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ABSTRACT

A content-based image retrieval algorithm based on a new edge detection technique is
proposed. Both the query and database images are divided into non-overlapping square
blocks and coded by the mean in each uniform block and by edge information in each
non-uniform block. The coded blocks of a query image are then used to find matches from an
image database. The edge feature in a given block is detected by applying the
moment-preserving principle to the image data. The edge directions are approximated by
multiples of 45° to speed up the matching process without introducing obvious distortion. For
a larger database, a selective filtering strategy based on the visual-pattern histograms is also
described to further speed up the retrieval process. The solution to the edge detection problem
in a given block is also analytic. This algorithm can be performed very fast for large-database
applications with no need for special hardware.
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1. INTRODUCTION

With the rapidly increasing use of the Internet, the demands for storing multimedia information
(such as text, image, audio, and video) have increased. Along with such databases comes the need for
a richer set of search facilities that include keywords, sounds, examples, shape, color, texture, spatial
structure and motion. Traditionally, textual features such as filenames, captions, and keywords have
been used to annotate and retrieve images. As they are applied to a large database, the use of
keywords becomes not only cumbersome but also inadequate to represent the image content. Many
content-based image retrieval systems have been proposed in the literature [1-4]. To access images
based on their content, low-level features such as colors [5-8], textures [9,10], and shapes of objects
[11,12] are widely used as indexing features for image retrieval. Although content-based image
retrieval is extremely desirable in many applications, it must overcome several challenges including
image segmentation, extracting features from the images that capture the perceptual and semantic
meanings, and matching the images in a database with a query image based on the extracted features.
Due to these difficulties, an isolated image content-based retrieval method can neither achieve very
good results, nor will it replace the traditional text-based retrievals in the near future.

Edge features, which are recognized as an important aspect of human visual perception, are
commonly used in shape analysis. Decomposition of images into low-frequency blocks and blocks
containing visually important features (such as edges or lines) suggest visual continuity and visual
discontinuity constraints. A block is visually continuous if the values of all the pixels in the block are
almost the same. In contrast, if the variations of the pixel values in the block are noticeable, it is a
visually discontinuous block. The mean of a visually continuous block is enough to represent the
block. If a block is visually discontinuous and if a strong orientation is associated with it, then it
should be coded as a kind of visually important feature. Using coded edges, we can represent the
structure of an image without explicitly extracting visual features.

In this paper, a new image retrieval algorithm is proposed based on the application of the
moment-preserving technique to detect a visually important feature, namely an edge in a given image

block. Each given image is divided into non-overlapping square blocks and coded block by block.
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Edge features used to code an ordinary image, produce excellent image quality according to human
perception and provide a promising approach for the representation of the image content with a
compact code [13]. Furthermore, simple and analytical formulae to compute the parameters of the
edge feature for both gray and color images are also derived in this study, which makes the
computation very fast. The potential of using edge information for image retrieval was observed by
Jain and Vailaya [12]. They proposed a retrieval technique by matching a query image with each
image in a database on the basis of the edge direction and color histograms, and the similarity
between two images can be assessed by combining the color- and shape-based similarity.

In contrast to the integrated color- and shape-based method mentioned above, in this paper we
propose the usage of block-based visual patterns of an image as the features for identification. In this
system, thirty-seven types of visual pattern including a uniform pattern and 36 edge patterns are
defined to classify 4 x 4 image blocks of a given image. A simple approach for image retrieval on the
basis of visual patterns is to encode both a database image and a query image and then compute the
difference between the visual-pattern codes of the two images. In certain classes of images, the image
details are very rich and do not lend themselves well to being indexed by simple visual features. Such
images require a detailed search of the image content to be made as part of the query. For speed and
efficiency, we use the visual-pattern histogram of a query image to extract a pool of candidates from a
large database, and then to match the visual patterns block by block on the candidates.

The remainder of this paper is organized as follows. Section 2 presents the use of the
moment-preserving principle to detect edges. Section 3 presents the similarity measurement with edge
information. The proposed image matching strategy is shown in Section 4 followed by some
experimental tests to illustrate the effectiveness of the proposed image retrieval method in Section 5.
Finally, conclusions are drawn in Section 6.

2. PROPOSED MOMENT-PRESERVING EDGE DETECTION

A given image is partitioned into a set of non-overlapping square blocks. Each block is coded as
either a uniform block or an edge block. The edge in each block is detected by the proposed edge
detection technique, and the image can be reconstructed according to the parameters of these blocks.

2.1 Review of moment-preserving principle



Gray-level moment-based operators have been successfully developed for image processing
[14-16]. Delp and Mitchell [14] first proposed block truncation coding (BTC), which used a two-level
moment-preserving quantizer to compress monochrome image. Tabatabai and Mitchell [15] also
proposed an operator, which can compute edge location by fitting first three gray-level moments to
the input data. Compared with traditional edge operators such as those proposed by Robert and Sobel
[17], the precision to subpixel accuracy has been reported. Applying this technique to image
segmentation, Tsai [16] used the moment-preserving principle to select thresholds of input gray-level
image. The threshold values were determined in such a way that the gray-level moments of an input
image are preserved. In contrast to Tsai [16], a new moment-based operator, based on a thresholding
technique called binary quaternion-moment-preserving (BQMP) thresholding was reported by Pei and
Cheng [18]. The BQMP thresholding generalizes conventional gray-level moment-based operators
[14-16] to be multi-dimensional by expressing the input color space as a quaternion-level space. An
analytic solution for the BQMP thresholding is also obtained by the use of quaternion arithmetic. Pei
and Cheng [18] also applied the BQMP thresholding technique to detect color edges with the
precision to subpixel accuracy. There are no analytical formulae for the edge detection algorithms
proposed in Tabatabai [15] and Pei [18], so their methods are not unified approaches for detecting
edges of gray and color images, respectively.

2.2 Proposed edge detector

Figure 1 shows the aspects used for edge detection in this approach, including a continuous
two-dimensional edge model specified by four parameters, two representative gray (color) values /;
and /,, an edge translation /, and an orientation angle € for an edge in square block B. The edge is
simply a step edge transition from representative value /; to representative value /4,. The edge
translation / is defined as the length from the center of the edge model to the transition, and is
confined within the range of -1 to +1. The parameter @specified the direction of the edge and is
confined within the range of 0 to 360 degrees. The value of & can be computed individually first, as

described next.



Fig. 1. An edge model in a 4 x 4 block B. The circle C is inscribed in B, and ()?, y) are the

coordinates of the centers of gravity of the gray (color) values inside C.

The x-mass moment M, and y-mass moment M, defined within the cycle C inscribed B are as

follows:

M, = [[ 3 (x, y)dyex, (1)

M, =[] ¥f (x, y)dydx 2)

where f(x,y) is the gray level and the vector norm at (x,y) for a gray-level image and a color image,

respectively. The vector norm of the pixel at (x,)) of a color image is computed as

f(6,9) = R(x,») +G(x, )" + B(x, p)’ ()
where (R(x,y), G(x,y), G(x,y)) denotes the color value (R, G B) of the pixel at (x,y) for a color image.

The value of @ can be easily obtained from the values of M, and M,. Let ()?, y) be the coordinates of

the center of gravity of the gray (color) values inside C. Then

M, M,
xX,y)=(—, 4
(x,y)=( M, M, ) (4)
where M, is the mean of C and is computed by
M, = ([ f(x p)dvdx. (5)
c

It has been found that the direction of the edge is perpendicular to the direction of the vector from the



origin to ()_c, f) [19]. So,

sinf=——2 (6a)
X' 4y’

cosf = —> (6b)
X +y°

and angle & can be calculated by

6 =tan™ (2) = tan_l(My ) (7)
X M.

The moments My, M, and M, are also useful to judge whether C and therefore B are visually uniform.

Notice that if C is uniform, ()?, y) will be very close to the origin of C. So, if the distance between
the center of gravity ()?, y) and the origin of C is less than a threshold t, then it is considered that

there is no edge involved in C, and B is determined to be a uniform block. This criterion for judging

the uniformity of a given block is actually equivalent to the following:

JM? +M? <M. (8)

To compute each of the moments M), M, and M,, a more convenient way is to correlate the pixel
values in the block with a mask. Each mask represents the value resulting from performing the
integration (1), (2), or (5) over each pixel in C, assuming f{x,y) is constant over that pixel. The circular

limits are also included in the integration. The resulting set of masks is shown in Fig. 2.
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M, 0.2952 0.2500 0.2500 0.2952
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Fig. 2. Set of three masks for computing moments of a 4 x 4 block.
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Once the value of @ is obtained, the solutions for %,, 4,, and / can be found by applying the
moment-preserving technique. Given the orientation of an edge of an input block, the edge might
intersect the block at either opposite or neighboring sides, according to the variation of the pixel
values within the block as shown in Fig. 3. The values of /,, &, and / and the type of intersection can
be decided by preserving the first three moments of the input block in the following manner:

m, =phf + p,hy, k=1,2,3 9)
where p; = A;/A, A; is the area of B covered by pixel value /,, 4 is the total area of B and is equal to 4,
p,=1=-p,, B={(x,y):|x[£L|y|<1}, and m, is the kth gray (quaternion) moment of the

original block B and is computed as follows:
m —_1 I gk(x y)dydx (10)
k [' | ’

The value of A, which is the area of B, is also 4 and g(x,y) is the gray value of (x,y) for gray-level
images and the quaternion number of (x,y) for color images. For the methods to model a color vector

as a quaternion number and compute the kth quaternion moment of a block please refer to [18].
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Fig. 3. Given the orientation & of an edge of a block, the edge might intersect the sides of the
block in the following two ways: (a) the intersection points are located on opposite sides; (b) the
intersection points are located on neighboring sides.

By assuming that g(x,y) takes a constant value over each grid, the integral in (10) becomes a

weighted sum of the pixel values in block B and can be written as:

mk:zzwxygk(x’y)a k= ], 2,3 (11)
X oy



where w,, is the weighting coefficient associated with (x,y) ( if the size of block is 4 x 4, then w,, =
1/16). Applying the moment-preserving [16] and quaternion-moment-preserving [18] thresholding
techniques to a gray-level block and a color block, respectively, the unknown parameters #4,, &,, p; and
p> in equation (9) can be derived in closed form.

It is simple to calculate the remaining unknown parameter / from the value of p, in each case

of the edge-block intersection patterns. First,

A

3 12
y (12)

P, =

where 4 is the area covered by the pixel value 4, in B and 4 = 4 is the area of B. Next, the value of

A, can be computed by

4, =2(1—%059) (13)

for the case as seen from Fig. 3(a), and

_ (I —cos@—sinf)’
4, = 2cos@sin6 (14

for the case as seen from Fig. 3(b). From equations (12), (13) and (14), we get
[=(1-2p,)cosl (15)
for the former case, and
l=cos€+sin9i\/m (16)
for the latter case. Note that the sign of the third term of equation (16) should be negative because the
value of @ is within the interval (O, 7/ 2) and the value of / is between 0 and \/5 in Fig.3(b).

Moreover, the value of / is negative if the value of p; is larger than 0.5.
Although the edges of the block B in Fig. 3 are located in the first quadrant of the x-y
coordinates of B, the edge models can be applied to compute the translations of edges located at other

quadrants by adjusting the values of edge orientation as follows

0':ix%—9, if i =2 4 and (17a)

9':9—(i—1)x%, ifi=3 (17b)
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where the value of i denotes which quadrant contains the center of gravity ()? R f)

The final question to answer is that given a block, how is it decided should equation (15) or
(16) be used to compute the edge parameter /? The edge as seen from Fig. 4 intersects the block B on
opposite sides when the value of translation within the interval (-¢, ¢) and the value of ¢ can be

computed as
t=\/§xsin(%—6’)=cost9—sin0. (18)

Combining equations (15) and (18), we get
(sin@ —cos@)<(1-2p,)cos@ <(cosf —sinf). (19)
And hence, if
0.5xtan@ < p, <1-0.5xtand (19)

then the edge shown in Fig. 4 intersects the block B on opposite sides of B; otherwise, the edge

intersects B on neighboring sides of B.

Fig. 4. Edges intersecting the block B on opposite sides, with the values of translation confined to
the interval (-z,7).
An algorithm is given below to summarize the proposed moment-preserving edge detector.
Algorithm 1. Proposed moment-preserving edge detection technique (MPED).
Input. Square block B containing an edge feature.
Output. Parameters of the edge.

Method.



1. Compute the values of M,, M, and M, from the circle inscribed inside 5.

2. Calculate the value of @ using equation (7) and adjust € using equation (17) to shift edges
located at other quadrants of the x-y space to the first quadrant.

3. Apply the moment-preserving technique to find the solutions of the parameters 4;, 4, p;, and
p> of the edge. If B is a gray-level block, apply the moment-preserving threshlding"®
technique, else use the quaternion-moment-preserving thresholding [18] technique.

4.  Apply equation (19) to test how the edge intersects B. If the edge intersects B at opposite sides,
use equation (15) to compute the value of translation /, else use equation (16).

As an example, suppose a gray-level block with size 4 x 4(as shown in Fig. 5(a)) is given and the

detected edge and its parameters are shown in Fig. 5(b).

23 23 56 57 cos6 = 0.9880,
22 54 58 56 %”: 11876'1“’ sin@ =-0.155,
20 55 57 53, F_ [’ cos(2m —6)=0.9880,
21 55 50 54 sin(27 — )= 0.155,
tan(27 — 6)= 0.1569.
(a)
22 22 55 55 h =22, p,=0.3196
22 55 55 55 h,=55, p,=0.6804
22 55 55 55
22 55 5555
1-0.5*tan(27 — 0)>p,>0.5*tan(27 — 0),
I=-0.3565.
(b)

Fig. 5. Applying the proposed moment-preserving edge detector to a gray-level block: (a) the original
block and its computed values of moments M, M,, M, and normal vector (cos®, sin6) of the edge; (b)
the detected edge and the values of parameters 4;, h,, p;, p2, and 1.
2.3 Visual pattern mapping

The proposed moment-preserving edge detector can detect an edge along any direction in a
given image block. The difference between two edges with very close directions is not perceivable
when the image resolution is high and the block size is small. In this paper, the block size 4 x 4 is
adopted, which can be assumed to be small for high-resolution images. Instead of representing edges

in any directions, the detected edges are mapping to 37 types of visual pattern, as shown in Fig. 6 This

assumes that the possible directions of an edge in a 4 x 4 block are limited to multiples of 45, or

equivalently, 7 X 450, i=0, 1, ..., 7. If the actual direction of an edge is not a multiple of 45", it is



quantized to be the nearest multiple of 45", After the direction of an edge is given, we use the value of
translation to map the edge to the nearest visual pattern. Note that each pixel in a visual pattern is
either classified as a Class0 pixel or a Class pixel. A visual pattern is coded by a bitmap, consisted of
0s (pixels in Class0) and Is (pixels in Class1) and two representative gray (color) values /4, and /4, for

the Class0 and Class 1, respectively.

0 : Class0 pixel' W : Class! pixel.
‘W | Mls !1 3
& ]
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Fig. 6 Possible thirty-seven types of visual patterns in a 4 x 4 block.
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The main reason for mapping an edge feature to a visual pattern is to encode an image with
visual patterns block by block. The pixels of a visual pattern are divided into two classes, each of
which is represented by a representative gray (or color) value. And hence, a given image block can be
encoded by two representative gray (or color) values and an index to indicate which visual pattern the
block is mapped. Both the edge and intensity (color) features of an image block are included in a
visual pattern. Therefore, no extra information needs to be stored in the image database. The
block-based visual pattern coding has two clear advantages: short computing time and less storage
space (codes can be generated in realtime).

3. SIMILARITY MEASUREMENT WITH VISUAL PATTERNS

Using the scheme discussed in the last section, an image is represented with the visual-pattern
codes of image blocks. In other words, the image content can be uniquely determined by the
visual-pattern codes. Thus, it is possible to retrieve images that are similar to a query image based on
a similarity measurement between the visual patterns of the database images and those of the query
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image. More identical pieces in the visual-pattern codes suggest more identical blocks, and therefore
the two images are more similar. Consequently, the mean square error (MSE) of two visual-pattern
codes, in which one is from a database image and the other is from a query image, can measure the
similarity of two images with a lower MSE, indicating a greater degree of similarity. A lookup table L,
referred to as pattern-similarity table can be constructed in advance to record the level of similarity of
all pairs of visual-pattern types in terms of bitmaps for the purpose of efficiently computing the value

of MSE of two images. Let b; and b; be the bitmaps of visual-pattern types i and j, respectively. The

similarity of b; and b; can be measured by the following measurement: (1) the count of /s in b, AD IE
(2) the count of /s in —b, A—=b,; (3) the count of Isin —b; Ab;; (4) the count of Isin b; A=b;.

The larger the values of cases (1) and (2) are, the more similar the two visual-pattern types in terms of
bitmaps. In contrast, the larger the values of cases (3) and (4) are, the less similar the two

visual-pattern types in terms of bitmaps. We denote the values of the four cases above as

Li’ll.,Li’(;,L?’]l.,and L?’?, respectively, for illustration convenience. Note that the types of visual

pattern can be classified as five classes, namely uniform (type 0), vertical (types 1 to 6), horizontal
(types 7 to 12), diagonal (types 13 to 24), and anti-diagonal (types 25 to 36) classes by grouping
similar types together.

Suppose two images 4 and B, are both coded by M visual patterns, the value of MSE between

the images A and B is computed as follows:
1 , , . .
MSE = ﬁ Z[LI/’;},B, x (th1 _th' )2 +L(if,(),3, x (hlA' _hlB' )2 +L11:1?,B, x (th1 _h1B' )2 +L(if,l,3, X(hlA' _hf' )2] (20)

where A; and B; denote the type numbers of the ith visual pattern of 4 and B, respectively; and

h and hj" (h and b)) are the two representative values of the it visual pattern of the image 4 (B).
The values of Llff’ 5, ,Llff, B, ,LOAjl_l’ 5, »and L(/)J,.O,B,. can be easily obtained by using the pattern-similarity

table mentioned above, and hence the cost to compute the value of MSE can be reduced.

Let us consider two images, /; and /,, where the size of /; is not smaller than that of /,. There are
three cases to compare the content of /; and /,: (1) /; and [, are two identical images; (2) I, is a
sub-image of /;; (3) I; and I, have the same sub-image. Case 1 is the simplest, where the visual-pattern
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codes at identical locations in both /; and / are identical because they have the identical pixel values.
And hence, it is easy to retrieve those images, which are the same as the query image from a database,
by comparing their visual-pattern codes.

Cases (2) and (3) are more complicated because the blocks to be compared in two images are not
identical, although they have an identical sub-image, which leads to an incorrect decision that these
two images are not similar or they have a low matching rate. The common blocks of /; and /, must be
aligned properly for these two cases, as shown in Figs. 7(a) and 7(b), respectively. As a rule of thumb,
two images are more similar if they have more identical blocks, that is a lower value of MSE.

4. MATCHING STRATEGY FOR IMAGE RETRIEVAL

In order to retrieve images we must be able to efficiently compare two images, where one is a
database image and one is the query image to determine if they have similar content. A simple
approach for image retrieval with visual-pattern coding is to encode both images and then compute
the matching rate between their visual-pattern codes. However, the visual-pattern code of a query
image could be very different from those of similar database images because the objects of the query
image might be translated, rotated, scaled, or distorted; so this direct method may produce rather poor

results.

/ L

Block unit to be coded

Identical subimage

(2) (b)

Fig. 7 Aligning image / to /; for computing the matching rates: (a) /, is a sub-image of /;; (b) /; and /,
have the same sub-image.

12



4.1 Histograms of visual-pattern type
This block-based visual-pattern coding scheme provides two advantages: lower computational

complexity and less storage space. However, it also generates problems in two situations described as

follows:

(1) A process to align the common blocks of a query image with those of a database image must be
done, as shown in Fig. 7 The representation of an image with visual-pattern code is not rotation or
scale invariant, but is translation invariant if the identical sub-image of the two images is aligned
properly.

(2) The retrieval by matching the visual-pattern codes of database images and a given query image
directly may receive responses from irrelevant matching pairs because if two images have the
same sub-image, then parts of the visual-pattern codes for both two images are overlapping. The
problem is how to efficiently find the highly co-related parts.

To overcome the problems from both situations above, the 1-D histograms of visual-pattern types are

computed from a given query image and database images to eliminate irrelevant matching. If the

histograms of two images, in which one is a database image and the other is a given query image are
quite different, then the visual-pattern codes between the two images need not match.

Basically, the histogram of visual-pattern types represents the shape attribute of an image and is
invariant to translation in the image. However, this also turns out to be a limitation, as two totally
different images may yield similar histograms of visual-pattern types. A suitable normalization of the

histograms is helpful to provide scale invariance. Let H(7) be a histogram of the visual-pattern types of

an image, where the index i represents a type number. Then, the normalized histogram H is defined

as follows:

ﬁ(z’):H—(i) . (21)

36

ZH(z‘)

A drawback of normalized histograms is the inability to match parts of images. If an image Q is a part
of an image /, then the histogram of Q is contained within the histogram of /. Normalizing the

histograms does not satisfy this property. Furthermore, a histogram of visual-pattern types is also not
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invariant to rotation. A shift of the histogram bins during matching will partially take into account
rotation of the images. For example, if two edges with the same edge translation but different
orientations of 30 and 70" will fall into the same histogram bin (one of diagonal types). However, if
the same image is rotated by 10’, then these two edges will fall into different bins, in which one is
from the horizontal class and the other is from the diagonal class. To reduce this effect of rotation we
smooth the histograms using the following equation:

H(i)+ Y H())

ﬁs (i) = J€gi (22)
+1¢:

where ¢, denotes the set of the neighboring histogram bins of the itk histogram bin. One histogram

bin is said to be a neighbor of another bin if a visual pattern will switch the bins with each other by a
rotation. Note that an edge block coded by a visual pattern with its type from the diagonal (or
anti-diagonal) class may change the type to the vertical or horizontal classes by a rotation. On the

other hand, a type from the vertical (or horizontal) class might change its type to the diagonal or

anti-diagonal classes. Let C},, C;, Cy, and C, denote the kth type from the horizontal,

vertical, diagonal, and anti-diagonal classes of visual-pattern types, respectively. There are four cases

to determine the neighborhood &, of the ith histogram bin, dependent on the class of the ith

histogram bin associated, and which can be defined

as (Cjk—l ’Cjk ,Cf‘gb\—zk+l ,C‘A%DHHZ) , (Cjk—l ’Cjkjczk—l Ciﬁ,) , (CLk/Z-\’C,Ek/Z-\) , and (Cl(ik/ﬂ’c\Vc,,\-Lk/zj) for the

AD >

horizontal, vertical, diagonal, and anti-diagonal classes of visual-pattern types, respectively.

Let H 05 and H 1., be the normalized and smoothed histograms for a query image Q and a

database image /, respectively. The similarity in terms of the visual-pattern histogram between Q and I,

Si(1,0), is given by the following equation:

D (Hy ()~ H, ()’

S,(, Q)=1.0—\/ i 5 : (23)

Note that the value of S,(1,Q) lies in the interval [0,1]. If images / and Q are identical then S,(/,Q) = 1.

Fig. 8 shows three database images [(a) and (b) are similar but (¢) is different] and their respective hi
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stograms of visual-pattern types. Note that Sy(a,b) > Si(b,c) and Sy(a,b) > Si(a,c).

(d) (e)
0.9 ;
| —5- Fig. 14(a)
0gt —— Fig. 14(b) |/
—— Fig. 14(c)

Frequency

40

20
Type of visual pattern

(g

Fig. 8 The visual-pattern histograms for three database images: (a)-(c) show three database images;
(d)-(f) show the corresponding edge images; and (g) shows the corresponding histograms: S;(a,b) =
0.984, Si(a,c) =0.724, Si(b,c) = 0.717.

4.2 Matching strategy
It is not wise to match the visual-pattern codes of the query image globally to those of the
database images. We can reduce the number of irrelevant matches by constraining the matching to the

15



segments of the database images. The segment size would depend on the resolution of the query

image. Let B x B be the size of the block and S x S denote the size of an image segment. The value of
. N :

S should be chosen as a multiple of the value of B and hence there are E X E blocks in a segment.

Given a query image Q with size N x N, the image is tailored by removing the boundary rows and

N N
columns for the purpose of dividing Q into {EJ X \‘EJ segments. Each segment of O is then

applied to match the same size segments of a database image, and the average of the matching rates of
all the segments of Q is then obtained as the matching rate of the whole query image.

If the size of a database image is M x M , the number of segments to be searched for each

2
M-S
segment of 0O, as seen from Fig. 9a, would be [T—I . For example, if the values of B, S and M

are 4, 64 and 256, respectively, then the number of segments to be searched for the database image is
2304. This is a large number and hence a long time is required to find the best matches among the
segments of a database image for each segment of a query image.

To shorten the searching time for each segment, the matching rates on the basis of visual-pattern
histograms for each segment in a database image and a query image are first computed. Only the
segments in a database image with sufficiently large values of similarity in terms of histograms are
considered for computing the eventual matching scores based on the visual-pattern codes for each
query segment. That is, the visual-pattern histogram for each query segment works as a filter to
eliminate the irrelevant segments of a database image. As shown in Fig. 9(b), the histogram of
visual-pattern types of the segment B (D) can be constructed directly by replacing the types of blocks
from the set A-B (C-D) with the types of blocks in the set B-A (D-C) from the histogram of the

segment 4 (C). This further shortens the time of filtering.

4.3 Proposed image retrieval algorithm

In this study, the size of the segment in an image is set to 128 x 128 or 64 x 64 dependent on the
resolution of the query image. If the size of the query image is close to 64 x 64, then the size of
segments will be set to 64 x 64; otherwise, it will be set to 128 x 128. When the retrieval of larger
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query image is submitted, the query image is first decomposed into several segments of size 128 x
128, the average of the matching scores (MSEs) of all the segments is then obtained as the matching

score of the whole query image.

‘ / A block A segment A A-B
B
ENIEEMEEEEEE!
EEE ANB
B-A4
C
I CnD
D !
C-D D-C
(a) (b)

Fig. 9 Segment decomposition of a database image: (a) search for the best match segment of the
database image for each query segment; (b) the histogram of visual-pattern types of the segment B (D)
can be constructed directly by replacing the types of blocks from the set 4-B (C-D) with the types of
blocks in the set B-4 (D-C) from the histogram of the segment 4 (C).

The complete matching scheme between a database image / and a query image Q is given as the

following algorithm.

Algorithm 2. Proposed image retrieval technique.

Input. A query image Q of size M x M and a database image /.
Output. A set of match images from a database.

Method.

(1) Encode the database image / using the proposed visual-pattern coding.

(2) If the value of M <128, set the size of an image segment to be 64 x 64; otherwise, set the size of a

segment to be 128 x 128.

(3) Tailor Q into several segments by removing boundary rows and columns so that the size of O is a
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multiple of the size of a segment.

(4) For each query segment (O, do the following steps.

(4.1) Encode Q; with our proposed visual-pattern coding scheme.

(4.2) Compute the visual-pattern histogram of Q,. Match the histograms of the database image /

with that of the query segment O, using equation (23), and obtain the segments of / whose values

of similarity are larger than a predefined threshold (i.e. 0.97).

(4.3) Match the visual-pattern codes of those segments of / obtained in the step (4.2) with those of

the query segment O, and obtain the smallest value of MSE (defined in equation (20)).

(5) Average the values of MSE of all query segments as the matching score between the query image

Q and the database image /.

We can perform the above operation for each database image and retrieve with the lower values of

MSE.

5. EXPERIMENTAL RESULTS

In order to evaluate the proposed approach, a series of experiments was conducted on an Intel

PENTIUM-IV 1.5GMhz PC and a color image database consisted of 675 scenery images was used.

Each image in the database is first tailored to the size of 256 x 256 for testing the retrieval approach.

Query images of different sizes were extracted from these images.

A retrieval method is classified as accurate if, for a given query image, the perceptually (to a

human) most similar image in the database is retrieved by the system as the topmost retrieval. Also, a

robust system should be stable for all types of queries, i.e., the system must not break down under
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Fig. 10. A sample of test images: (a)-(f) show six database images of different sizes; (g)-(1) show the
corresponding rotated images; (m)-(r) show the corresponding scaled images; and (s)-(x) show the
corresponding noisy images.
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specific cases. In order to test the robustness of the proposed system, not only normal query images,
but also rotated, scaled, and noise added query images were used to test the system. Fig. 10 shows a
sample of test images.

For retrieval on the basis of visual-pattern coding, the experiments were conducted on the 100
color images randomly selected from our database as the query images. Tables 1 and 2 present the
retrieval results on the basis of histograms of visual-pattern types and visual-pattern codes,
respectively, where n refers to the position of the correct retrieval. The retrieval performance was
better in the presence of scale changes than in the presence of rotated or noisy images if histograms of

visual-pattern types were used as features. However, if we directly match the

Tablel Image retrieval results using histograms of visual-pattern types: n refers to the position of the
correct retrieval; the last column indicates the average time taken for a retrieval.

Query images n=1 |n<=2| n<=3 | n<=4 | n<=10 | n<=20 | Retrieval time
Size |Nature (%) (%) (%) (%) (%) (%) (seconds)

256 [Normal |100 100 100 100 100 100 0.804
X [Scaled |32 40 48 54 70 89 0.452
256 INoisy |32 40 43 50 60 72 0.804
128 [Normal |100 100 100 100 100 100 0.451
X [Rotated |31 50 59 64 83 95 0.451
128 IScaled |13 20 28 34 56 81 0.307
Noisy |30 40 42 45 55 65 0.451
64 [Normal 100 100 100 100 100 100 0.307
X [Rotated |30 51 57 64 81 96 0.309
64 INoisy |27 34 40 44 54 67 0.307

Table 2 Image retrieval results by matching the visual-pattern codes directly: n refers to the position

of the correct retrieval; the last column indicates the average time taken for a retrieval.

Query images n=1 |n<=2| n<=3 | n<=4 | n<=10 | n<=20 | Retrieval time
Size |Nature (%) (%) (%) (%) (%) (%) (seconds)

256 Normal [100  [100  |100 100|100 100 9.374
X [Scaled |52 73 81 84 93 97 2.448
256 |Noisy  |100 100 100 100 100 100 9.374
128 [Normal [100  [100  |[100 100|100 100 2.438
X |Rotated |86 91 93 98 100 100 2.448
128 IScaled |61 73 78 83 93 98 1.372
Noisy  |100  [100  |100 100 [100 100 2.438
64 |Normal [100  |100  |100 100 [100 100 1372
X |Rotated |73 83 90 95 98 98 1.420
64 Noisy 100|100 |100 100|100 100 1.420
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Table3 Image retrieval results of integrating queries on the basis of both the type histograms and
visual-pattern codes: n refers to the position of the correct retrieval; the last column indicates the

average time taken for a retrieval.

Query images n=1 |n<=2 | n<=3 | n<=4 | n<=10 | n<=20 | Retrieval time
Size [Nawre | ) | ) | %) | %) | %) (%) (seconds)

256 |Normal |[100 100 100 100 100 100 3.895
X [Scaled |52 70 74 77 91 96 1.021
256 [Noisy |81 85 86 89 93 95 3.895
128 |Normal [100 100 100 100 100 100 1.023
X  |[Rotated |84 91 93 95 99 99 1.023
128 3caled |55 70 77 80 90 97 0.503
Noisy |75 83 87 90 92 96 1.512
64 [Normal |100 100 100 100 100 100 0.503
X [Rotated |84 93 95 97 99 99 0.503
64 INoisy |75 84 87 92 93 97 0.503

visual-pattern codes of two images, the retrieval performance of the proposed system seems more
sensitive to scaled images than to rotated or noisy images. The worst-case retrieval accuracy of the
system was 97%. Moreover, the time taken for a retrieval on the entire database was much shortened
by using histograms of visual-pattern types. Table 3 presents the results of integrating queries on the
basis of both type histograms and visual-pattern codes for the 100 color images. The performance is
comparable to that of matching visual-pattern codes directly, but the retrieval efficiency is much
improved.

The retrieval technique based on edge and color histograms proposed by Jain and Vailaya [12]
was also implemented for performance comparison. Before the evaluation, human assessment was
done to determine the relevant matches in the database to the query images. The top 100 retrievals
from both the color and shape histograms and the proposed approaches were marked to decide
whether they were indeed visually similar in color and shape. The retrieval accuracy was measured by
precision and recall

Precision(K) = Cx/K and Recall(K) = Cx/M (24)
where K is the number of retrievals, CK is the number of relevant matches among all the K retrievals,
and M is the total number of relevant matches in the database obtained through human assessment.

The average precision and recall curves are plotted in Figs. 11 and 12. It can be seen that the proposed

method achieves good results in terms of retrieval accuracy compared to Jain’s method.
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Let us consider a query image of size 256 x 256, as shown in Fig. 13. The segment size is
chosen as 128 x 128. The first 11 retrieval images with the lowest values of MSE as 46.76, 86.79,
97.61, 131.89, 142.85, 152.33, 156.61, 159.54, 162.30, 163.44 and 167.22 are shown in Figs. 13(b),
(c), (d), (e), (D), (2), (h), (1), (j), (k) and (1) respectively. All these images have similar sub-images of a
stream, which indicates that the proposed retrieval scheme also can retrieve similar images based on
an iconic image.

In order to speed up the computationally expensive search over the entire database, the similarity
between two histograms of visual-pattern types for a database image segment and a query segment is
first used as a filter step. This dramatically shortens the time required to retrieve images without
sacrificing the retrieval accuracy. Furthermore, the histograms of segments in a database can first be
clustered to further shorten the retrieval time.

6. CONCLUSION

In this paper we have present a block-based edge detection algorithm using the
moment-preserving techniques. Based on the edge detector, an image can be coded by visual-pattern
codes block by block in real time. A matching strategy based on the visual-pattern codes also makes
the retrieval process robust and accurate, and the method using the visual-pattern type histograms to
filter out dissimilar images dramatically shortens the time required to retrieve images, without
sacrificing the retrieval accuracy.

The speed of retrievals can also be increased without affecting the robustness of the system by
clustering the type histograms of a database in advance. Future work will deal with linking edge

patterns into objects to the proposed system, and increasing the database size.
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(k) M

Fig. 13. A query image and retrieved images: (a) the query image, (b)-(1) the first 11 retrieved images

with lowest values of MSE as 46.76, 86.79, 97.61, 131.89, 142.85, 152.33, 156.61, 159.54, 162.30,
163.44 and 167.22.
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