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Abstract

In this paper we present a Web-based environment for visualization of large-scale VRML models. Visualizing

such large model consisting of thousands or millions of objects in it often causes significant latencies in transmitting

over the Web. Furthermore, such models are usually too large to be fitted into local memory of common desktops for

rendering. However, we realize that in most cases only very small portions of the model (instead of the whole one)

need to be retrieved or manipulated at a time. To achieve this, we utilize a scheme that integrates binary trees with

quad trees to describe the hierarchy of objects in the model in the preprocessing stage. By traversing the trees, we

are able to effectively determine the minimal set of required objects in the walkthrough stage at run-time. Therefore,

our system can yield lower latencies for transmission and less memory requirements for rendering with higher frame

rates.
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I. INTRODUCTION

A walkthrough system that allows for visualizing models such as buildings and airplanes is useful for

comprehension and evaluation before they are constructed. However, this kind of models usually contain

millions or billions of polygons and require gigabytes of data storage, which are far more than typical

machines can render at reasonable frame rates. Although hardware is getting increasingly powerful, we are

still lack of effective systems to enable interactive walkthrough of very large (or very complex) models. All

such systems require data preprocessing (e.g., spatial subdivision) before the actual walkthrough, and need

to explore optimal algorithms for improving run-time performance. In our approach, we construct several
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tree structures to describe object hierarchies in the models. Given a viewing information, we will be able to

quickly compute which objects are visible and required by simply traversing those trees. To minimize the

bandwidth requirements, only needed objects will be transmitted to clients over the network.

Several related researches have been presented. In [5], they addressed an effective and efficient method

of visibility precomputing. In the method, models are subdivided into rectangular cells and visibility

computations are performed for those cells. The visibility computations are aimed to find the set of cells

visible to an observer able to look in all directions from a position within the cell, and to find the set of

objects partially or completely visible to an observer with a specified viewing cone. In [1], they perform

visibility precomputations analogous to the ones in [5]. Once precomputation is done, all resulting data is

loaded into a display database. Then an efficient memory management algorithm which is performed during

the walkthrough phase takes responsibility for swapping objects in and out of the memory as the observer

moves through the model. Their methods work well for an indoor model like a building, however, are not

proper for an outdoor model like a terrain. Since in an outdoor model, not so many objects are actually

occluded by other objects from the observer’s viewing cone.

When expanding to Internet, it will introduce more challenges to be overcome. Nowadays Internet

is getting quite mature to support architectural walkthroughs, and more and more people can visualize

preconstructed models via Internet. An architect can even preview his or her creations without leaving

home. Web-based walkthrough system can also be expanded to other applications. For instance, multiple

users can join the same online flight simulation to fight together or with each other. In [3], they presented a

mechanism that allows to visualize remote VRML scenes through low-bandwidth connections. Their system

contains one application server who takes responsibility for all processes and another information server

who maintains VRML scenes. After a request for a VRML scene is sent to application server, application

server fetches the requested VRML files from information server through high-bandwidth connection, and

subsequently sends the hierarchies of objects in the requested VRML scene back to client. Users can select

the parts they are interested in, then send the results back to the application server. The application server
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will generate a new VRML file for the results. Users can now browser the VRML scene using their own

browsers.

The organization of the paper is as follows. We describe VRML briefly in Section II, and overview our

system architecture in Section III. In Section IV, model preprocessing will be discussed. In Section V, we will

focus on run-time environments at both server and client, respectively. Finally, in Section VI we conclude

the paper and describe possible future work.

II. VRML

A. The Basic

VRML (Virtual Reality Modeling Language) is designed to be platform-independent, extensible, and has

the ability to work on low-bandwidth connections. The VRML file format supports complete descriptions

of 3D scenes with geometry, lighting, materials, 3D user interface widgets, and viewers.

VRML is constructed based on Scene Graph. Hierarchy of a VRML scene is based on a tree structure.

For interactivity, VRML provides a set of sensors and detectors to enable user to interact with the virtual

worlds. When user enables one of them, an event is generated by a specified node and is received by its

routing destination node to dynamically change part (or parts) of a virtual world to achieve interactivity.

Furthermore, there is another special ”Script” node that can be programmed by JAVA language or Java

Script to allow for interactivity. Apparently, it can offer a more flexible way to achieve interactivity than

those sensors and detectors predefined in VRML.

B. External Authoring Interface

In an external environment, External Authoring Interface (EAI) provides functionalities analogous to

Script. EAI is designed to be a standard interface between a VRML world and an external environment, and

is implemented only for JAVA language. It is executed within a Java Applet that is embedded in a HTML

document. All operations of EAI depend on references. A reference is obtained by specifying a name that is

defined in VRML using ”DEF” tag. In EAI, each procedure is based on reference of the browser, therefore,
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it has to be gained before invoking any EAI procedure. Via reference of the browser, we can gain references

of nodes and references of events that are covered in the node. When we assign a value to an event by its

reference, it will invoke sequential reactions to achieve interactivity. Nowadays, almost all existing VRML

browsers support Script and EAI.

III. SYSTEM OVERVIEW

Our system is executing in two distinct stages as shown in Figure 1. Firstly, models are preprocessed

and stored in the data server. In model preprocessing stage, several tree structures are built to describe

object hierarchies in the model. These tree structures will be stored in the application server. Later, we will

simulate an observer walking through the model under user control with mouse and keyboard, and render

the model as seen from observer’s viewpoint in each frame. While the observer walks through the model, an

application program (VRML Manager), registered to monitor position and orientation of the observer, will

collect all necessary information and send a request to application server via the Network Communicator.

Moreover, the application server yields a process (Main Process) which takes responsibility for listening to

requests. Once a request is accepted, application server will create a new thread (Request Handler) to serve

it. The handler will invoke a procedure (Tree Traversal Procedure) to traverse those trees. Afterwards, the

needed VRML files are retrieved from data server, transmitted to client and added into VRML world. Note

that data server and application server may be on the same machine or located across different sites.

IV. MODEL PREPROCESSING

A. Tree Construction

This stage emphasizes processing model raw data to generate tree structures helping to find visible objects

in the interactive walkthrough stage. In constructing the tree structures, we compute the three-dimensional

bounding box of every object but only use its X and Z coordinates to index the tree nodes. The results are

objects differing only in Y-coordinate will be placed together in the same node. This preprocessing may take
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Fig. 1. System architecture. Note that solid line means preprocessing stage and dotted line means interactive walkthrough stage.

hours to finish. However, the process is automatic and performed in batch, and needs to be performed only

once. The tree construction procedure is divided into two steps.

1) First Step: Quad Tree Construction: The whole model is assumed to be enclosed in a long pillar, with

sides parallel to XY and YZ planes spanning the whole range of Y-axis. Each time we use two perpendicular

midplanes in X-axis and Z-axis of the pillar to divide it into four equal-sized smaller pillars. Objects that

intersect these two midplanes will be encapsulated in current node, and thus four smaller pillars will become

four children of the current node which is root in the first subdivision. We proceed to further subdivide these

four children in a recursive manner. The pillar subdivision process ceases whenever a node (i.e., a pillar)

contains no objects. When each leaf has no objects in it, the whole tree construction process is complete.

The resulting tree essentially is a quad tree, and it is based on MX-CIF quad tree described in [4]. However,

the original MX-CIF tree was designed to represent the hierarchy of rectangles in two-dimension only, and

here we expand it to three-dimensional case.

Figure 2 illustrates a top view of a simple scene - a quad tree structure for it (Figure 2a), and two binary
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Fig. 2. (a) A quad tree example; (b) its two binary trees for node A; and (c) the simplified trees of (b).

trees for the node A (Figure 2b). After the first subdivision, object 2, 6, 7, 8, 9, 10, 14, and 16 are extracted

to form root (node A) because they intersect two midplanes. The root has four children, which are northwest

pillar (node B), northeast pillar (node C), southwest pillar, and southeast pillar (node D), respectively. When

we proceed to subdivide northeast pillar, object 1 intersects the midplanes of the northeast pillar and is

selected to form node C. In the same way, object 3, 4, and 5 are extracted to form a child node of C because

they intersect the midplanes of the current subdivided pillar. In the northwest pillar, the second subdivision

extracts object 13 to form node B because it intersects the midplanes of the pillar. Since the northwest pillar

only contains object 13, we will not subdivide them further after the object 13 is picked and added into the

quad tree. For southeast pillar, object 11 is encapsulated in node D because it intersects two midplanes of

this pillar. Finally, object 12 and 15, intersecting midplanes of two child pillars of node D, are encapsulated

in two child nodes of D (i.e., node F and node G). The construction of two binary trees of node A will be

described in next section.
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2) Second Step: Binary Tree Construction: Subdivision process in the first stage decomposes the model

into many smaller pillars in three-dimension. The second stage is aimed to decompose them finer in each

of the two spatial dimensions (X and Z). Given every partitioned plane has its own associated objects, we

will construct the spatial location representation of objects in each plane using a binary tree structure. Let

objectA and objectB be two object sets associated with two midplanes of the pillar (if there exists an object

in both objectA and objectB, it will be assigned to objectB). In each object set, we use a midline parallel

to Y-axis of the plane to divide it into two equal subplanes. Objects which intersect the midline will be

selected to form the current node, becoming root in the first subdivision. And the two subplanes become

children of this node. If no objects intersect this midline, the node is simply an empty node. The procedure

is complete until there is no planes that contain objects. The same procedure needs to be performed twice,

one for objectA and another for objectB. Basically, the rules used here are similar to the ones in previous

section.

According to our example, object 8 and 16 intersect both two midplanes of the pillar, they are assigned

to objectB. Now objectA contains object 7, 9, and 14. ObjectB contains object 2, 6, 8, 10, and 16. In

objectA, first subdivision does not produce any more useful results because there is no objects intersecting

the midline. Therefore, its root is an empty node. Object 9 intersects the midline of right plane in the second

subdivision, it will be assigned to right child node of the root. On the left plane, object 14 intersects the

midline, it is assigned to left child node of the root. Object 7 will be added into the binary tree until it is

found to intersect the midline of a plane. Similarly in objectB, object 8 and 16 are encapsulated in root in the

first subdivision because they intersect midline of the plane. Object 10 intersects midline of the subsequently

divided plane, it will be placed in node zg. And object 6 and 2 are added into the binary tree in the third and

the fifth subdivision process (denoted as node zi and zl).

At the time we constructed the binary trees, we found that trees contain several unnecessary empty nodes.

It makes a tree deeper and requires more capacity to store it. Therefore, we apply two rules to simplify the

tree.
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1) Remove all empty leaf nodes.

2) A node which is qualified to replace its parent must have only one child or itself is a leaf node. When

an empty internal node N has more than one qualified child, we will choose the one which has the

largest depth to replace N in order to reduce depth of the resulting tree.

To simplify both trees in Figure 2b, we first apply rule one to remove all empty leaf nodes. Then we apply

rule two to remove unnecessary empty internal nodes. For example, in node xa, we use node xg to replace

it, and then node xi is replaced with node xj. In node zh, we use node zj to replace it, and in turn use zi to

replace zj. The final results are presented in Figure 2c.

B. Object Collection

In recent years, increased computing resources offer considerable benefits when quantitative modeling

techniques and intensive computations are frequently used in architectural walkthrough simulations.

However, the greatest impediment to developing such systems is the size of the data that constrains

interactive response time. As data sizes increase, interactive control of the visualization is lost when the

time to transmit, process, or render data becomes prohibitively large. It is therefore essential to subdivide

the model data into many small portions and load only a small volume of data into main memory at a time.

Generally, it is expensive to perform an I/O operation and to perform a network transmission. A packet

consists of the header and data. Usually the length of the header is fixed, it does not change like size of

the data. Opening a connection to transmit a small-sized object is therefore not feasible. We will aggregate

many objects and store them into a file as long as their size does not exceed a threshold value. Since we

collect many objects in a file which will be transmitted as a whole, there might be some unneeded objects

in the file that will be transmitted over to client as well. Objects stored in the file are by in-order traversal.

In-order traversal of the nodes usually implies a spatial locality - nearby objects are stored spatially adjacent.

As a result, the number of files that need to be fetched and transmitted to client at interactive walkthrough

will be smaller.
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C. Representation

After tree construction is done, the resulting trees reside in main memory. Because main memory is

volatile, we have to store them as external files so that they are able to be restored later.

1) Quad Tree: To describe a quad tree and its associated nodes, we use a long character stream to

represent them. Each node has a list of fields to describe itself. In it, fields are separated using specific

characters. Such information contains node ID, the pillar it represents, offset to two of its binary trees, offset

to its four children, and objects it encloses.

2) Binary Tree: The character stream we use to represent binary tree is similar to the one for quad tree.

It consists of node ID, the midline of the plane, offset to its two child nodes, the spatial range that encloses

the whole objects in the node, and the objects it encloses.

3) Object Information: Finally, there is information about the objects that needs to be stored. It should

include ID of the object, bounding box information in the three-dimension, file name where object is stored,

and object index in the file storing it.

V. INTERACTIVE WALKTHROUGH

At this stage, we provide a simulation environment for an observer to walk through the architectural

models under user control. The primary goal of this stage is to render the models as smoothly as possible

without any disturbance. However, most models are so large that they cannot be 1) completely loaded into

memory; 2) rendered at interactive frame rates; 3) quickly transmitted over the network. Thus we must

identify a small portion of objects depending on the position and viewing area of the observer to cull away

other invisible parts. As the observer moves, our interface program (written in JAVA Applet) will send

the information to application server, making application server perform tree traversal depending on the

information from client. The results will notify the data server to fetch and transmit target VRML files to

client.
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A. Interface (Client Side)

Our interface program is stored at application server, downloaded and executed by client when a session

is established. The interface takes responsibility for coordinating all functionalities at client side. In it, there

are three major components, which are Network Communicator, Buffer Manager, and VRML Manager.

1) Network Communicator: As the name shows, it takes responsibility for all client’s network

communication such as sending requests to and receiving VRML files from data server. When update is

needed, it will send necessary information to application server. However, it is not feasible to update so

frequently. Therefore, we have to decide on an effective update mechanism. Our considered parameter is

the frame rate. When frame rates are too low, the observer cannot walk through the model smoothly. If we

update the VRML world at a higher rate, the observer may miss the sight of some objects in the VRML

world. In our system, we define a lower and a upper threshold to adjust the update frequency so as to make it

proportional to frame rates. When the current frame rate exceeds the upper threshold, the update frequency

will increase. On the contrary, update frequency will decrease when the current frame rate is less than the

lower threshold.

Network Communicator also informs data server the objects that are maintained at client to avoid

transmitting duplicated files. That is, it only has to focus on the files that need to be transmitted to client and

that are not maintained at client side. It will alleviate transmission load significantly.

2) Buffer Manager: Due to the bandwidth limitation and large data size, it is difficult to transmit objects

over the Web without significant latencies. A buffer is therefore needed. A buffer with high hit-rates can

reduce transmission times significantly. Every time new objects are brought into the buffer, we may need to

find candidates to be replaced by these new objects when there is no more space in the buffer to accommodate

new ones. Selecting candidates for replacement is very important and that is what the Buffer Manager is

responsible for. The method we used to determine candidates for replacement is basically the same as LRU

(Least Recently Used) policy.
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3) VRML Manager: The VRML Manager not only monitors position and orientation of the observer, but

also adds objects dynamically into the VRML world. Each scene update initiates at VRML Manager which

is programmed in EAI [2]. The manager is registered to monitor position and orientation of the observer.

Once he or she moves, the manager can be aware of that and receive new spatial location of the observer. The

example code in Figure 3 illustrates how to register to monitor the position and orientation of the observer

at VRML Manager.

To monitor the observer, we must obtain reference of the browser which each operation depends on.

Subsequently we use it to obtain references of ”Viewpoint” node, and field references of ”position” and

”orientation”. We will invoke advise() method to register an instance of a class ”VRML Manager” which

implements the interface ”EventOutObserver” to achieve this. This class must implement a method named

”callback” to handle events. Once the monitored events are triggered, the ”callback” method will be invoked,

its parameter contains source event and the time stamp. After capturing all necessary information, we will

evaluate if the update is needed depending on the update mechanism we use.

Another operation which is performed by the VRML Manager is to add objects into the VRML world. To

this end, we create an empty VRML world with a simple background containing an empty ”Group” node.

In the node, there is an EventIn named ”addChildren”. References to both ”Group” node and ”addChildren”

EventIn are needed in order to add objects into the VRML world by invoking a method named ”setValue()”,

in which its parameter represents the objects we want to add into the VRML world. Contrasting with

”addChildren”, there is another EventIn named ”removeChildren”. Removing objects from VRML world is

achieved by its reference too.

B. Application Server

As shown in Figure 1, our application server consists of three main components, which are Server Main

Process, Request Handler, and Tree Traversal Procedure.

1) Main Process and Request Handler: The Main Process is a socket-based program that listens to all

requests and creates a new thread to handle each request. This new created thread is what we called Request
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import vrml.external.Browser;
import vrml.external.Node;
import vrml.external.field.*;
import vrml.external.exception.*;
import java.applet.*;

public class OurInterface extends Applet  
{
  VRMLManager vrmlmanager;
  Node entry,root;  
  EventOutSFVec3f position;
  EventOutSFRotation orientation;
  EventInMFNode addChildren,
                removeChildren;
  Browser borwser;
  
  public void init() 
  {
    browser = Browser.getBrowser(this);
    try
    {
    root = browser.getNode("root");
    addChildren = (EventInMFNode)
    root.getEventIn("addChildren");
    removeChildren = (EventInMFNode)
    root.getEventIn("removeChildren");
    entry = borwser.getNode("Entry");
    position = (EventOutSFVec3f) 
    entry.getEventOut("position_changed");
    orientation = (EventOutSFRotation) 
    entry.getEventOut("orientation_changed");
    } catch( some Exceptions ) {}
    vrmlmanager = new VRMLManager();
    position.adivse(vrmlmanager.null);
    orientation.advise(vrmlmanager,null);  
    }   
} 
 
class VRMLManager implements EventOutObserver 
{
  public void callback(EventOut value, 
     double timestamp, Object data)  
    {
    /*Once an event is generated, this 
     callback method will be invoked. */   
    }
}  

#VRML V2.0 utf8

DEF Entry Viewpoint
{
  position    0 0 0
  orientation 0 1 0 0
}
DEF Root Group
{
  addChildren
  removeChildren
}

VRML browser

Fig. 3. Example code for registration to monitor the observer.

Handler. It will invoke Tree Traversal Procedure to find target objects in the viewing area. The results will

be sent to data server for retrieval.

2) Quad Tree Traversal: Given a pillar P representing the viewing volume of the observer, we use P to

exemplify the tree traversal process. The idea behind the tree traversal is to find objects which intersect P. In

the quad tree traversal, we compute whether P intersects the pillar represented by a node. When it does, we

continue traversing its binary trees or its children. Otherwise, we stop traversing its descendents further.

In Figure 4, the bold rectangle denotes the viewing volume of the observer in two-dimension. Because

the viewing volume intersects root of the quad tree (see Figure 2a), we need to traverse root’s binary trees

and its three children. In its three child nodes, only one child node (node D) intersects P, and only one of D’s

children (node F) intersects P. Therefore in the whole model, only objects which are covered in those three

nodes will be computed and found in the tree traversal.
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3) Binary Tree Traversal: In the binary trees, each node maintains a midline and the range enclosing the

objects. The midline is used to decide which children are to be traversed. When P covers both sides of the

midline, both children need to be traversed. When P covers only one side of the midline, only one of its two

children has to be traversed. The range enclosing objects is used to decide if we need to compute objects in

the node or not. When P covers both sides of the midline, it absolutely overlaps some objects in the node.

When it only covers one side of the midline, it is still possible that P overlaps some objects in the node. Take

the object 8 for example, it is maintained in the root of a binary tree of node A. You can find out that P only

covers one side of midline, but it still intersects object 8.

Earlier by the example in previous section, we realize that only three nodes in quad tree need to be

traversed. They are node A, node D, and node F. Node D and node F only contain one object. By simple

computing, we find that only object 15 intersects P.

In node A, only object 8 and 10 are overlapped by P after the binary trees of node A are searched.

Object 8 is located in the root of the binary tree, it will be computed and found immediately. After the

first comparison, the process proceeds to traverse the left child node of root, thus object 10 is found to be

overlapped by P.
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4) Tree Traversal Process: The tree traversal consists of two parts which are quad tree traversal and

binary tree traversal. When tree traversal begins, a primary thread takes responsibility for traversing the

quad tree. If it finds a pillar (associated with a node) intersects P (the viewing volume), it will put the node

into a specific queue. There are several threads which are supported to traverse the binary trees of a node

in the queue. Those threads work concurrently. When a thread finishes the job, it will check if there are

remaining jobs in the queue. If the queue is not empty, the thread will take a job from the queue and process

it or it will wait until any job request is coming. After a thread finishes the service, it will send the results to

data server immediately.

C. Discussion

The two greatest challenges of our system are the tree traversal and network transmission. Since tree

traversal performs concurrently, there is a room for speed-up. Because models are subdivided into many

small objects, which are stored into a file as long as the total file size not exceeding a threshold. Consequently

size of each file is roughly identical, and each one can be transmitted over the Internet more rapidly.

Furthermore, a cached buffer is maintained at client to store objects that have been accessed recently, and

those objects are very likely to be seen by the observer again in the near future. Therefore, the number of

files which need to be transmitted may decrease significantly.

VI. CONCLUSION AND FUTURE WORK

We have presented an environment for visualization of large-scale VRML models over the Web. In our

system, we preprocess models and build tree structures so as to speed up run-time performance in interactive

walkthroughs. In it, application server performs tree traversal during interactive walkthrough to extract

objects visible to the observer. Only portions of objects will be rendered in each frame to achieve better

frame rates.

Our current system can not handle texture yet. We will add the functionalities for texture in the near future

to make models look more realistic. Besides, several compression techniques will be explored to speed up
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the network transmission.
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