
Submitted to the Workshop on Multimedia Technologies

Fast Fractal Image Encoding
Yi-Chun Wang and Shu-Yuan Chen 1

Department of Computer Engineering and Science
Yuan-Ze University

135 Yuan-Tung Rd., Nei-Li, Chung-Li
Taoyuan, Taiwang, 320, R. O. C.

Abstract This thesis focuses on fast fractal image encoding. Fractal im-
age encoding has a lot of advantages such as high speed decoding, competitive
distortion-compression rate, and resolution independent decoding. However, it suf-
fers from long search time to find a close match between a range block and a large
pool of domain blocks. Furthermore, each pair of range-domain match involves
time-consuming mean square error (MSE) calculation, since each calculation needs
a lot of time to get contrast scaling by a complicated formula. In this study we
propose two new techniques to reduce the number of MSE calculations and the time
to accomplish an MSE calculation, which, in turn, speed up the encoding time.

First, MSE criterion is adopted to prune similar domain blocks in advance
so that consequent searching time during encoding can be reduced dramatically.
Note that when the size of the image increases, the size of domain pool increases
exponentially. However, the proposed pruning method only increases the size of
domain pool in nearly linear order. Second, a simple equation to approximate
contrast scaling is derived on the basis of regression analysis so that the time taken
to calculate each MSE can be dropped. Moreover, the estimated contrast scaling
can be used to modify the adaptive search rule [1] so that the adaptive search rule
can be performed more efficiently.

In a summary, the proposed method achieves good speed-up while maintaining
the quality of compression. Various experimental results show that our method
yields superior performance over other existing fractal encoding methods.

Keywords: fractal image encoding, fractal codes, image compression,
domain pool reduction, adaptive search, classification.

1To whom all correspondence should be sent.
Tel: 886-3-463-8800 Ext. 357
Fax: 886-3-463-8850
Email: cschen@cs.yzu.edu.tw

1 Introduction

In this section, we describe the motivation of this study and introduce the
method we proposed in this study. We also present state-of-the-art methods
in fractal image encoding.

1.1 Motivation

Fractal image encoding have advantages like fast decoding, competitive
distortion-compression rate, and resolution independent decoding. Though
the long encoding time has been a major drawback to prevent it from prac-
tical usage. Therefore, a lot of papers about fractal image encoding focused
on speeding up the encoding process.

In recent years, many encoding strategies were proposed to reduce the
encoding time from hours to minutes. This is a great improvement, of course,
but compared to state-of-the-art image encoding method like JPEG, which
can encode an image in a few seconds, the gap is still considerably large.

Thus, the goal of this study is to propose new techniques to get fast
encoding method while maintaining the PSNR value to an acceptable level.

1.2 Survey on Fractal Image Compression

Barnsley was the first one to propose the notion of Fractal Image Com-
pression [2, 3, 4]. But Ref. [5] was the first paper to formalize a rigid
procedure of encoding digital images based on fractal theory. In this pa-
per, Jacquin assumed that “image redundancy can be efficiently exploited
through self-transformability on a blockwise basis.” Besides the baseline
encoding procedure, to which the proposed method is compared, originates
from this paper with slight changes in isometry transformation (rotation)
and the partition scheme.

After Jaquin, fractal image encoding has gotten much attention among
reseachers. In Ref. [6], different partition schemes are described to condense
the encoding results as well as to improve the image quality, for example
quadtree partition and HV partition.

However, long encoding time is a majore barrier of adopting fractal image
compression as a practical usage. Thus, a lot of papers intended to speed
up encoding process. In Ref. [7], they classify image blocks in frequency
domain and achieve a decent result. They can encode the 256 × 256 Lenna
image in less than four minites, yet with PSNR value oever 28. Another
technique to classify image blocks in spatial domain [8] also has the same
speedup rate and with higher PSNR value (over 30).

Nappi et. al. [9] classify the speed-up techniques into two categories:
classification techniques and feature vector techniques. They also conclude

1

that state-of-the-art techniques can encode 512×512 gray level Lenna image
in less then 60 seconds and achieve a PSNR value over 32.

The most effecient method seems to be the one proposed in Ref. [1] and
it is the method we mentioned in the abstract. It is a hybrid approach
by combining different effective techniques. The method can encode the
256×256 gray level Lenna image in less than 10 seconds and achive a PSNR
value over 30.

1.3 Proposed Approach

In this study we propose two techniques to reduce the number of MSE
calculations and the time to accomplish an MSE calculation, which, in turn,
speed up the encoding time.

First, MSE criterion is adopted to prune similar domain blocks in ad-
vance so that consequent searching time during encoding can be reduced
dramatically. Note that when the size of the image increases, the size of do-
main pool increases exponentially. However, the proposed pruning method
only increases the size of domain pool in nearly linear order. Second, a
simple equation to approximate contrast scaling is derived so that the time
taken to calculate each MSE can be dropped. Moreover, the estimated con-
trast scaling can be used to modify the adaptive search rule [1] so that the
adaptive search rule can be performed more efficiently.

1.4 Organization of This Work

In Section 2, we describe the baseline fractal image encoding and decoding
procedures. In Section 3, the proposed approach is described. Experimental
results are included in Section 4. Section 5 gives conclusions and summarizes
possible directions to further speed up the encoding time.

2 The Baseline Factal Image Encoding

In this section the basic concept of fractal image encoding is introduced. We
also describe the baseline encoding and decoding procedures which do not
use any speed up technique.

2.1 Introduction to Fractal Image Encoding

Fractal is a branch of mathematics, trying to extends traditional mathemat-
ical geometry to describe the geometry of nature. One important property
of fractal is that you can produce visually complexed data by applying a
simple rule over and over again. More detailed information about fractal
can be referred to Ref. [10].

2

In fractal image encoding, we are dealing with the inverse problem. That
is, we are try to find the simple rules that produce the visually complexed
image. An important way to do this is described as follow: the target image
is divided into blocks, referred to as range block, and for each range block,
we find a larger block in the image, referred to as domain block, that looks
like the range block by some predefined distance metric.

The domain block can be slightly adjusted (through geometic and in-
tensity transformations) to match the range block. The coefficients of the
transformation are the encoding results (fractal codes). On the other hand,
to decode an image, those fractal codes are applied to any initial image and
transform domains into their corresponding ranges. After a few iterations,
the image would converge to an image that looks like the original one.

The above encoding process is first formulized by Jacquin [5] in 1992,
and is disscussed throughly by Fisher and others [6] in 1994. The encoding
procedure is outlined below with R and D as range and domain blocks,
respectively.

Procedure 1. The baseline fractal image encoding.
Partition the image into range blocks.
Define domain pools, including size, shift amount.
For each range: R,

Out of all possible domain blocks: D,
For each possible rotation of D,

Shrink D to the same size of R.
Find the best ωi for R that minimize the MSE distance.
ωi is the fractal code.

Domain block’s side length is often twice the range’s. Domain shift is
defined as the distance between two adjacent domains, which determines how
many domains we have and impacts the encoding time and quality of the
decoded image. The rotations of the domain blocks here follows definition
given in Ref. [6] and includes eight rotations, 90 degree for four, then flip
over for another four.

The ωi in Procedure 1 is an affine transformation as shown in Equation 1,
includes geometry translation, scaling and luminance scaling, offset.

 x′
r

y′r
z′r


 = ωi


 xd

yd

zd


 =


 ai bi 0

ci di 0
0 0 si





 xd

yd

zd


 +


 ei

fi

oi


 (1)

here xd, yd and zd are coordinates and luminance of a pixel in domain block,
x′

r, y′r and z′r are of the approximated ranges’, ai, bi, ci, di are coefficients
of geometry scaling transformation, ei, fi are for geometry translation, and
si, oi are contrast scaling and intensity offset coefficients, respectively.

3

In a summary, the baseline encoding process for a range block is to choose
a domain block that minimize a predefined distance criterion. Mean square
error (MSE) is usually used as the distance criterion and is computed by

d(R,D) = MSE(sD + o,R) =
1
N

N∑
i=1

(sdi + o − ri)2 (2)

where N is the number of pixels in the range block, ri is the ith pixel value
in range R , and di is that of the domain D. Note that domain block is
spatial contracted to the same size of the range.

Before we can evaluate the distance between R and D, we must decide
best contrast scaling (s) and intensity offset (o). Two partial differentiations
on s and o in Equation (2) lead to Equations (3) and (4), as shown in Ref.
[6].

s =

[
N

∑N
i=1 diri − ∑N

i=1 di
∑N

i=1 ri

]
[
N

∑N
i=1 d2

i − (
∑N

i=1 di)2
]

=
1
N

∑N
i=1 diri − D̄R̄

V ar(D)
(3)

o =
1
N

[
N∑

i=1

ri − s
N∑

i=1

di

]

= R̄ − sD̄ (4)

R̄ =
1
N

N∑
i=1

ri

D̄ =
1
N

N∑
i=1

di

where D̄ and R̄ are mean value of domain and range, respectively, and
V ar(D) is the variance of the domain block. If V ar(D) = 0, then s = 0.0
and o = R̄. Further details about fractal image compression can be found
in Ref. [6].

2.2 The Fractal Image Decoding

We have described the baseline encoding procedure in Section 2.1. To com-
pleteness, a brief description of the decoding process is included.

The fractal image decoding process consists of setting up an initial image
and then updating each range block. The update is a transformation on the
matched domain block according to the fractal codes s and o as specified by
Equation (3) and (4), respectively. Thus, the transformation is described by

ri = sdi + o (5)

4

Figure 1: Illustration of the decoding process.

After performing iterations of such update, the image should converge to a
stable image and the decoding process can be stoppted.

Figure 1 shows the intermediate results of decoded images during de-
coding process. For each iteration, we transform content of domain block
(bounded by green rectangle) to range block (bounded by red rectangle).
Note that the decoding process involves only spatial transformations while
no transformation to frequency domain is needed.

3 Fast Fractal Image Encoding

As mentioned in Section 2, fractal image encoding suffers from long search
time to find a close match between a range block and a large pool of domain
blocks. Each pair of range-domain match involves time consuming mean
square error (MSE) calculation since each calculation needs a lot of time
to get contrast scaling by a complicated formula. In this section, two new
techniques are proposed to reduce the number of MSE calculations and
the time to accomplish an MSE calculation, which, in turn, speed up the
encoding time.

5

More specifically, the proposed methods of reducing the number of MSE
calculations can be divided into two categories: fixed pruning and adaptive
pruning. The former reduces the domain pool for all the range blocks, while
the latter prunes respective unqualified domain blocks for individual range
blocks. In other words, the former is independent on range block, while
the latter is dependent on range block. These two pruning methods are
described in Sections 3.2 and 3.4, respectively. The adaptive pruning is
achieved by the strategy of adaptive search that originates from Ref. [1]
and is modified with estimated contrast scaling. Hence, a simple equation
to approximate contrast scaling is first derived in Section 3.3, followed by
the modified version of adaptive search in Section 3.4. On the other hand,
the estimated contrast scaling can also be used to reduce time taken to
calculate each MSE as described in Section 3.5. Some miscellaneous tips for
fast encoding are introduced in Section 3.6. Finally the proposed encoding
procedure is summarized in Section 3.7.

3.1 Mathedology of Fractal Encoding

The calculation of mean square error between two image blocks is the most
important part of the fractal image encoding. In this section we introduce
some mathematical terms first and then trasform the MSE distance into a
new form that will be used in the later sections.

When calculating the MSE distance between a range block and a domain
block, we allow the domain block adjusted by contrast scaling and intensity
offset to approximate the range. Let r′i represent the intensity of ith pixel
of the approximated range and s and o be the contrast scaling and intensity
offset, respectively, i.e.,

r′i = sdi + o (6)

Substituting Equation (4) into Equation (6), we then have

r′i = sdi + R̄ − sD̄ (7)

where R̄ and D̄ are the pixel mean of range block and domain block, respec-
tively.

Accordingly, the MSE distance between R and D can then be derived as
follows

MSE(sD + o,R) =
1
N

N∑
i=1

(r′i − ri)2

=
1
N

N∑
i=1

[(sdi + R̄ − sD̄) − ri]2 (8)

=
1
N

N∑
i=1

[s(di − D̄) − (ri − R̄)]2

6

= s2 1
N

N∑
i=1

(di − 1
N

D̄)2 +
1
N

N∑
i=1

(ri − R̄)2 − 2s
1
N

N∑
i=1

(di − D̄)(ri − R̄)

= s2V ar(D) + V ar(R) − 2s
1
N

N∑
i=1

(di − D̄)(ri − R̄) (9)

where V ar(D) and V ar(R) are pixel variance of domain and range, respec-
tively.

Further substituting contrast scaling (s) in Equation (3) to Equation(9)
leads to

MSE(sD + o,R) =
(1

N

∑N
i=1 diri − D̄R̄)2

V ar(D)2
V ar(D) + V ar(R)

−2
(1

N

∑N
i=1 diri − D̄R̄)
V ar(D)

[
1
N

N∑
i=1

(di − D̄)(ri − R̄)]

= V ar(R) − (1
N

∑N
i=1 diri − D̄R̄)2

V ar(D)
(10)

Equation (10) can be rearranged to be

MSE(sD + o,R) = V ar(R) − s2V ar(D) (11)

3.2 Reduction of Domain Pool

To find a close match for a range block from a large pool of domain blocks
during encoding is time expensive. However, for most images, a fraction
of domain blocks are similar to each other so some domain blocks can be
pruned and only representative blocks are preserved. In this way, the number
of domains in the search space can be reduced and search time can be
saved. Thus, a simple, yet effective method is proposed to achieve the goal
mentioned above. Note that this reduction is performed before encoding.

The following propositions used for reduction are stated first.

Proposition 1 If two domain blocks A and B are equal, then MSE(saA +
oa, R) = e1 implies MSE(sbB + ob, R) = e1, where sa, oa, sb, ob are calcu-
lated by Equations (3) and (4), respectively.

Proof 1 Two blocks A and B are equal means that ai = bi for all pixels.
Thus, we can replace ai by bi in Equations (3), (4) and (8) and get

MSE(saA + oa, R) = MSE(sbB + ob, R) (12)

�

7

This proposition can be used to prune equal domains. However, the reduc-
tion rule can not achieve high pruning rate.

If we can allow one domain block to be adjusted by an intensity offset
and ensure that the property of Proposition 1 still holds, the pruning rate
can be improved to a considerable level. So, we derive Proposition 2 on the
basis of a new definition.

Definition 1 Two (domain) blocks A and B are called similar if MSE(B+
t, A) = 0, where t = Ā − B̄ with Ā and B̄ as the mean values of A and B,
respectively.

Proposition 2 If two domain blocks are similar, then MSE(saA+oa, R) =
e1 implies MSE(sbB + ob, R) = e1.

Proof 2 From Equation (10), we have

MSE(saA + oa, R) = V ar(R) − (1
N

∑N
i=1 airi − ĀR̄)2

V ar(A)
(13)

Due to Definition 1, we have

ai = bi + t = bi + Ā − B̄ (14)

Substitute Equation (14) into Equation (13), we have

MSE(saA + oa, R) = e1 = V ar(A) − (1
N

∑N
i=1 airi − ĀR̄)2

V ar(R)

= V ar(A) − (1
N

∑N
i=1(bi + Ā − B̄)ri − ĀR̄)2

V ar(R)

= V ar(A) − (1
N

∑N
i=1(biri + Āri − B̄ri) − ĀR̄)2

V ar(R)

= V ar(A) − (1
N

∑N
i=1 biri + Ā 1

N

∑N
i=1 ri − B̄ 1

N

∑N
i=1 ri − ĀR̄)2

V ar(R)

= V ar(A) − (1
N

∑N
i=1 biri + ĀR̄ − B̄R̄ − ĀR̄)2

V ar(R)

= V ar(A) − (1
N

∑N
i=1 biri − B̄R̄)2

V ar(R)
(15)

On the other hand, we have V ar(A) = V ar(B), since ai = bi + t for all
i. Thus, we can substitute the equality into Equation (15) to get

MSE(saA + oa, R) = V ar(B) − (1
N

∑N
i=1 biri − B̄R̄)2

V ar(R)
= MSE(sbB + ob, R) = e1 (16)

�

8

On the basis of Proposition 2, a new reduction rule is proposed as follow.
For a new domain block B, the MSE distance between B and each domain
block Aj is denoted by MSE(B + tj, Aj), where tj = Āj − B̄. If there exists
any j so that MSE(B + ob, Aj) = 0, then B is excluded from the pool.
In other words, if MSE(B + tj , Aj) > 0 for all j, then B is added to the
domain pool. In practice, we give a threshold value for the MSE distance in
the above rule. If there exists any j so that MSE(B + tj , Aj) is less than a
threshold value, B is excluded from the pool.

To speed up the reduction procedure, all the domain blocks are preclas-
sified into proper classes. The reduction rule is then individually applied to
each class rather than the whole domain pool so that execution time can
be degraded. The classification strategy is based on the conjecture that
two blocks with diverse variances are not likely to have low MSE distance.
So, classify domain blocks into proper groupes according to their variances,
then each new block B is compared only to those domain blocks from the
same class as shown in Figure 2. Experimental results show that performing
classification technique will not sacrifice the quality of reduced domain pool.

Figure 2: Illustration of domain pool reduction. Each row includes those domain
blocks with the same variance V ar(D). The MSE distance between each pair of
domain blocks in computed as MSE. Squares with slashes denote preserved blocks.

3.3 Estimation of Contrast Scaling

Because the calculation of contrast scaling (Equation (3)) is complicated,
instead of direct calculation of s, Ref. [1] tried to calculate MSE for each
possible case of s. However, the execution time can be further speeded up if

9

we can estimate s in an easier way and the estimated value does approximate
the optimal one. Then, we can evaluate MSE just once for each domain
rather than the number of quantized values of s (for examples four in Ref.
[1]).

In this section, we first describe the basic idea of estimating contrast
scaling, followed by some experimental results to demonstrate that the esti-
mated value approximates the optimal one and does speed up the encoding
time. Finally, a mathematical explanation is included to show why the es-
timated value works.

As mentioned in Section 2.1, the solution of optimal contrast scaling
(Equation (3)) is derived from a partial differentiation on the MSE. It is the
optimal value to minimize the MSE distance between two image blocks. An
intuitive thought on the function of the contrast scaling is to adjust standard
deviation of a block so that it can match that of the other block. In this
way, it seems that Std(D)

Std(R) is a good estimated value, where Std(D) is the
standard deviation of the adjusted block and Std(R) is that of the matched
block. Therefore, we estimate the contrast scaling s′ by

s′ =
Std(D)
Std(R)

(17)

Table 1 shows encoding results of using optimal and estimated contrast
scaling to calculate MSE. Conventional method tries all possible cases (four
in our experiment) and find the optimal one, while our method tries to get
the estimated value using Equation (17) and then quantizes it. The encoding
time is lowered while PSNR values do not decrease seriously.

Table 1: Comparison of conventional and estimated contrast scaling.
256 × 256 Lenna 512 × 512 Lenna
Time PSNR Time PSNR
(sec.) (sec.)

trials of s 36 29.225 604 35.757
estimation of s 24 29.330 406 35.628

To explain why estimated contrast scaling works, we divide image blocks
into two types, uniform and non-uniform blocks, according to variance of
the pixel values in the block. Figure 3 shows that uniform ranges tend
to find uniform domains as their closest match. That means the V ar(R)
and V ar(D) are small in this case. Accordingly, from Equation (9) we can
conclude that the MSE distance is small no matter what value the contrast
scaling (s) is. Note that the experiment is applied to a 256 × 256 Lenna
image.

10

Figure 3: Variance distribution of closest matched domains for uniform
ranges.

For non-uniform ranges, Equation (11) should be reexpressed by

MSE(sD + o,R)
V ar(D)

=
V ar(R)
V ar(D)

− s2 (18)

Substituting Equation (17) into the above equation, we can get

MSE(sD + o,R)
V ar(D)

= (s′)2 − s2 (19)

If a domain D is a match of a non-uniform range R, the MSE distance
MSE(sD + o,R) is low. In addition, experimental result shows that the
variance of this domain, V ar(D), is large (see Figure 4). Since MSE(SD +
o,R) is small and V ar(D) is large, from Equation (19), we can conclude
that (s′)2 − s2 approaches zero, that means estimated contrast scaling (s′)
approaching the optimal one (s). The relationship of s and s′ of all matched
range-domain pairs with respect to uniform and non-uniform ranges are
shown in Figure 5. The nodes labeled by color blue and red denote uniform
and non-uniform ranges, respectively.

Above explanation leads to the following conclusion. If a domain is the
match of a range by optimal contrast scaling, we would not miss it by using
the estimated contrast scaling. On the other hand, if a domain does not
match a range by the optimal contrast scaing, the estimated value leads to
larger MSE distance because s is the optimal value to minimize the MSE
distance. Therefore, we would not find the wrong domain as the closest
match even using the estimated contrast scaling.

3.4 Adaptive Search of Modified Version

The adaptive search rule is proposed in Ref. [1]. It’s a simple yet effec-
tive technique. When searching a domain for the encoding range, only the

11

Figure 4: Variance distribution of closest matched domains for non-uniform
ranges.

domain satisfing the following equation is considered.

|σr − s′σd| ≤ T1 = Std(R)θ (20)

where T1 is a threshold value and it is adaptive because it consists of a
constant θ and the standard deviation of the range Std(R). Note taht the
adaptive search in Ref. [1] is modified by replacing s by s′ in this study.
Thus the criterion can be checked only once rather than four times in this
study.

3.5 Time Reduction for MSE Calculation

In practice, we calculate the MSE distance by Equation (9) and replace s

by the estimated contrast scaling s′ = Std(R)
Std(D) . Thus, the MSE calculation

can be expressed by

MSE(sD + o,R) = (s′)2V ar(D) + V ar(R)− 2(s′)
1
N

∑
i=1

N(di − D̄)(ri − R̄)

(21)
Note that D̄, R̄, V ar(D) and V ar(R) can be calculated in advance.

3.6 Miscellaneous Tips to Speed-up

3.6.1 Rotation on Range

To find a closeest domain for a range, each domain can be rotated in eight
orientations. However, rotation of domain is time consuming and cannot be

12

Figure 5: Relationship of optimal (s) and estimated (s′) contrast scaling of
all matched range-domain pairs. The node labeled by color blue and red
denote uniform and non-uniform ranges, respectively.

done in advance since storage of rotation results for all domains would take
too much memory space.

Obviously, rotations on range have the same effect as rotation on do-
main. For example, rotating domain 180 degrees yields the same results
as rotating range 180 degrees. Flipping the domain over and rotating 90
degrees clockwise has the same effect as done on range. There are two ex-
ceptions, rotating domain 90 degree clockwise is the same as rotating range
90 degree counterclockwise, and vice versa.

According to the observation mentioned above, we rotate the range in
eight possible orientations and store them all. Here, when calculating MSE,
only the term of

∑
(di − d̄)(ri − r̄) in Equation (21) needs recalculation for

different pre-rotated range and no more rotations on domain are needed.

3.6.2 The Revised Fractal Code

In this section, revised fractal code is introduced to facilitate fast encoding.
The idea is to encode range block intensity mean value, R̄, instead of the

13

intensity offset, o. Note that the former encoding is expressed by Equation
(7), while the latter is by Equation (6). Actually, this idea is not new. It
has been mentioned in Ref. [1] and many other papers.

This change also affects the decoding process. Since the code R̄ indicates
the mean value of each range block of the target image, the initialized image
for decoding can be set to the mean values instead of random values. This
results in fast decoding with fewer iterations. The number of iterations
needed for the 256 × 256 Lenna image to converge is listed in Table 2.
However, there is one drawback of using revised fractal code, i.e., we have
to calculate D̄ in Equation (7) during decoding. Fortunatelly, this additional
computation can be compensated by the reduction of number of iterations.

Table 2: Comparison of number of iterations using different fractal code to
Lenna image.

traditional new
fractal code fractal code

initial image 0.0 23.115
itr. 1 13.839 27.845
itr. 2 20.383 29.228
itr. 3 26.017 *30.009
itr. 4 29.301
itr. 5 *30.401
itr. 6 30.692

3.7 The Encoding Procedure

The proposed encoding procedure is summarized in this section. We describe
parameters needed by the encoding system first. The range side length,
domain side length and domain shift amount are needed to produce range
and domain pool. We have introduced two threshold values in this section.
T0 represents root mean square error between different domains and is used
to reduce domain pool. T1 is the adaptive search threshold and is used to
decide what domains are worth trying.

Here we introduce the third threshold, which is commonly used by most
fractal image encoding approaches, i.e., the stop threshold. If there is a
domain whose root mean square error between it and the encoding range is
less than T2, the encoding result is accepted and the encoding is terminated
for that range.

The summarized encoding procedure is listed below.

Procedure 2. The oroposed fractal image encodingn.
Partition the image into range blocks.

14

Procude the reduced domain pool (T0 is used here).
For each range: R,
Quantize r̄
Rotating the range and store the rotating results as: R1, . . . R8

Out of all possible domain blocks: D,
Calculate s′ by Equation (17).
If D satisfies Equation (20), proceed, else find next D

Contrast D to the same size of R.
Calculate MSE against R1, . . . R8 by Equation (21).
Update best domain according to MSE.
If MSE < (T2)2, stop encoding for R

Store the fractal code.

4 Experimental Results

Experiments in this study are conducted on an computing environment de-
scribed in Table 3. In addition, only the uniform partition scheme is con-
cerned in this study.

Some notations used in this section are defined first. ‘RS’ stands for
‘range side length’, ‘DS’ stands for ‘domain side length’ and ‘DSh’ for ‘do-
main shift amount’. Four threshold values introduced in previous section
are also included, T0 is used by domain pool reduction, T1 is used by adap-
tive search, and T2 is used to determine whether to stop searching or not.
Avg.#MSE denotes the averaged number of mean square error calculated
for each range block, and #D is the number of blocks left in the domain
pool. Besides, N/A stands for not available.

Table 3: Computing environment.
CPU Intel Celeron 1000 MHz

Memory 128 × 3 = 384 MB (PC133)
Operating Windows 2000
System

Programming C++
Language
Compiler gcc 2.95.3-5 (for encoder)

Borland C++ 5.5 (for decoder)

Tables 4 and 5 list encoding results of 256×256 and 512×512 Lenna im-
ages, respectively. Baseline encoding encodes the image without performing
domain pool reduction and contrast scaling estimation, but with the mis-
cellaneous techniques including revised fractal code and rotation on range.
The reduced domain pool experiment is done without performing contrast

15

scaling estimation, and so on. As we can see, the encoding time is propo-
tional to the number of MSE, which in turn, is propotional to number of
domains times number of ranges.

From these experimental results, we can see that both domain pool re-
duction and modified adaptive search are effective. For 256 × 256 Lenna
image, using only modified adaptive search seems sufficient. However, when
the image size increases from 256×256 to 512×512, encoding time increases
from 3 to 33 seconds, if only the adaptive search is performed. That is be-
cause the number of blocks (both domain and range) increases as fast as
the image size does, while the proposed domain pool reduction method can
decrease the number of domain blocks effectively, in particular when image
size is large.

Table 4: Experimental results to 256 × 256 Lenna image

RS DS Dsh T0 T1 T2 Avg. Time PSNR
#MSE (sec.)

Baseline 4 8 8 N/A N/A N/A 8061 36 29.330
Reduced 4 8 8 1 N/A 3 1832 9 29.190
domain pool
Modified Adaptive 4 8 8 1 Std(R)/8 3 757 3 28.997
Search
Combined 4 8 8 1 Std(R)/8 3 432 2 28.860

Table 5: Experimental Results to the 512 × 512 Lenna image

RS DS Dsh T0 T1 T2 Avg. Time PSNR
#MSE (sec.)

Baseline 4 8 8 N/A N/A N/A 31876 604 35.757
Reduced 4 8 8 1 N/A 3 2309 43 35.159
domain pool
Modified Adaptive 4 8 8 1 Std(R)/8 3 1877 33 35.296
Search
Combined 4 8 8 1 Std(R)/8 3 558 9 34.914

Table 6 shows encoding results of using different parameters. If encoding
speed is mainly concerned, parameters could be set to that in the fourth row
and the 512 × 512 Lenna image can be encoded in 3 seconds with PSNR
value over 33. On the other hand, if we focus on image fidelity, parameters
could be set to that in the first row, then taking 31 seconds can achieve

16

PSNR value over 35. When we set parameters to taht in the last row, we
can achieve PSNR value over 41 and take only 7 seconds. However, in this
case, more spaces are required to store encoding codes.

Table 6: Encoding results of using different parameters to 512 × 512 Lenna
image.

RS DS DSh T0 T1 T2 #D Time (sec.) PSNR
4 8 4 1 σr/8 3 2030 31 35.521
4 8 4 3 σr/8 3 374 6 34.257
4 8 8 1 σr/8 3 655 9 34.914
4 8 8 3 σr/8 3 176 3 33.870
2 4 4 3 σr/8 3 541 7 41.611

Table 7 focuses on how much time domain pool reduction technique can
reduce. The first row corresponds to encoding the image without perform-
ing domain pool reduction. As shown in the second row, if domain pool
reduction is applied, then encoding time can be decreased to less than half
of the original one while PSNR loss is very small (< 0.3dB). This is the
reason why we set T0 to 1.

Table 7: Without and with domain pool reduction to 512×512 Lenna image.
RS DS DSh T0 T1 T2 #D Time (sec.) PSNR
4 8 8 N/A σr/8 3 4096 33 35.296
4 8 8 1 σr/8 3 655 9 34.914
4 8 8 2 σr/8 3 334 5 34.385
4 8 8 3 σr/8 3 176 3 33.877
4 8 8 4 σr/8 3 105 2 33.361

In addition to getting fast encoding speed, we also emphasize that our
method is insensitive to image size. To show this point, we encode Lenna
image of different sizes. The experimental results are shown in Figure 6.
The parameters are the same as those in Table 4.

Comparison of our method to others, including lean domain pool re-
duction [11] and adaptive search [1], are also presented in Figure 6. The
experimental results show that our method is most effective.

5 Conclusions

In this study, an encoding strategy that combines different speed up tech-
niques are described. Our method focuses on reducing encoding time while

17

0

50

100

150

200

250

300

350

400

128 256 384 512 768

Image size

E
n
c
o
d
in
g
 t
im
e
(s
e
c
.)

Baseline

Lean domain pool

Adaptive search

Combined

Figure 6: Encoding time of different methods versus different image sizes.

maintaining acceptable PSNR values. The experimental results show that
our method is superior to current methods such as Ref. [1].

We also emphasize that our method is insensitive to image size. For
example, when the size of image increases from 256 × 256 to 512 × 512 ,
the encoding time of our method increases from 2 to 9 seconds, while the
encoding time increases from 7 to 125 seconds in Ref [1].

Future works can be directed to the following topics:

(1) Speed up encoding time using the pairwise relationship of range and
domain and the spatial relationship of neighboring ranges.

(2) Improve PSNR.

(3) Improve compression ratio.

(4) Apply fractal image encoding to frequency domain.

(5) Extend the proposed method to sequence images.

(6) Since the encoding results, namely fractal codes, provide useful in-
formation, they cen be used for many applications. Such as, image
retrieval [12] and contour detection [13].

18

References

[1] C. S. Tong and M. Pi, “Fast fractal image encoding based on adaptive
search,” IEEE Trans. Image Processing, vol. 10, pp. 1269–1277, Sep.
2001.

[2] M. F. Barnsley and S. Demko, “Iterated function system and the global
construction of fractals,” Proc. Roy. Soc., vol. A399, pp. 243–275, 1985.

[3] M. F. Barnsley, V. Ervin, D. Hardin, et al., “Solution of an inverse
problem for fractals and other sets,” Proc. Nat. Acad. Sci., vol. 83,
pp. 1975–1977, 1986.

[4] M. F. Barnsley, Fractals Everywhere. New York: Academic Press, 1988.

[5] A. E. Jacquin, “Image coding based on fractal theory of iterated con-
tractive image transformations,” IEEE Trans. Image Processing, vol. 1,
pp. 18–30, Jan. 1992.

[6] Y. Fisher, ed., Fractal Image Compression Theory and Application.
New York: Springer-Verlag, 1995.

[7] T. K. Trung, J. H. Jeng, I. S. Reed, et al., “A fast encoding algorithm for
fractal image compression using the dct inner product,” IEEE Trans.
Image Processing, vol. 9, pp. 529–535, Apr. 2000.

[8] C. K. Lee and W. K. Lee, “Fast fractal image block coding on local
variances,” IEEE Trans. Image Processing, vol. 7, pp. 888–891, Jun.
1998.

[9] M. Polvere and M. Nappi, “Speed-up in fractal image coding: Compari-
son of methods,” IEEE Trans. Image Processing, vol. 9, pp. 1002–1009,
Jun. 2000.

[10] B. Mandelbrot, The Fractal Geometry of Nature. Freeman, 1982.

[11] D. Saupe, “Lean domain pools for fractal image compression,” Conf.
Proc. SPIE Electronic Imageing ’96, Science and Technology, Still Im-
age Compression II, vol. 2669, 1996.

[12] G. T. M. Nappi, G. Polese, “First: Fractal indexing and retrieval system
for image database,” Image and Vision Computing, vol. 16, pp. 1019–
1031, 1998.

[13] Y. S. Takashi Ida, “Self-affine mapping system and its application
to object contour extraction,” IEEE Trans. Image Processing, vol. 9,
pp. 1926–1936, 2000.

19

