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Abstract: In this paper, a simple  but efficient  similarity sorting technique is proposed 

by which specifically to classify color images with monotonous background into 

several similar groups. There is only the color attribute to be considered during 

similarity retrieval. In order to solved the representing inadequacy of the color 

attribute to spatial characteristic. The key idea is to partition the images and to find 

major sub- image from each image by a designated majority function, and finally, 

using major sub- image as a key with threshold  to proceeded image similarity retrieval 

or classification. 
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1. Introduction 

In recent years, due to the wide spread usage of the internet, there has been an 

increasing need for dada transformations via the net, instead of the data in mere text 

only of the early days, but has now gradually to include those multimedia data, e.g. 

video, voice, animation and etc [7][11]. Additionally, the development of the 

E-commerce has made digital product catalogs such as images with those apparent 

topical subjects in monotonous background on the Web. The techniques of images 
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retrieval are used to sort images by features such as the meta-data of the image (such 

as location, author, time ...et al.), color, shape, texture and so on. [2][3][4][5][6][12]. 

Owing to diversified natures of the user requirement, if sorting images by merely 

its meta-data, the user requirements may not be fulfilled fully. Besides, by using 

image’s meta-data would take up more storage spaces by the necessary features. 

Conversely, if the features were not taken enough, it could fall into the dilemma of not 

representing the images adequately. Therefore, it would become important to find a 

way to retrieve features from the image itself. 

Color is not only a straightforward feature but also a natural one. However, in the 

early days of limited computer capability, this feature was not taken seriously as the 

retrieval of color informations would require a vast amount of costly calculation 

power. Nevertheless, the vast progress of information technology, the retrieval of 

color features has become more common than before. Color attribute can be 

represented by color distribution in an image [13]. This is done so by abstracting and 

summing up an image’s pixel values of the three primaries color Red, Green and Blue 

(RGB), and to find the average, which can be used as a reference for image similarity 

retrieval.  Although this technique could find similar images, it would, at the same 

time, get some images that were different at all. The cause is, when averaging the 

RGB, the features of color distribution would be weakened, and thus picking some 

images with same average in RGB values but totally different RGB distributions on 

images. To counter this problem a new classification technique is proposed upon color 

features. This technique can improve the representative inadequacy of color feature to 

spatial characteristic, and thus to enhance the accuracy of image similarity retrieval. 

What is more, the technique sorts and reaches the effect of images classification by 

finding major sub-images through majority function. 

In the beginning of Section 2, some initial works would be introduced, including 



 

 3

the usage of RGB, image partition, and definition of similarity metric. After that, in 

Section 3, it would be partition technique for image data, using majority function to 

find out major sub-images, and with the aid of thresho ld to proceed with sorting. 

Within Section 4, there is experiment through some actual images, and to discuss the 

effectiveness of our technique. Within Section 5, it would brief discuss about the 

affections of image process. Lastly, a brief conclusion would be found in Section 6. 

 

2. Preposition 

The most instinctive feature gathering of a color image’s information is to analysis 

the composition of the color. In [8] [9], there is a simple way, which is to get the 

average of each pixel’s RGB, and use the average to proceed searching and 

comparison, and get the result of sorting similar images. In order to measure the level 

of similarity of two images, similarity metric [1][10] would normally need to be 

defined. For simplicity purposes, we would define similarity metric by Euclidian 

Distance, as shown in the following.  

Distance function: 

2
21

2
21

2
21 )()()(),( BBGGRRPQD t −+−+−=                               (1) 

Where Q and Pt are two images with RGB values as (R1,  G1, B1) and (R2,  G2, B2) 

respectively. Through this definition, the similarity between two images can be 

calculated. 

Fig. 1 is the conceptual illustration of image similarity retrieval process, when the 

color images are going to be categorized, we would partition the image would be 

partitioned into pieces at first, and then determine each image’s feature, and save into 

image index database. When enquiring for images, the query image Q would be 
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partitioned, and gathered features, then sorting features of images in the image index 

database according to similarity metric. After such sorting, those features 

representative the query image most would appear in the front. 

 
 
 
 
 
 
 
 
 
 

Figure 1 Concept of similar image retrieval 

Although it is a fast and instinctive way of similarity search by using the average 

values of RGB but sometimes may go wrong. The main reason is that the average of 

the color would deteriorate the difference of the content of the images, as shown in 

the Fig. 2. Image A and B are totally different images. Yet the result of RGB average 

value clearly shows that they are identical. In other words, this technique could find 

two totally “different” images. To solve this problem, the images should be partitioned 

into smaller pieces. The averaging RGB value of the divided images after partitioning 

image A and B, it is apparent that the value of the each sub- image of A and B is vastly 

different. Therefore, by basing on the RGB average value of the sub- images, A and B 

are two different images. 

 
 
 
 
 

Figure 2 before partition image average RGB value 
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3. Our Te chnique 

Considering P1,P2,… ,Pk (k is the total number of images in the image index 

database) represent all the images in a database, and each of image Pt(t=1,2,… ,k)’s 

partitioned sub- image 
it

P would have one majority value )(
it

PM , whereas majority 

function is defined as follow: 

∑
=

=
mn

j
ttt jii

PPDPM
*

1

),()(                                             (2) 

Where i denote the i-th sub- image of image Pt. Within ),(
ji tt PPD  is distance 

between two sub- images 
it

P and 
jtP . Each image has its own sub- images’ similarity 

sequence ),...,,( *21 mnP iiiS
t

= , meaning to use sub-image numbering sequence of Pt 

presented as 
tPS  and such that )(...)()(

)*(21 mniii ttt PMPMPM ≤≤≤ . 

The key concept is illustrated, as Fig. 3, and Block A resembles the action of 

classification of images. First, to prepare for partition of the input image Pt, and to 

calculate the RGB average values of every sub-image of Pt, and then using the value 

)(
it

PM  to the sub- images’ similarity sequence of 
1it

P  in order to find the sub- image 

)*( mnit
P  which has the greatest majority value, the sub- image 

1it
P  which has the least 

majority value and the sub- image 
)(midit

P  which has the nearest average majority 

value (mid means the closest to 
)*( mnit

P  and 
1it

P ’s RGB average value’s sub- image), 

and save RGB average value into image index database individually. Block B 

illustrates when a query image Q enters, Q will be partitioned like others, calculated 

each of Q’s sub-images RGB average value, and the sequence Q’s sub- images by 

order of majority function value to get SQ, and then computing the similarity metric 
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between every images in database, represented by the sub- images 
)*( mnit

P , 
1it

P , 
)(midit

P  

and Q, represented by the sub- images )*( mniQ , 1iQ , )(midiQ , i.e. ),(
)*()*( mnitmni PQD , 

),(
11 iti PQD , ),(

)()( miditmidi PQD , and taking the increasing order of images P1, P2,..., Pk 

with respect to those three distances, the frontier the more similar to Q. 

 
 
 
 
 
 
 
 
 
 

Figure 3 Illustration for similar image retrieval 
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Step 5: Find out the RGB average values of 
)*( mnit

P , 
1it

P , 
)(midit

P  

Step 6: Store the Pt’s features to image index database 

Example 3.1 illustrates clearly the process of Algorithm A. 

Example 3.1 Image archive to image index database 

Let image P1 (Fig. 4 (a)) and partitioned by 5*5 (as show in Fig. 4 (b)), calculating 

every sub- image’s RGB average value as in Table 1. Table 2 is the calculated distance 

between each sub-image (i.e. ),(
ji tt PPD ). 

 

 

   (a)           (b) 

Figure 4 Example for image partition 
 
Table 1 Average RGB value for P1 partitioned (Figure 4 (b)) 

   sub-images   Average RGB value   sub-images Average RGB value 

1 (241,188,212)  14 (226,167,187) 
2 (243,190,213)  15 (231,178,202) 

3 (244,191,216)  16 (251,198,222) 

4 (240,188,212)  17 (250,197,221) 
5 (230,177,202)  18 (242,185,211) 

6 (249,195,219)  19 (235,180,205) 

7 (247,192,216)  20 (230,176,201) 
8 (231,166,185)  21 (246,194,220) 

9 (241,187,209)  22 (244,192,217) 

10 (232,178,201)  23 (236,183,209) 
11 (251,198,221)  24 (231,177,203) 

12 (218,168,189)  25 (227,174,200) 

13 (169,75,79)    

Lastly, sorting )( iPM  by increase order, and get sub-images sequence 
1PS  as 

{i1=9, 1, 23, 4,18, 19, 2, 15, 24, 10, 3, 5, 22, 20, 7, 21, 25, 6, 17, 11, 16, 14, i(mid)= 8, 

Partition 

1 2 3 4 5
6 7 8 9 10

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
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12, i25=13}, and use 
1PS  to find out the index of image P1’s sub- image with the 

greatest majority value (i.e. 
251i

P =13) and find such sub- image’s RGB value as 

(169,75,79); the index of sub- image with the least majority value (i.e. 
11i

P =9) and get 

the sub- image’s RGB value as (241,18,209); the index of sub- image with the nearest 

average majority value (i.e. 
)(1 midi

P =8) and find out the sub- image’s RGB value as 

(231,166,185). 

Table 2 Distance between each sub-image ),(
ji tt PPD  of image P1 

  sub-image 
 

        
sub-image 

…  8 9 …  12 13 14 …  23 24 25 

1 …  36 3 …  38 189 36 …  8 17 23 
2 …  39 5 …  41 191 39 …  11 20 26 

3 …  42 9 …  44 195 42 …  13 23 29 

: : : : …  : : : …  : : : 
12 …  52 19 …  0 152 8 …  31 21 15 

13 …  14 36 …  152 0 153 …  182 172 167 

14 …  153 186 …  8 153 0 …  29 20 15 
: : : : …  : : : …  : : : 

23 …  43 10 …  31 182 29 …  0 10 16 

24 …  30 6 …  21 172 20 …  10 0 6 
25 …  21 15 …  15 167 15 …  16 6 0 

)( iPM , 

i=1,2,… ,25 
…  904 536 …  937 4383 885 …  539 581 662 

 

3.2 Image similarity retrieval phase 

When a user given a query image Q. Through actions like image partitioned, and 

sub- image sorting, and find the relegated information which will be calculated, and 

single out every image in the image index database and find query image Q’s 

distance 
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),(
)*()*( mnitmni PQD , ),(

11 iti PQD , ),(
)()( miditmidi PQD , with the aid of threshold r to make 

sequence correction. 

When a representative sub- image of each image is selected, such as 
)*( mnit

P , as an 

attribute to proceed image ordered sequence, meanwhile the threshold r such that if 

),(
)*()*( mnitmni PQD < r then the difference between Pt and Q may not be distinguished 

properly. In other words, as to each image Pt of ),(
)*()*( mnitmni PQD <r, we think to sort 

sequence by using the greatest majority value, cannot determine the similarity with Q. 

Therefore, those images would alternatively select other representative sub- image, i.e. 

1it
P , to adjust the order of the images by ),(

11 iti PQD . Like wisely, to obtain the final 

result of sequencing by using sub- images’ ),(
)()( miditmidi PQD  of 

)(midit
P . The reason 

why use the sub- image with the greatest majority value is because it is the most 

representative single object of the images; and the sub- image with the least majority 

value is because it is the most related to the background. And, to use the sub-image 

with the nearest average majority value is because it locates in between background 

and the object itself. The process is illustrated as Fig. 5.  

Images ),(
)*()*( mnitmni PQD   

Images ),(
11 iti PQD   Images ),(

)()( miditmidi PQD  

P01 10  P02 25  P03 30 
P02 11  P03 49  P02 49 

P03 25  P01 55    

P04 48  P04 64    
P05 100       

P06 150       

: :       

 

 
Figure 5 Using threshold r to adjust similarity order 

Phase 1.  
Using D(Qi(n*m),Pti(n*m)) to 

sort images 

D(Qi(n*m),Pti(n*m))<r

let r=50 
Phase 2.  
For all images in {P1,P2,… ,Pn}  
with D(Qi(n*m),Pti(n*m))<r to  
resort with value D(Qi1,Pti1) 

Phase 3. 
For all images in {P1,P2,… ,Pn}  
with D(Qi1,Pti1)<r to resort  
with value D(Qi(mid),Pti(mid)) 

D(Qi1,Pti1)<r 

let r=50 
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As shown in Fig. 5, the sorting process has three phases. Phase 2 sequencing is 

conducted by using those images with ),(
)*()*( mnitmni PQD  smaller than threshold r=50 

found from Phase 1 sequencing. Similarly, the sequence in Phase 3 is obtained by 

using the images with ),(
11 iti PQD  smaller than threshold r=50. After the three 

phases of sequencing, we can find more accurate and precise similarity sequence. The 

whole process is illustrated as follows. 

 

Algorithm B (for image similarity retrieval phase): 

Input: Q (Q as query image from user’s enquiry) 

Output: Shows the images order after sequencing 

Step 1: Performing Algorithm A for Q 

Step 2: Calculate individually the following related distances of each sub-images, 

),(
)*()*( mnitmni PQD , ),(

11 iti PQD , ),(
)()( miditmidi PQD  

Step 3: Image Sequencing 

Step 3.1: Sort {P1,P2,… ,Pk} in accordance with value ),(
)*()*( mnitmni PQD of each 

Pt by increasing order, {t=1,2,...,k}. 

Step 3.2: For all images in {P1,P2,… ,Pk} with ),(
)*()*( mnitmni PQD <r resort with 

value ),(
11 iti PQD  by increasing order. 

Step 3.3: For all images in {P1,P2,… ,Pk} with ),(
11 iti PQD <r resort with value 

),(
)()( miditmidi PQD  by increasing order. 

Step 4: Output similar images after sequencing. 

Example 3.2 illustrates clearly the process of Algorithm B. 
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Example 3.2 A simple image index database to explain Algorithm A and B 

Let there be 10 pieces of images in the database. 

 
 
 
P01    P02    P03    P04     P05    P06    P07    P08    P09     P10 

Figure 6 Random similarity images 

According to Algorithm A, we found RGB average value of 
25it

P , 
1it

P , 
13it

P  as shown 

in the following table. 

 

Table 3:RGB average value of every sub-image 

RGB  sub-images 
   value 
           
sub-images 

25it
P   

(the sub-image with 
the greatest majority 

value) 

1it
P  

(the sub-image with 
the least majority 

value) 

)(midit
P  

(the sub-image with 
the nearest average 

majority value) 
P01 (150,63,71) (241,138,94) (216,127,96) 
P02 (120,169,133) (195,78,63) (156,90,77) 
P03 (136,62,77) (80,115,197) (100,111,180) 
P04 (35,32,31) (211,178,77) (144,128,64) 
P05 (157,99,77) (249,147,98) (200,103,82) 
P06 (183,154,160) (183,154,160) (190,81,61) 
P07 (166,174,179) (186,79,65) (185,84,70) 
P08 (145,79,85) (230,174,201) (203,152,174) 
P09 (184,177,189) (197,81,62) (183,85,69) 
P10 (141,57,70) (93,132,228) (90,128,238) 

Set query image as Q (Fig. 4 (a)), within which 25iQ ’s RGB average value as 

(169,75,79), 1iQ ’s RGB average value as (241,187,209), and )(midiQ ’s RGB average 

value as (231,166,185). The calculated distance, and sequenced (if r = 50) as shown in 

Fig. 7. 
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Images ),(
)*()*( mnitmni PQD   Images ),(

11 iti PQD   Images ),(
)()( miditmidi PQD  

P05 13  P08 19  P08 56 
P01 24  P05 118    

P08 25  P01 125    

P10 34  P10 159    
P03 36  P03 177    

P06 114       

P02 119       
P07 141       

P04 149       

P09 151       
 

 

 

Figure 7 The three phases of sorting process of Example 3.2 

Fig. 7 illustrates the usage of threshold r to proceeds sequencing correction’s  action 

and the variance. The sequenced result as followings: 

 
 
P08    P05    P01     P10    P03    P06    P02    P07    P04     P09 

Fig. 8: Order of the sequenced images 

After the above mentioned processed, we could smoothly sequence images in the 

image index database, and output the result of similarity sequence. 

 

4. Experimentation and result 

In order to testify the conductibility of the proposed similarity sequencing 

technique, 36 color images with monotone background were used as experiment 

samples. Scanned and saved as 800*600 JPG files, the images were divided in five 

categories: Ping-Pong rackets, facial cleansers, cellular phones, notebooks, and mugs. 

Querying after the feature extraction that were saved into image index database. We 

D(Qi(n*m),Pti(n*m))<r 
   r=50 

D(Qi1,Pti1)<r 
r=50 

Phase 2. 
For all images in {P1,P2,… ,Pk} 
with D(Qi(n*m),Pti(n*m))<r resort  
with value D(Qi1,Pti1) by  
increasing order.  

Phase 3. 
For all images in {P1,P2,… ,Pk}  
with D(Qi1,Pti1)<r resort with  
D(Qi(mid),Pti(mid)) by increasing 

Phase 1. 
Using D(Qi(n*m),Pti(n*m))  
sorting by increase order. 
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would measure the effectiveness of our experiment by identify rate and classification 

capability, while the Identification rate is defined as: 

 

Whereas Classification capability is defined as: 

 

The technique’s conductibility is testified by those two measurements. The result as    

follow: 

 

 
      Q1     Q2      Q3     Q4      Q5 

Figure 9 Query images in the experiment 

As shown from the lines in Fig. 10, when the partition as 5*5, and r=50, better 

result would be conducted. Whereas, average speaking, partitioned as 5*5, the 

Identification rate would reach 0.86, better than 3*3’s 0.65, 4*4’s 0.45, and 6*6’s 0.76, 

respectively. 

 

 

 

 

 

 

 

Figure 10. Identification rate hologram (a cross axle is queries; a vertical axle is 
Identify Rate) 

Identification rate = Actual number of pieces at the front 
The number of pieces that should be at the 

Classification capability = 
The number that belongs to such category 

First piece image to the last of classified images 
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(c) r=60 (d) r=70 
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0.4 
0.6 
0.8 
1.0 

0.2 
0.4 
0.6 
0.8 
1.0 
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Figure 11. Classification capability hologram  
(A cross axle is queries; a vertical axle is Classification capability) 

The graph in Fig. 11 shows that, regardless of threshold r, partitioned at 5*5, the 

effect of Classification capability would be better than 3*3, 4*4, and 6*6. Average 

speaking, partitioned at 5*5, the Classification capability could reach as high as 0.69, 

much better then partition of 3*3’s 0.4, 4*4’s 0.39, and 6*6’s 0.61. 

 

5. Discussions  

Object rotation, shift and scaling are used to happen in image processing. In this 

section, some discussion about the impacts of our proposed method are made when 

object rotation, shift or scaling is considered. 

Fig. 12 and 13 are examples of image rotation and shift as shown from (a) to (b). It 

is only that rotation shall make no difference in finding the major sub- images. But for 

the shift case, if image partition just put the object almost at one sub- image then 

affection is weaken. Other wisely, if object is put on many sub-images then the 

proposed method will be unable to find out the same major sub-images. 

 

(a) r=30 (b) r=50 

(c) r=60 (d) r=70 

0.2 
0.4 
0.6 
0.8 
1.0 

0.2 
0.4 
0.6 
0.8 
1.0 

0.2 
0.4 
0.6 
0.8 
1.0 

0.2 
0.4 
0.6 
0.8 
1.0 

Q1  Q2  Q3  Q4  Q5 Q1  Q2  Q3  Q4  Q5 

Q1  Q2  Q3  Q4  Q5 Q1  Q2  Q3  Q4  Q5 
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     (a)            (b) 
Figure 12. The example for image rotation 90o 

 

 

 

     (a)           (b) 
Figure 13. The example for image object translation 

For the image scaling case, the scaled object on image must be put on many 

sub- images as the example show in fig. 14. Our method may fail to handle the 

object-scaling problem of an image. But if it is a scaling of whale image in spite of 

only the object in side it then the proposed method is still work on this case.  

 

 

     (a)           (b) 
Figure 14. The example for image object translation 

 

6. Conclusion 

The usual color feature techniques lack of spatial resemblances. Thus, we refine 

this problem by image partition, and make color feature extraction much sensible. In 

order to find the identifiable feature metric, a designed majority function is defined to 

find the major sub- image, through this concept to distinct the similarity between 

images. Also, this technique makes classification of these images to be possibly by 

considering only the color attribute. 

Moreover, threshold is used in coordination, in order to have a better and more 

precise sequence. The experiment shows, when an image is partitioned at 5*5 and the 
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threshold r=50, the Identify rate could reach 0.86. And when partitioned at 3*3, 4*4, 

6*6, the rate results at 0.65, 0.45, and 0.76 respectively. It, therefore, asserts that the 

Identify rate can be comprised when the partitioned quantities are either too big, or 

too small. As to Classification capability, it also shows that partition at 5*5 would 

result an average va lue of 0.69, better than partition at 3*3, 4*4, and 6*6’s 0.4, 0.39, 

and 0.61 respectively. Nevertheless, due to some values appeared to be far to out of 

range, the average value of Classification capability was declining considerably. Yet, 

if exclude those fringe values in the calculation of the capability value, partition at 

5*5 could reach 0.76 plus at Classification capability. 
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