

 1

The Similarity Sort of Single Objects on Monotonous

Background

Jau-Ji Shen and Yung-Chen Chou

Department of Information Management, Chaoyang University of Technology, 168

Gifeng E. Rd., Wufeng, Taichung County, TAIWAN 413, R.O.C.

Email: jjshen@mail.cyut.edu.tw Fax: 886-4-23742337

Abstract: In this paper, a simple but efficient similarity sorting technique is proposed

by which specifically to classify color images with monotonous background into

several similar groups. There is only the color attribute to be considered during

similarity retrieval. In order to solved the representing inadequacy of the color

attribute to spatial characteristic. The key idea is to partition the images and to find

major sub- image from each image by a designated majority function, and finally,

using major sub- image as a key with threshold to proceeded image similarity retrieval

or classification.

Keywords: classification, color attribute, image index database, similarity retrieval,

threshold

1. Introduction

In recent years, due to the wide spread usage of the internet, there has been an

increasing need for dada transformations via the net, instead of the data in mere text

only of the early days, but has now gradually to include those multimedia data, e.g.

video, voice, animation and etc [7][11]. Additionally, the development of the

E-commerce has made digital product catalogs such as images with those apparent

topical subjects in monotonous background on the Web. The techniques of images

 2

retrieval are used to sort images by features such as the meta-data of the image (such

as location, author, time ...et al.), color, shape, texture and so on. [2][3][4][5][6][12].

Owing to diversified natures of the user requirement, if sorting images by merely

its meta-data, the user requirements may not be fulfilled fully. Besides, by using

image’s meta-data would take up more storage spaces by the necessary features.

Conversely, if the features were not taken enough, it could fall into the dilemma of not

representing the images adequately. Therefore, it would become important to find a

way to retrieve features from the image itself.

Color is not only a straightforward feature but also a natural one. However, in the

early days of limited computer capability, this feature was not taken seriously as the

retrieval of color informations would require a vast amount of costly calculation

power. Nevertheless, the vast progress of information technology, the retrieval of

color features has become more common than before. Color attribute can be

represented by color distribution in an image [13]. This is done so by abstracting and

summing up an image’s pixel values of the three primaries color Red, Green and Blue

(RGB), and to find the average, which can be used as a reference for image similarity

retrieval. Although this technique could find similar images, it would, at the same

time, get some images that were different at all. The cause is, when averaging the

RGB, the features of color distribution would be weakened, and thus picking some

images with same average in RGB values but totally different RGB distributions on

images. To counter this problem a new classification technique is proposed upon color

features. This technique can improve the representative inadequacy of color feature to

spatial characteristic, and thus to enhance the accuracy of image similarity retrieval.

What is more, the technique sorts and reaches the effect of images classification by

finding major sub-images through majority function.

In the beginning of Section 2, some initial works would be introduced, including

 3

the usage of RGB, image partition, and definition of similarity metric. After that, in

Section 3, it would be partition technique for image data, using majority function to

find out major sub-images, and with the aid of thresho ld to proceed with sorting.

Within Section 4, there is experiment through some actual images, and to discuss the

effectiveness of our technique. Within Section 5, it would brief discuss about the

affections of image process. Lastly, a brief conclusion would be found in Section 6.

2. Preposition

The most instinctive feature gathering of a color image’s information is to analysis

the composition of the color. In [8] [9], there is a simple way, which is to get the

average of each pixel’s RGB, and use the average to proceed searching and

comparison, and get the result of sorting similar images. In order to measure the level

of similarity of two images, similarity metric [1][10] would normally need to be

defined. For simplicity purposes, we would define similarity metric by Euclidian

Distance, as shown in the following.

Distance function:

2
21

2
21

2
21)()()(),(BBGGRRPQD t −+−+−= (1)

Where Q and Pt are two images with RGB values as (R1, G1, B1) and (R2, G2, B2)

respectively. Through this definition, the similarity between two images can be

calculated.

Fig. 1 is the conceptual illustration of image similarity retrieval process, when the

color images are going to be categorized, we would partition the image would be

partitioned into pieces at first, and then determine each image’s feature, and save into

image index database. When enquiring for images, the query image Q would be

 4

partitioned, and gathered features, then sorting features of images in the image index

database according to similarity metric. After such sorting, those features

representative the query image most would appear in the front.

Figure 1 Concept of similar image retrieval

Although it is a fast and instinctive way of similarity search by using the average

values of RGB but sometimes may go wrong. The main reason is that the average of

the color would deteriorate the difference of the content of the images, as shown in

the Fig. 2. Image A and B are totally different images. Yet the result of RGB average

value clearly shows that they are identical. In other words, this technique could find

two totally “different” images. To solve this problem, the images should be partitioned

into smaller pieces. The averaging RGB value of the divided images after partitioning

image A and B, it is apparent that the value of the each sub- image of A and B is vastly

different. Therefore, by basing on the RGB average value of the sub- images, A and B

are two different images.

Figure 2 before partition image average RGB value

Partition Pt
to n*m

sub-images

For each
sub-image
compute

 average RGB

Find out
major

sub-images

Partition Q
to n*m

sub-images

Image
index

database

Similarity
sorting

Pt

Q
For each
sub-image
compute

average RGB

Find out
major

sub-images
•Pt: the archive image
•Q: query image
•n*m: number of the sub-images

R:255
G:128
B:128

R:255
G:128
B:128

A B RGB value of A RGB value of B

 5

3. Our Te chnique

Considering P1,P2,… ,Pk (k is the total number of images in the image index

database) represent all the images in a database, and each of image Pt(t=1,2,… ,k)’s

partitioned sub- image
it

P would have one majority value)(
it

PM , whereas majority

function is defined as follow:

∑
=

=
mn

j
ttt jii

PPDPM
*

1

),()((2)

Where i denote the i-th sub- image of image Pt. Within),(
ji tt PPD is distance

between two sub- images
it

P and
jtP . Each image has its own sub- images’ similarity

sequence),...,,(*21 mnP iiiS
t

= , meaning to use sub-image numbering sequence of Pt

presented as
tPS and such that)(...)()(

)*(21 mniii ttt PMPMPM ≤≤≤ .

The key concept is illustrated, as Fig. 3, and Block A resembles the action of

classification of images. First, to prepare for partition of the input image Pt, and to

calculate the RGB average values of every sub-image of Pt, and then using the value

)(
it

PM to the sub- images’ similarity sequence of
1it

P in order to find the sub- image

)*(mnit
P which has the greatest majority value, the sub- image

1it
P which has the least

majority value and the sub- image
)(midit

P which has the nearest average majority

value (mid means the closest to
)*(mnit

P and
1it

P ’s RGB average value’s sub- image),

and save RGB average value into image index database individually. Block B

illustrates when a query image Q enters, Q will be partitioned like others, calculated

each of Q’s sub-images RGB average value, and the sequence Q’s sub- images by

order of majority function value to get SQ, and then computing the similarity metric

 6

between every images in database, represented by the sub- images
)*(mnit

P ,
1it

P ,
)(midit

P

and Q, represented by the sub- images)*(mniQ , 1iQ ,)(midiQ , i.e.),(
)*()*(mnitmni PQD ,

),(
11 iti PQD ,),(

)()(miditmidi PQD , and taking the increasing order of images P1, P2,..., Pk

with respect to those three distances, the frontier the more similar to Q.

Figure 3 Illustration for similar image retrieval

3.1 Image archive phase

Algorithm A (for image archive phase):

Input: Pt (Pt is the archive image)

Function: R(image) is the calculated Red average value in the image

Function: G(image) is the calculated Green average value in the image

Function: B(image) is the calculated Blue average value in the image

Output: save the Pt’s sub-images feature into image index database

Step 1: partitioning Pt to n*m sub-images

Step 2: For each sub-image compute RGB average value

Step 3: Compute majority value from each of sub-image
it

P by Equation (2)

Step 4: Sorting)(
it

PM by in increasing order to get Pt’s sub-images and obtain the

sequence),...,(*21 mnP iiiS
t

=

Partition
Pt to n*m

sub-
images

For each
sub-image
compute
average

RGB value

Using
majority

value to sort
sub-images’

order

Find out
Pti(n*m),

Pti1,
Pti(mid)

Partition
Q to n*m

sub-
images

Find out
Qi(n*m),

Qi1,
Qi(mid)

Image
index

database

Compute
D(Qi(n*m), Pti(n*m))

D(Qi1, Pti1)

D(Qi(mid), Pti(mid))

Using
 D(Qi(n*m), Pti(n*m))

D(Qi1, Pti1)

D(Qi(mid), Pti(mid)) to sort
images in database

Block_A (Image archive phase)

Block_B (Image similarity retrieval)

For each
sub-image
compute
average

RGB value

Using
majority

value to sort
sub-images’

order

 7

Step 5: Find out the RGB average values of
)*(mnit

P ,
1it

P ,
)(midit

P

Step 6: Store the Pt’s features to image index database

Example 3.1 illustrates clearly the process of Algorithm A.

Example 3.1 Image archive to image index database

Let image P1 (Fig. 4 (a)) and partitioned by 5*5 (as show in Fig. 4 (b)), calculating

every sub- image’s RGB average value as in Table 1. Table 2 is the calculated distance

between each sub-image (i.e.),(
ji tt PPD).

 (a) (b)

Figure 4 Example for image partition

Table 1 Average RGB value for P1 partitioned (Figure 4 (b))

 sub-images Average RGB value sub-images Average RGB value

1 (241,188,212) 14 (226,167,187)
2 (243,190,213) 15 (231,178,202)

3 (244,191,216) 16 (251,198,222)

4 (240,188,212) 17 (250,197,221)
5 (230,177,202) 18 (242,185,211)

6 (249,195,219) 19 (235,180,205)

7 (247,192,216) 20 (230,176,201)
8 (231,166,185) 21 (246,194,220)

9 (241,187,209) 22 (244,192,217)

10 (232,178,201) 23 (236,183,209)
11 (251,198,221) 24 (231,177,203)

12 (218,168,189) 25 (227,174,200)

13 (169,75,79)

Lastly, sorting)(iPM by increase order, and get sub-images sequence
1PS as

{i1=9, 1, 23, 4,18, 19, 2, 15, 24, 10, 3, 5, 22, 20, 7, 21, 25, 6, 17, 11, 16, 14, i(mid)= 8,

Partition

1 2 3 4 5
6 7 8 9 10

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15

 8

12, i25=13}, and use
1PS to find out the index of image P1’s sub- image with the

greatest majority value (i.e.
251i

P =13) and find such sub- image’s RGB value as

(169,75,79); the index of sub- image with the least majority value (i.e.
11i

P =9) and get

the sub- image’s RGB value as (241,18,209); the index of sub- image with the nearest

average majority value (i.e.
)(1 midi

P =8) and find out the sub- image’s RGB value as

(231,166,185).

Table 2 Distance between each sub-image),(
ji tt PPD of image P1

 sub-image

sub-image

… 8 9 … 12 13 14 … 23 24 25

1 … 36 3 … 38 189 36 … 8 17 23
2 … 39 5 … 41 191 39 … 11 20 26

3 … 42 9 … 44 195 42 … 13 23 29

: : : : … : : : … : : :
12 … 52 19 … 0 152 8 … 31 21 15

13 … 14 36 … 152 0 153 … 182 172 167

14 … 153 186 … 8 153 0 … 29 20 15
: : : : … : : : … : : :

23 … 43 10 … 31 182 29 … 0 10 16

24 … 30 6 … 21 172 20 … 10 0 6
25 … 21 15 … 15 167 15 … 16 6 0

)(iPM ,

i=1,2,… ,25
… 904 536 … 937 4383 885 … 539 581 662

3.2 Image similarity retrieval phase

When a user given a query image Q. Through actions like image partitioned, and

sub- image sorting, and find the relegated information which will be calculated, and

single out every image in the image index database and find query image Q’s

distance

 9

),(
)*()*(mnitmni PQD ,),(

11 iti PQD ,),(
)()(miditmidi PQD , with the aid of threshold r to make

sequence correction.

When a representative sub- image of each image is selected, such as
)*(mnit

P , as an

attribute to proceed image ordered sequence, meanwhile the threshold r such that if

),(
)*()*(mnitmni PQD < r then the difference between Pt and Q may not be distinguished

properly. In other words, as to each image Pt of),(
)*()*(mnitmni PQD <r, we think to sort

sequence by using the greatest majority value, cannot determine the similarity with Q.

Therefore, those images would alternatively select other representative sub- image, i.e.

1it
P , to adjust the order of the images by),(

11 iti PQD . Like wisely, to obtain the final

result of sequencing by using sub- images’),(
)()(miditmidi PQD of

)(midit
P . The reason

why use the sub- image with the greatest majority value is because it is the most

representative single object of the images; and the sub- image with the least majority

value is because it is the most related to the background. And, to use the sub-image

with the nearest average majority value is because it locates in between background

and the object itself. The process is illustrated as Fig. 5.

Images),(
)*()*(mnitmni PQD

Images),(
11 iti PQD Images),(

)()(miditmidi PQD

P01 10 P02 25 P03 30
P02 11 P03 49 P02 49

P03 25 P01 55

P04 48 P04 64
P05 100

P06 150

: :

Figure 5 Using threshold r to adjust similarity order

Phase 1.
Using D(Qi(n*m),Pti(n*m)) to

sort images

D(Qi(n*m),Pti(n*m))<r

let r=50
Phase 2.
For all images in {P1,P2,… ,Pn}
with D(Qi(n*m),Pti(n*m))<r to
resort with value D(Qi1,Pti1)

Phase 3.
For all images in {P1,P2,… ,Pn}
with D(Qi1,Pti1)<r to resort
with value D(Qi(mid),Pti(mid))

D(Qi1,Pti1)<r

let r=50

 10

As shown in Fig. 5, the sorting process has three phases. Phase 2 sequencing is

conducted by using those images with),(
)*()*(mnitmni PQD smaller than threshold r=50

found from Phase 1 sequencing. Similarly, the sequence in Phase 3 is obtained by

using the images with),(
11 iti PQD smaller than threshold r=50. After the three

phases of sequencing, we can find more accurate and precise similarity sequence. The

whole process is illustrated as follows.

Algorithm B (for image similarity retrieval phase):

Input: Q (Q as query image from user’s enquiry)

Output: Shows the images order after sequencing

Step 1: Performing Algorithm A for Q

Step 2: Calculate individually the following related distances of each sub-images,

),(
)*()*(mnitmni PQD ,),(

11 iti PQD ,),(
)()(miditmidi PQD

Step 3: Image Sequencing

Step 3.1: Sort {P1,P2,… ,Pk} in accordance with value),(
)*()*(mnitmni PQD of each

Pt by increasing order, {t=1,2,...,k}.

Step 3.2: For all images in {P1,P2,… ,Pk} with),(
)*()*(mnitmni PQD <r resort with

value),(
11 iti PQD by increasing order.

Step 3.3: For all images in {P1,P2,… ,Pk} with),(
11 iti PQD <r resort with value

),(
)()(miditmidi PQD by increasing order.

Step 4: Output similar images after sequencing.

Example 3.2 illustrates clearly the process of Algorithm B.

 11

Example 3.2 A simple image index database to explain Algorithm A and B

Let there be 10 pieces of images in the database.

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10

Figure 6 Random similarity images

According to Algorithm A, we found RGB average value of
25it

P ,
1it

P ,
13it

P as shown

in the following table.

Table 3:RGB average value of every sub-image

RGB sub-images
 value

sub-images

25it
P

(the sub-image with
the greatest majority

value)

1it
P

(the sub-image with
the least majority

value)

)(midit
P

(the sub-image with
the nearest average

majority value)
P01 (150,63,71) (241,138,94) (216,127,96)
P02 (120,169,133) (195,78,63) (156,90,77)
P03 (136,62,77) (80,115,197) (100,111,180)
P04 (35,32,31) (211,178,77) (144,128,64)
P05 (157,99,77) (249,147,98) (200,103,82)
P06 (183,154,160) (183,154,160) (190,81,61)
P07 (166,174,179) (186,79,65) (185,84,70)
P08 (145,79,85) (230,174,201) (203,152,174)
P09 (184,177,189) (197,81,62) (183,85,69)
P10 (141,57,70) (93,132,228) (90,128,238)

Set query image as Q (Fig. 4 (a)), within which 25iQ ’s RGB average value as

(169,75,79), 1iQ ’s RGB average value as (241,187,209), and)(midiQ ’s RGB average

value as (231,166,185). The calculated distance, and sequenced (if r = 50) as shown in

Fig. 7.

 12

Images),(
)*()*(mnitmni PQD Images),(

11 iti PQD Images),(
)()(miditmidi PQD

P05 13 P08 19 P08 56
P01 24 P05 118

P08 25 P01 125

P10 34 P10 159
P03 36 P03 177

P06 114

P02 119
P07 141

P04 149

P09 151

Figure 7 The three phases of sorting process of Example 3.2

Fig. 7 illustrates the usage of threshold r to proceeds sequencing correction’s action

and the variance. The sequenced result as followings:

P08 P05 P01 P10 P03 P06 P02 P07 P04 P09

Fig. 8: Order of the sequenced images

After the above mentioned processed, we could smoothly sequence images in the

image index database, and output the result of similarity sequence.

4. Experimentation and result

In order to testify the conductibility of the proposed similarity sequencing

technique, 36 color images with monotone background were used as experiment

samples. Scanned and saved as 800*600 JPG files, the images were divided in five

categories: Ping-Pong rackets, facial cleansers, cellular phones, notebooks, and mugs.

Querying after the feature extraction that were saved into image index database. We

D(Qi(n*m),Pti(n*m))<r
 r=50

D(Qi1,Pti1)<r
r=50

Phase 2.
For all images in {P1,P2,… ,Pk}
with D(Qi(n*m),Pti(n*m))<r resort
with value D(Qi1,Pti1) by
increasing order.

Phase 3.
For all images in {P1,P2,… ,Pk}
with D(Qi1,Pti1)<r resort with
D(Qi(mid),Pti(mid)) by increasing

Phase 1.
Using D(Qi(n*m),Pti(n*m))
sorting by increase order.

 13

would measure the effectiveness of our experiment by identify rate and classification

capability, while the Identification rate is defined as:

Whereas Classification capability is defined as:

The technique’s conductibility is testified by those two measurements. The result as

follow:

 Q1 Q2 Q3 Q4 Q5

Figure 9 Query images in the experiment

As shown from the lines in Fig. 10, when the partition as 5*5, and r=50, better

result would be conducted. Whereas, average speaking, partitioned as 5*5, the

Identification rate would reach 0.86, better than 3*3’s 0.65, 4*4’s 0.45, and 6*6’s 0.76,

respectively.

Figure 10. Identification rate hologram (a cross axle is queries; a vertical axle is
Identify Rate)

Identification rate = Actual number of pieces at the front
The number of pieces that should be at the

Classification capability =
The number that belongs to such category

First piece image to the last of classified images

0.2
0.4
0.6
0.8
1.0

Q1 Q2 Q3 Q4 Q5
(a) r=30 (b) r=50

(c) r=60 (d) r=70

0.2
0.4
0.6
0.8
1.0

Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

 14

Figure 11. Classification capability hologram
(A cross axle is queries; a vertical axle is Classification capability)

The graph in Fig. 11 shows that, regardless of threshold r, partitioned at 5*5, the

effect of Classification capability would be better than 3*3, 4*4, and 6*6. Average

speaking, partitioned at 5*5, the Classification capability could reach as high as 0.69,

much better then partition of 3*3’s 0.4, 4*4’s 0.39, and 6*6’s 0.61.

5. Discussions

Object rotation, shift and scaling are used to happen in image processing. In this

section, some discussion about the impacts of our proposed method are made when

object rotation, shift or scaling is considered.

Fig. 12 and 13 are examples of image rotation and shift as shown from (a) to (b). It

is only that rotation shall make no difference in finding the major sub- images. But for

the shift case, if image partition just put the object almost at one sub- image then

affection is weaken. Other wisely, if object is put on many sub-images then the

proposed method will be unable to find out the same major sub-images.

(a) r=30 (b) r=50

(c) r=60 (d) r=70

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

0.2
0.4
0.6
0.8
1.0

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

 15

 (a) (b)
Figure 12. The example for image rotation 90o

 (a) (b)
Figure 13. The example for image object translation

For the image scaling case, the scaled object on image must be put on many

sub- images as the example show in fig. 14. Our method may fail to handle the

object-scaling problem of an image. But if it is a scaling of whale image in spite of

only the object in side it then the proposed method is still work on this case.

 (a) (b)
Figure 14. The example for image object translation

6. Conclusion

The usual color feature techniques lack of spatial resemblances. Thus, we refine

this problem by image partition, and make color feature extraction much sensible. In

order to find the identifiable feature metric, a designed majority function is defined to

find the major sub- image, through this concept to distinct the similarity between

images. Also, this technique makes classification of these images to be possibly by

considering only the color attribute.

Moreover, threshold is used in coordination, in order to have a better and more

precise sequence. The experiment shows, when an image is partitioned at 5*5 and the

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Rotation 90o

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Object translated

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Object scaled

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 16

threshold r=50, the Identify rate could reach 0.86. And when partitioned at 3*3, 4*4,

6*6, the rate results at 0.65, 0.45, and 0.76 respectively. It, therefore, asserts that the

Identify rate can be comprised when the partitioned quantities are either too big, or

too small. As to Classification capability, it also shows that partition at 5*5 would

result an average va lue of 0.69, better than partition at 3*3, 4*4, and 6*6’s 0.4, 0.39,

and 0.61 respectively. Nevertheless, due to some values appeared to be far to out of

range, the average value of Classification capability was declining considerably. Yet,

if exclude those fringe values in the calculation of the capability value, partition at

5*5 could reach 0.76 plus at Classification capability.

Reference:

[1] Tolga Bozkaya and Meral Ozsoyoglu, Indexing Large Metric Spaces for
Similarity Search Queries, ACM Transactions on Database Systems, 24(3), 1999,
pp. 361-404

[2] Surajit Chaudhuri and Luis Gravano, Optimizing Queries over Multimedia
Repositories, In 16th ACM Symposium on Principles of Database Systems, 1997,
pp. 91-102

[3] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, R. Fagin, M. Flickner, A.
Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. Williams and E. Wimmers ,
Towards heterogeneous multimedia information systems: The GARLIC approach.
In 5th Intern. Ws. On Research Issues in Data Engineering: Distr. Object
Management, 1995, pp. 124-131

[4] G. Costagliola, F. Ferrucci, G. Tortora and M. Tucci, Correspondences
Non-redundant 2D strings, IEEE Trans. Knowledge Data Engrg. 7(2), 1995, pp.
345-350

[5] Ulrich Guntzer, Wolf-Tilo Balke and Werner KieBling, Optimizing
Multi-Feature Queries for Image Databases, Proceedings of the 26th VLDB
Conference, Cairo, Egypt, 2000, pp.419-428

[6] D.J. Guan, Chun-Yen Chou and Chiou-Wei Chen, Computational complexity
of similarity retrieval in a pictorial database, Information Processing Letters, 75,
2000 pp.113-117

[7] Ju-Hong Lee, Deok-Hwan Kim, Seok-Lyong Lee, Chin-Wan Chung and
Guang-Ho Cha, Distributed similarity search algorithm in distributed

 17

heterogeneous multimedia databases, Information Processing Letters, 75, 2000 pp.
35-42

[8] Chih-Chin Liu, Alien J.L. Hsu and Arbee L.P. Chen, Efficient Near Neighbor
Searching Using Multi-Indexes for Content-Based Multimedia Data Retrieval,
Multimedia Tools and Applications, 13(3), 2001, pp. 235-254

[9] Babu M. Mehtre, Mohan S. Kankanhalli, A. Desai Narasimhalu and Guo
Chang Man, Color Matching for image retrieval, Pattern Recognition Letters, 16,
1995, pp. 325-331

[10] M. Ortega, K. Chakrababarti, K. Porkaew and S. Mehrotra, Supporting
Ranked Boolean Similarity Queries in MARS, IEEE Trans. Knowledge Data
Engrg., 10(6), 1998, pp. 926-946

[11] T. Seidl and H. Kriegel, Optimal Multi-Step k-Nearest Neighbor Search, in:
Proc. ACM SIGMOD Internet. Conf. On Management of Data, 1998, pp. 154-165

[12] M. Tucci, G. Costagliola and S. K. Chang, A remark on NP-completeness of
picture matching, Information Processing Letters, 39, 1991, pp. 241-243.

[13] V. V. Vinod and Hiroshi Murase, Focused Color Intersection with Efficient
Searching for Object Extraction, pattern Recognition, 30(10), 1997, pp.
1787-1797

