi and bj be the bitmaps of visual-pattern types i and j, respectively. The 

similarity of bi and bj can be measured by the following measurement: (1) the count of 1s in ji bb ∧ ; 

(2) the count of 1s in ; (3) the count of 1s in ji bb ¬∧¬ ji bb ∧¬ ; (4) the count of 1s in ji bb ¬∧ . 

The larger the values of cases (1) and (2) are, the more similar the two visual-pattern types in terms of 

bitmaps. In contrast, the larger the values of cases (3) and (4) are, the less similar the two 

visual-pattern types in terms of bitmaps. We denote the values of the four cases above as 

and , respectively, for illustration convenience. Note that the types of visual 

pattern can be classified as five classes, namely uniform (type 0), vertical (types 1 to 6), horizontal 

(types 7 to 12), diagonal (types 13 to 24), and anti-diagonal (types 25 to 36) classes by grouping 

similar types together.  

,,, 1,0
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, jijiji LLL 0,0

, jiL

Suppose two images A and B, are both coded by M visual patterns, the value of MSE between 

the images A and B is computed as follows: 
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where Ai and Bi denote the type numbers of the ith visual pattern of A and B, respectively; and 

and ( and ) are the two representative values of the ith visual pattern of the image A (B). 

The values of and can be easily obtained by using the pattern-similarity 

table mentioned above, and hence the cost to compute the value of MSE can be reduced.  

iAh1
iAh2

iBh1
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, 1
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,
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, ii BAL

 Let us consider two images, I1 and I2, where the size of I1 is not smaller than that of I2. There are 

three cases to compare the content of I1 and I2: (1) I1 and I2 are two identical images; (2) I2 is a 

sub-image of I1; (3) I1 and I2 have the same sub-image. Case 1 is the simplest, where the visual-pattern 
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codes at identical locations in both I1 and I2 are identical because they have the identical pixel values. 

And hence, it is easy to retrieve those images, which are the same as the query image from a database, 

by comparing their visual-pattern codes. 

 Cases (2) and (3) are more complicated because the blocks to be compared in two images are not 

identical, although they have an identical sub-image, which leads to an incorrect decision that these 

two images are not similar or they have a low matching rate. The common blocks of I1 and I2 must be 

aligned properly for these two cases, as shown in Figs. 7(a) and 7(b), respectively. As a rule of thumb, 

two images are more similar if they have more identical blocks, that is a lower value of MSE.  

4. MATCHING STRATEGY FOR IMAGE RETRIEVAL 

 In order to retrieve images we must be able to efficiently compare two images, where one is a 

database image and one is the query image to determine if they have similar content. A simple 

approach for image retrieval with visual-pattern coding is to encode both images and then compute 

the matching rate between their visual-pattern codes. However, the visual-pattern code of a query 

image could be very different from those of similar database images because the objects of the query 

image might be translated, rotated, scaled, or distorted; so this direct method may produce rather poor 

results. 
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Fig. 7 Aligning image I2 to I1 for computing the matching rates: (a) I2 is a sub-image of I1; (b) I1 and I2 
have the same sub-image. 
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4.1 Histograms of visual-pattern type 

This block-based visual-pattern coding scheme provides two advantages: lower computational 

complexity and less storage space. However, it also generates problems in two situations described as 

follows: 

(1) A process to align the common blocks of a query image with those of a database image must be 

done, as shown in Fig. 7 The representation of an image with visual-pattern code is not rotation or 

scale invariant, but is translation invariant if the identical sub-image of the two images is aligned 

properly. 

(2) The retrieval by matching the visual-pattern codes of database images and a given query image 

directly may receive responses from irrelevant matching pairs because if two images have the 

same sub-image, then parts of the visual-pattern codes for both two images are overlapping. The 

problem is how to efficiently find the highly co-related parts. 

To overcome the problems from both situations above, the 1-D histograms of visual-pattern types are 

computed from a given query image and database images to eliminate irrelevant matching. If the 

histograms of two images, in which one is a database image and the other is a given query image are 

quite different, then the visual-pattern codes between the two images need not match. 

Basically, the histogram of visual-pattern types represents the shape attribute of an image and is 

invariant to translation in the image. However, this also turns out to be a limitation, as two totally 

different images may yield similar histograms of visual-pattern types. A suitable normalization of the 

histograms is helpful to provide scale invariance. Let H(i) be a histogram of the visual-pattern types of 

an image, where the index i represents a type number. Then, the normalized histogram H is defined 

as follows: 

∑
=

= 36

0

)(

)()(

i

iH

iHiH  .         (21) 

A drawback of normalized histograms is the inability to match parts of images. If an image Q is a part 

of an image I, then the histogram of Q is contained within the histogram of I. Normalizing the 

histograms does not satisfy this property. Furthermore, a histogram of visual-pattern types is also not 
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invariant to rotation. A shift of the histogram bins during matching will partially take into account 

rotation of the images. For example, if two edges with the same edge translation but different 

orientations of 30 and 70º will fall into the same histogram bin (one of diagonal types). However, if 

the same image is rotated by 10º, then these two edges will fall into different bins, in which one is 

from the horizontal class and the other is from the diagonal class. To reduce this effect of rotation we 

smooth the histograms using the following equation: 

||1

)()(
)(

i

j
s

i

jHiH
iH

ζ
ζ

+

+
=

∑
∈         (22) 

where iζ denotes the set of the neighboring histogram bins of the ith histogram bin. One histogram 

bin is said to be a neighbor of another bin if a visual pattern will switch the bins with each other by a 

rotation. Note that an edge block coded by a visual pattern with its type from the diagonal (or 

anti-diagonal) class may change the type to the vertical or horizontal classes by a rotation. On the 

other hand, a type from the vertical (or horizontal) class might change its type to the diagonal or 

anti-diagonal classes. Let C , , , and  denote the kth type from the horizontal, 

vertical, diagonal, and anti-diagonal classes of visual-pattern types, respectively. There are four cases 

to determine the neighborhood 
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 Let sQ ,H  and sIH , be the normalized and smoothed histograms for a query image Q and a 

database image I, respectively. The similarity in terms of the visual-pattern histogram between Q and I, 

Sh(I,Q), is given by the following equation: 

2

))()((
0.1),(

2
,,∑ −

−= i
sIsQ

h

iHiH
QIS  .      (23) 

Note that the value of Sh(I,Q) lies in the interval [0,1]. If images I and Q are identical then Sh(I,Q) = 1. 

Fig. 8 shows three database images [(a) and (b) are similar but (c) is different] and their respective hi 
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stograms of visual-pattern types. Note that Sh(a,b) > Sh(b,c) and Sh(a,b) > Sh(a,c). 

   (a)     (b)       (c) 

   (d)      (e)      (f)   

         (g) 
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Fig. 14(b) 
Fig. 14(c) 

Fig. 8 The visual-pattern histograms for three database images: (a)-(c) show three database images; 
(d)-(f) show the corresponding edge images; and (g) shows the corresponding histograms: Sh(a,b) = 
0.984, Sh(a,c) = 0.724, Sh(b,c) = 0.717. 
 

4.2 Matching strategy 

It is not wise to match the visual-pattern codes of the query image globally to those of the 

database images. We can reduce the number of irrelevant matches by constraining the matching to the 
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segments of the database images. The segment size would depend on the resolution of the query 

image. Let B x B be the size of the block and S x S denote the size of an image segment. The value of 

S should be chosen as a multiple of the value of B and hence there are 
B
S

B
S

× blocks in a segment. 

Given a query image Q with size NN × , the image is tailored by removing the boundary rows and 

columns for the purpose of dividing Q into 



×





S
N

S
N

 segments. Each segment of Q is then 

applied to match the same size segments of a database image, and the average of the matching rates of 

all the segments of Q is then obtained as the matching rate of the whole query image.  

If the size of a database image is MM × , the number of segments to be searched for each 

segment of Q, as seen from Fig. 9a, would be 
2


−

B
S


M

. For example, if the values of B, S and M 

are 4, 64 and 256, respectively, then the number of segments to be searched for the database image is 

2304. This is a large number and hence a long time is required to find the best matches among the 

segments of a database image for each segment of a query image. 

To shorten the searching time for each segment, the matching rates on the basis of visual-pattern 

histograms for each segment in a database image and a query image are first computed. Only the 

segments in a database image with sufficiently large values of similarity in terms of histograms are 

considered for computing the eventual matching scores based on the visual-pattern codes for each 

query segment. That is, the visual-pattern histogram for each query segment works as a filter to 

eliminate the irrelevant segments of a database image. As shown in Fig. 9(b), the histogram of 

visual-pattern types of the segment B (D) can be constructed directly by replacing the types of blocks 

from the set A-B (C-D) with the types of blocks in the set B-A (D-C) from the histogram of the 

segment A (C). This further shortens the time of filtering. 

4.3 Proposed image retrieval algorithm 

 In this study, the size of the segment in an image is set to 128 x 128 or 64 x 64 dependent on the 

resolution of the query image. If the size of the query image is close to 64 x 64, then the size of 

segments will be set to 64 x 64; otherwise, it will be set to 128 x 128. When the retrieval of larger 
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query image is submitted, the query image is first decomposed into several segments of size 128 x 

128, the average of the matching scores (MSEs) of all the segments is then obtained as the matching 

score of the whole query image. 

(a)

A block

...

A segment

BA ∩

A
B

BA −

AB −

C

D

DC ∩

DC − CD −

(b)  

Fig. 9 Segment decomposition of a database image: (a) search for the best match segment of the 
database image for each query segment; (b) the histogram of visual-pattern types of the segment B (D) 
can be constructed directly by replacing the types of blocks from the set A-B (C-D) with the types of 
blocks in the set B-A (D-C) from the histogram of the segment A (C). 

 The complete matching scheme between a database image I and a query image Q is given as the 

following algorithm. 

Algorithm 2. Proposed image retrieval technique. 

Input. A query image Q of size MM × and a database image I. 

Output. A set of match images from a database. 

Method. 

(1) Encode the database image I using the proposed visual-pattern coding. 

(2) If the value of M <128, set the size of an image segment to be 64 x 64; otherwise, set the size of a 

segment to be 128 x 128. 

(3) Tailor Q into several segments by removing boundary rows and columns so that the size of Q is a 
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multiple of the size of a segment. 

(4) For each query segment Qs, do the following steps. 

(4.1) Encode Qs with our proposed visual-pattern coding scheme. 

(4.2) Compute the visual-pattern histogram of Qs. Match the histograms of the database image I 

with that of the query segment Qs using equation (23), and obtain the segments of I whose values 

of similarity are larger than a predefined threshold (i.e. 0.97). 

(4.3) Match the visual-pattern codes of those segments of I obtained in the step (4.2) with those of 

the query segment Qs and obtain the smallest value of MSE (defined in equation (20)). 

(5) Average the values of MSE of all query segments as the matching score between the query image 

Q and the database image I. 

We can perform the above operation for each database image and retrieve with the lower values of 

MSE. 

5. EXPERIMENTAL RESULTS 

 In order to evaluate the proposed approach, a series of experiments was conducted on an Intel 

PENTIUM-IV 1.5GMhz PC and a color image database consisted of 675 scenery images was used. 

Each image in the database is first tailored to the size of 256 x 256 for testing the retrieval approach. 

Query images of different sizes were extracted from these images. 

A retrieval method is classified as accurate if, for a given query image, the perceptually (to a 

human) most similar image in the database is retrieved by the system as the topmost retrieval. Also, a 

robust system should be stable for all types of queries, i.e., the system must not break down under  
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  (a)        (b)-(f) 

  (g)         (h)-(l) 

 (m)   (n)   (o)    (p)    (q)    (r) 

  (s)        (t)-(x) 
Fig. 10. A sample of test images: (a)-(f) show six database images of different sizes; (g)-(l) show the 
corresponding rotated images; (m)-(r) show the corresponding scaled images; and (s)-(x) show the 
corresponding noisy images. 
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specific cases. In order to test the robustness of the proposed system, not only normal query images, 

but also rotated, scaled, and noise added query images were used to test the system. Fig. 10 shows a 

sample of test images. 

For retrieval on the basis of visual-pattern coding, the experiments were conducted on the 100 

color images randomly selected from our database as the query images. Tables 1 and 2 present the 

retrieval results on the basis of histograms of visual-pattern types and visual-pattern codes, 

respectively, where n refers to the position of the correct retrieval. The retrieval performance was 

better in the presence of scale changes than in the presence of rotated or noisy images if histograms of 

visual-pat tern types were used as  features .  However,  i f  we direct ly  match the 

 

Table1 Image retrieval results using histograms of visual-pattern types: n refers to the position of the 
correct retrieval; the last column indicates the average time taken for a retrieval. 
Query images 
Size Nature 

n = 1 
(%) 

n <= 2 
(%) 

n <= 3 
(%) 

n <= 4
(%) 

n <= 10
(%) 

n <= 20 
(%) 

Retrieval time
(seconds) 

Normal 100 100 100 100 100 100 0.804 
Scaled 32 40 48 54 70 89 0.452 

256 
x 

256 Noisy 32 40 43 50 60 72 0.804 
Normal 100 100 100 100 100 100 0.451 
Rotated 31 50 59 64 83 95 0.451 
Scaled 13 20 28 34 56 81 0.307 

128 
x 

128 
Noisy 30 40 42 45 55 65 0.451 
Normal 100 100 100 100 100 100 0.307 
Rotated 30 51 57 64 81 96 0.309 

64 
x 

64 Noisy 27 34 40 44 54 67 0.307 
 

Table 2 Image retrieval results by matching the visual-pattern codes directly: n refers to the position 
of the correct retrieval; the last column indicates the average time taken for a retrieval. 
Query images 
Size Nature 

n = 1 
(%) 

n <= 2 
(%) 

n <= 3 
(%) 

n <= 4
(%) 

n <= 10
(%) 

n <= 20 
(%) 

Retrieval time
(seconds) 

Normal 100 100 100 100 100 100 9.374 
Scaled 52 73 81 84 93 97 2.448 

256 
x 

256 Noisy 100 100 100 100 100 100 9.374 
Normal 100 100 100 100 100 100 2.438 
Rotated 86 91 93 98 100 100 2.448 
Scaled 61 73 78 83 93 98 1.372 

128 
x 

128 
Noisy 100 100 100 100 100 100 2.438 
Normal 100 100 100 100 100 100 1.372 
Rotated 73 83 90 95 98 98 1.420 

64 
x 

64 Noisy 100 100 100 100 100 100 1.420 
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Table3 Image retrieval results of integrating queries on the basis of both the type histograms and 
visual-pattern codes: n refers to the position of the correct retrieval; the last column indicates the 
average time taken for a retrieval. 
Query images 
Size Nature 

n = 1 
(%) 

n <= 2 
(%) 

n <= 3 
(%) 

n <= 4
(%) 

n <= 10
(%) 

n <= 20 
(%) 

Retrieval time
(seconds) 

Normal 100 100 100 100 100 100 3.895 
Scaled 52 70 74 77 91 96 1.021 

256 
x 

256 Noisy 81 85 86 89 93 95 3.895 
Normal 100 100 100 100 100 100 1.023 
Rotated 84 91 93 95 99 99 1.023 
Scaled 55 70 77 80 90 97 0.503 

128 
x 

128 
Noisy 75 83 87 90 92 96 1.512 
Normal 100 100 100 100 100 100 0.503 
Rotated 84 93 95 97 99 99 0.503 

64 
x 

64 Noisy 75 84 87 92 93 97 0.503 
 

visual-pattern codes of two images, the retrieval performance of the proposed system seems more 

sensitive to scaled images than to rotated or noisy images. The worst-case retrieval accuracy of the 

system was 97%. Moreover, the time taken for a retrieval on the entire database was much shortened 

by using histograms of visual-pattern types. Table 3 presents the results of integrating queries on the 

basis of both type histograms and visual-pattern codes for the 100 color images. The performance is 

comparable to that of matching visual-pattern codes directly, but the retrieval efficiency is much 

improved. 

 The retrieval technique based on edge and color histograms proposed by Jain and Vailaya [12] 

was also implemented for performance comparison. Before the evaluation, human assessment was 

done to determine the relevant matches in the database to the query images. The top 100 retrievals 

from both the color and shape histograms and the proposed approaches were marked to decide 

whether they were indeed visually similar in color and shape. The retrieval accuracy was measured by 

precision and recall 

Precision(K) = CK/K and Recall(K) = CK/M      (24) 

where K is the number of retrievals, CK is the number of relevant matches among all the K retrievals, 

and M is the total number of relevant matches in the database obtained through human assessment. 

The average precision and recall curves are plotted in Figs. 11 and 12. It can be seen that the proposed 

method achieves good results in terms of retrieval accuracy compared to Jain’s method. 
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 Let us consider a query image of size 256 x 256, as shown in Fig. 13. The segment size is 

chosen as 128 x 128. The first 11 retrieval images with the lowest values of MSE as 46.76, 86.79, 

97.61, 131.89, 142.85, 152.33, 156.61, 159.54, 162.30, 163.44 and 167.22 are shown in Figs. 13(b), 

(c), (d), (e), (f), (g), (h), (i), (j), (k) and (l) respectively. All these images have similar sub-images of a 

stream, which indicates that the proposed retrieval scheme also can retrieve similar images based on 

an iconic image. 

 In order to speed up the computationally expensive search over the entire database, the similarity 

between two histograms of visual-pattern types for a database image segment and a query segment is 

first used as a filter step. This dramatically shortens the time required to retrieve images without 

sacrificing the retrieval accuracy. Furthermore, the histograms of segments in a database can first be 

clustered to further shorten the retrieval time. 

6. CONCLUSION 

 In this paper we have present a block-based edge detection algorithm using the 

moment-preserving techniques. Based on the edge detector, an image can be coded by visual-pattern 

codes block by block in real time. A matching strategy based on the visual-pattern codes also makes 

the retrieval process robust and accurate, and the method using the visual-pattern type histograms to 

filter out dissimilar images dramatically shortens the time required to retrieve images, without 

sacrificing the retrieval accuracy. 

 The speed of retrievals can also be increased without affecting the robustness of the system by 

clustering the type histograms of a database in advance. Future work will deal with linking edge 

patterns into objects to the proposed system, and increasing the database size. 
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Fig. 11. Average precision versus number of retrievals. 

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of retrievals

re
ca

ll

Jain's method by edge histogram     
Jain's method by color histogram    
Jain's method by fusion of          
color and edge histograms           
Proposed method by histogram        
 of visual-pattern type             
Proposed method by matching of      
visual patterns                     
Proposed method by hybrid visual    
 pattern matching and type histogram

 

Fig. 12. Average recall versus number of retrievals. 
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(a)            (b)      (c) 

  (d)       (e)      (f) 

  (g)       (h)      (i) 

  (j)       (k)      (l) 

Fig. 13. A query image and retrieved images: (a) the query image, (b)-(l) the first 11 retrieved images 
with lowest values of MSE as 46.76, 86.79, 97.61, 131.89, 142.85, 152.33, 156.61, 159.54, 162.30, 
163.44 and 167.22. 

 24



 

  REFERENCES 

[1] C. Faloutsos et. al., Efficient and effective querying by image content, Journal of Intelligent 

Systems, 1, 95-108 (1994). 

[2] M. Flickner et. al., Query by image and video content: the QBIC system, IEEE Computer, 28(9), 

23-32 (1995). 

[3] A. Pentland, R. Picard, and S. Scalroff, Photobooks: Tools for Content-based manipulation of 

image databases, SPIE Conf. On Storage and Retrieval of Image and Video Databases II, 33-47 

(1994). 

[4] B. M. Mether, M. S. Kankanhall, and W. F. Lee, Content-based image retrieval using a 

composite color-shape Approach, Information Processing and Management, 34(1) 109-120 

(1998). 

[5] M. Swain and D. Ballard, Color indexing, Int. J. Comput. Vision, 7(1), 11-32 (1991). 

[6] J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, Image indexing using color 

correlograms, in IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, Puerto Rico, 

June, 744-749 (1997). 

[7] X. Wan and C.-C. Jay Kuo, A new approach to image retrieval with hierarchical color clustering, 

IEEE Trans. On Circuits and Systems for Video Technology, 8(5), 628-643 (1998). 

[8] S.C. Pei and C.M. Cheng, Extracting color features and dynamic matching for image data-base 

retrieval, IEEE Trans. On Circuits and Systems for Video Technology, 9(3), 501-512 (1999). 

[9] B. Manjunath and W. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. 

Pattern Anal. Machine Intell., 18, 837-842 (1996). 

[10] Z. Wang, Z. Chi and D. Feng, Content-based image retrieval using block-constrained fractal 

coding and nona-tree decomposition, IEE Proc.-Vis. Image Signal Process, 147(1), 9-15 (2000). 

[11] R. Methrotra and J. Gary, Similar-shape retrieval in shape data management, IEEE Computer, 28, 

57-62 (1995). 

[12] A. K. Jain and A. Vailaya, Image retrieval using color and shape, Pattern Recognition, 29, 

1233-1244 (1996). 

 25



 26

[13] S. C. Cheng and W. H. Tsai, Image compression by moment-preserving edge detection, Pattern 

Recognition, 27(11), 1439-1449 (1994). 

[14] E. J. Delp and O. R. Mitchell, Image compression using block truncation coding, IEEE Trans. 

Commun., 27, 1335-1341 (1979). 

[15] A. J. Tabatabai and O. R. Mitchell, Edge location to subpixel values in digital imagery, IEEE 

Trans. Pattern Anal. Mach. Intell., 6, 188-201 (1984). 

[16] W. H. Tsai, Moment preserving thresholding: A new approach, Comput. Vis., Graph., Image 

Process., 377-393 (1984). 

[17] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall 

(1991). 

[18] S. C. Pei and C. M. Cheng, Color image processing by using binary 

quaternion-moment-preserving thresholding technique, IEEE Trans. Image Process., 8, 614-628 

(1999). 

[19] A. Rosenfield and A. C. Kak, Digital Picture Processing, Vol II. Academic Press, New York 

(1982). 

[20] H. C. Lee and D. R. Cok, Detecting boundaries in a vector field, IEEE Trans. Signal Processing, 

39, 1181-1194 (1991). 

[21] P. E. Trahanias and A. N. Venetsanopoulos, Vector order statistics operators as color edge 

detectors, IEEE Trans. Syst., Man, Cybern., SMC-26, 135-143 (1996). 


