
Main Melody Extraction for Polyphonic Music

Hwei-Jen Lin, Hung-Hsuan Wu, and Yang-Ta Kao.

Department of Computer Sciences and Information Engineering

Tamkang University, Tamsui, Taipei, Taiwan, R.O.C.

E-mail：hjlin@cs.tku.edu.tw

Abstract
We propose an approach to main melody

extraction from multi-track polyphonic MIDI
files. In each track of a MIDI file, the system
traces the pitch contour of the polyphonic
music, and describes it in a monophonic form.
In each of these contours, maximal repeating
patterns are found using a correlative matrix.
All of these patterns are then collected in a
dictionary, with which we can find the set of
all maximal repeating patterns with no
redundancy, called the main melody. The
main melody extraction results and how well
these extracted main melodies can improve
the work on content-based music retrieval are
given and described.

Keywords： content-based retrieval, music
information retrieval, repeating pattern, main
melody extraction, correlative matrix,
polyphonic music.

1. Introduction

The main melody is the set of certain

patterns or phrases that the composer stresses and
is always repeated throughout the entire piece of
music [4][5]. The main melody or theme varies in
nature, depending on the type of music. In the
Baroque period, contrapuntal composition was
very popular, a single idea, or theme, continued
throughout the piece with scarcely a moment’s
letup [7]. Thus for main melody extraction, we are
interested in finding the frequent occurring
patterns in the music object.

Most of the published papers dealing with

main melody extraction work on monophonic
music [2] [4] [5]. In the recent years, there have
been many papers presenting various methods of
extracting main melodies in polyphonic music
[3][1]. In this paper we propose a method for
finding the maximal repeating patterns in not only
monophonic but also polyphonic music stored in
multi-track MIDI files. The MIDI file is

pre-processed first to obtain the contour of each
track. A correlative matrix is then utilized to
determine all maximal repeating patterns in each
track. A dictionary is then used to collect the
patterns extracted from each track. Finally, some
patterns are removed from the dictionary, such as
redundant patterns, patterns that are proper
sub-patterns of other patterns, and patterns that
are part of the accompaniment.

This paper is organized as follows. In
Section 2, the main melody extraction procedure
is proposed. The experimental results are shown
in Section 3. Section 4 concludes the paper and
discusses some future work.

2. Main Melody Extraction

In this section, we propose a procedure of
main melody extraction from polyphonic music.
In each MIDI file track, the system traces out the
pitch contour of the polyphonic music, which is
described in a monophonic form. We construct a
correlative matrix to find out all maximal
repeating patterns in each track and use a
dictionary to collect all repeating patterns with
the numbers of their occurrences [5]. Finally,
inappropriate candidates from the collection are
discarded according to some general properties of
the main melody. The set of remaining patterns in
the dictionary is the so-called main melody.

2.1. Pitch Contour Tracing

The outer voice is usually perceptually

significant, while the inner voice is hard to
recognize [7]. In this research, the highest pitch
contour will be traced for main melody extraction;
that is, if there are more than two notes playing
simultaneously, the highest pitch is extracted. This
process is called the pitch contour tracing. Thus,
the pitch contour of a piece of polyphonic music
is the sequence of the highest pitches along the

music sequence.

Every music note in one MIDI track is

specified by two MIDI events, note-on and
note-off. In a polyphonic MIDI file, the note-on
and note-off events are interlaced in time
sequence. See the example shown in Figures 1(a)
and 1(b).

(a)

(b) (c)

 (d)

Figure 1. (a). a piece of polyphonic music, (b). the MIDI
events corresponding to (a), (c). the contour of (b) obtained by
Algorithm PCTRACE, and (d). the corresponding music score
of (c).

In this sub-section, we propose Algorithm

PCTRACE to trace out the pitch contour for a
piece of polyphonic music. For a given sequence
of MIDI events along a time axis, PCTRACE
utilizes a priority queue, denoted by PQ, to extract
the highest pitch at every time point shown in the
time axis. The sequence of these extracted highest
pitches along the time axis is called the contour of
the polyphonic music and denoted by CS in the
Algorithm PCTRACE. The pitch contours of all
tracks are extracted and then stored in a
monophonic form. An example of the pitch
contour tracing is shown in Figure 1.

Algorithm PCTRACE

The contour sequence CS is constructed as
follows:

0. Initially, for time point 0, add a dummy pitch
with value 0 into the empty sequences.

1. Along the time axis, all events at a time point t
are read. For each note-off event, the system
removes its corresponding note-on event from
PQ. If this removed pitch is the largest value in
PQ, the second largest pitch is extracted (not
remove) and is added into CS for time point t.

2. Each note-on event is inserted into PQ.
3. The highest pitch, denoted by hp, is extracted

from PQ, if hp is higher than the last pitch,
denoted by lp, in CS then pitch hp is added into
CS for time point t.

4. Proceed on the next time point along the time
axis and go to step 1.

2.2. Maximal Repeating Pattern Extraction

Consider the example of the opening of the
Brahms Waltz in A flat, shown in Figure 2. It can
be represented by the pitch string
C6–Ab5–Ab5–C6–C6–Ab5–Ab5–C6–Db6–C6–Bb5
–C6. We can easily see that the pattern
C6–Ab5–Ab5–C6 occurs twice in the pitch string
and is not a proper sub-pattern of any other
repeating pattern. Such a pattern is a so-called
maximal repeating pattern.

To automatically determine the maximal

repeating patterns in a pitch string , one may
construct a correlative matrix

S
T of size n n× ,

where is the length of the pitch string . Let
 denote the i-th character of S and

denote the sub-string of from the i-th to j-th
characters. Initially, the value of each entry
of is set to zero’s and then the correlative
matrix is constructed row by row, from left to
right as follows. If , the value for is
set to that of T ; otherwise, set to zero.
Because the matrix T is symmetric, we only
need to work on the portion above the main
diagonal of the matrix. The value of each entry

 denotes the length of the repeating pattern
, called the pattern corresponding to , and

thus,

n

j

S

jiS ..

jiT ,

jiT ,

j,

iS

jiT ,

hS ..

S

jS

T

j

iS =

11 +−

j

,1− ji

iT ,1
iT

h =+− or . The
construction of the correlative matrix is performed
by Algorithm CoMatrix given as follows.

jih ,1= T−j +

Algorithm CoMatrix

//initialization

for to n do 1←i
for to do 1+← ij n

0, =jiT
//construction of the correlative matrix

for to do 1←i n
for to n do 1+← ij

 if (= then)ji SS 11,1, +−−← jiTjiT

 The correlative matrix for the Brahms Waltz
opening shown in Figure 2 constructed by
Algorithm CoMatrix is shown in Figure 3.

Figure 2. The score of the opening of the Brahms Waltz in A
flat.

Figure 3. The correlative matrix of the opening pitch string of
the Brahms Waltz in A flat.

For a repeating pattern that occurs f times in
a pitch string, it must be counted for

 times in the correlative
matrix construction. Thus,

2/)1(2 −== ffCn f

2/)811(nf ++= .

We find that some short patterns tend to

occur frequently. We simply discard these short
repeating patterns by checking their lengths. That
is, we discard a repeating pattern if its length is
less than a given threshold value t.

2.3. Dictionary for Discarding Redundancy

There might be some repeating patterns that

are proper sub-strings of other patterns. For the
sake of efficiency, these proper sub-strings should

be excluded in the main melody. That is, only the
maximal repeating patterns instead of all
repeating patterns are included. In order to detect
only the maximal repeating patterns, Algorithm
CoMatrix is modified as follows. In the case that

1,1,1 +=++ jiji TT

1,1 ++ jiT

0,

, the pattern corresponding to T
is a proper sub-string of the pattern corresponding
to and is not maximal. While in the case
that

ji,

≠jiT and , the pattern
corresponding to , or , is maximal. The
modified version of CoMatrix, named
Modi-CoMatrix, is shown below. Algorithm
CoMatrix utilizes a dictionary to save all
repeating patterns extracted during the correlative
matrix construction and record their occurrences.

01,1 =++ jiT

jhS ..jiT ,

Algorithm Modi-CoMatrix

//initialization

for 1←i to n do
for 1+← ij to n do

0, =jiT
//construction of the correlative matrix

for 1←i to n do
for 1+← ij to do n

 if (i)jSS = then T 11,1, +−−← jiTji

if ((T) and ()) then tji ≥, 11 ++ ≠ ji SS
add the pattern corresponding to
to the dictionary.

jiT ,

Compared to the previous method of

correlative matrix construction, any repeating
pattern that occurs times in a pitch string of
length k needs C more comparisons and

 fewer times of adding repeating
patterns into the dictionary. In programming
aspect, the time taken by a comparison is much
less than the time taken by a function call of
inserting a pattern into a dictionary.

f
f * k2

)1(*2 −kC f

Whenever a maximal repeating pattern is

detected during the correlative matrix
construction, we check whether it exists in the
dictionary or not. If it does, just increase the
recorded number of the occurrences of that
pattern by 1; otherwise, insert this pattern and
initialize the number of its occurrences to 1.

In a MIDI file of multi-track music, there
might be more than one track that contains some
portion of the main melody. So we perform
Algorithm Modi-CoMatrix on each track and

collect all extracted patterns in a dictionary. In
order to obtain the optimal set of maximal
repeating patterns, we need further remove proper
sub-patterns using a string-matching technique on
the resulting dictionary. All these patterns
remaining in the dictionary are called the
candidates of the main melody fragment, whose
interval strings are stored for later use, where the
interval string of a candidate is the sequence of
differences between pairs of adjacent pitches in its
pitch string.

2.4. Removing Improper Candidates

Most melody lines contain a preponderance
of conjunct motion, but the inclusion of few leaps
or disjunction motion will help greatly in adding
interest and variety to the melody line [6]. When
extraction is performed on multi-track polyphonic
music, the candidates might be extracted from the
accompaniment part. The accompaniment might
consist of many disjunctions, frequently repeating
tones, or long scales, which are rarely included in
the main melody. Thus, we ought to discard these
candidates. According to the fact that the main
melody consists of much more conjunction
intervals than disjunction intervals. We may detect
disjunctions in a candidate by checking its
disjunction ratio , which is the ratio of the
number of the disjunctions to the total number of
intervals; that is, = No. of disjunction
intervals / No. of all intervals. If the value of

 for a candidate is out of a given range, it
has too many disjunctions or is lack of
disjunctions, and thus, it possibly comes from the
accompaniment and should be removed.
Frequently repeating tones much more likely
come from the accompaniment than the main
melody. To detect frequently repeating tones
occurring in a candidate, we check the zero
interval ratio , which is the ratio of the
number of the zero intervals to the total number of
intervals; that is, = No. of zero intervals /

No. of all intervals. If the valve of is
greater than a given threshold value, we consider
the candidate as part of the accompaniment and
remove it. In this research we assume a
disjunction interval is of more than 6 half tones
(the perfect 4

disjR

R

zero

zeroR

disj

disjR

R

zeroR

th).

To detect the candidate patterns containing

music scale, a window-based technique is applied
as follows. If a candidate contains 7 consecutive

intervals with the total length equal to 12, then it
is identified to involve a music scale or a close
music scale and is removed.

3. Experimental Results

No matter whether a MIDI file contains

polyphonic or monophonic music, and the music
is in multiple tracks or in a single track, Algorithm
PCTRACE can trace out correct pitch contours.
Figure 4(a) shows the opening 6 measures of the
Bach’s 2-Invention No.13 in a minor in a single-
track MIDI file and its result of the pitch contour
tracing is shown in Figure 4(b).

(a)

(b)

Figure 4. (a). The opening 6 measures of the Bach’s
2-Invention No.13 and (b). The result of PCTRACE.

The time complexity of PCTRACE module

is ()nO , where n is the number of notes in a MIDI
file, which is approximately proportional to the
size of the MIDI file. Figure 5 shows the time cost
of PCTRACE versus the size of MIDI file.

In our experiment on removing the
candidates coming from the accompaniment, the
threshold value for is set to 0.66. If the
value of for a candidate is greater than

zeroR

zeroR

0.66, we discard it. The given range for is

from 0.05 to 0.5. If the value of for a
candidate is out of the range, we discard it. To
remove candidates involving a long scale, the
threshold length of the scale for a candidate is set
to half the number of notes in the candidate. We
say that a candidate involves a long scale if it
involves a scale occupying more than half portion
of the whole string. If a candidate involves a long
scale, it be removed.

disjR

disjR

200

14000

Figure 5. PCTRACE time cost v.s. size of MIDI file.

0

200

400

600

800

1000

1200

0 50 100 150

Size of MIDI file (KByte)

PC
Ex

t e
la

ps
ed

 ti
m

e
(m

s)

 Figure 6 shows the time cost of the main
melody extraction versus the number of notes.
The work of main melody extraction includes
constructing the correlative matrix, extracting all
maximal repeating patterns and inserting them
into in a dictionary, removing the proper
sub-patterns, and discarding some improper
candidates.

Figure 6. The time cost of the main melody extraction versus
the number of notes in pitch contour.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200040006000 80001000012000 16000

The number of notes in Pitch Contour

T
he

t
i
m

e

c
o

st

of
t
h

e

m

ai
n

m
el

od
y

ex
tra

ct
io

n (
ms)

From the experiments we found something
interesting, the Baroque music usually have short
and higher frequent occurrences candidates and
the pop music usually have long candidates but
lower frequent occurrences.

To overcome the modulate problem from
queries, the interval strings, instead of the pitch

contour strings of music are stored in the database.
The main melody collection and the whole-song
collection are saved in a database. For a query, at
first the system searches in the main melody
collection. If the search fails in the main melody
collection, the system automatically searches for
the query in the whole-song collection.

In the experiment, 30 songs are selected for
query test from our music collection of 1135
songs. Some examples are shown in Figure 7. In
these 30 queries, there are 26 queries hitting the
main melody set and 4 queries hitting the music
collection. About 86.66% of these queries hitting
the main melody sets.

There are 1135 songs in our music
collection. The average search time in main
melody collection is about 215ms per song and
the average search time in the whole-song
collection is about 850ms. The average general
search time in the database is about 300ms.

Name Query fragment
Bach 2-Invention
No.13 in a minor

Piano Sonatian
No. 14

Mozart Piano
Sonata No.14

Mozart
Symphony No.40,

movement 1.

Moudal

Beethoven
Symphony No. 9,

movement 4
Beethoven

Symphony No.5 ,
movement 1

Schubert
Improment

Op.90-2
Schubert

Improment
Op.90-4

All for One：
 “I swear”

Figure 7. Some examples of queries.

4. Conclusions and Future Work
In this paper, we propose an effective

method for main melody extraction in multi-track
polyphonic music. Correlative matrices are
utilized to determine all maximal repeating
patterns and a dictionary-based approach is
applied to remove redundancy. According to some
melody line properties inappropriate candidates
are identified and removed.

We have defined main melody using the
repeating property. However, there are several
factors that can be taken into account such as the
duration of notes and the phrases of the music.

If we can design a phrase tracking
mechanism, we may treat a phrase as a pattern
and use a dictionary to accumulate the number of
occurrences of each phrase without using the
correlative matrix. In improper MIDI file
recording, it frequently occurs that the recording
tempo is not matched with the performance tempo.
This causes a time shift in the MIDI file. The time
shift problem can be solved by evaluating all note
durations and performing MIDI file quantization
to obtain the correct performance tempo. If the
correct tempo or phrase can be obtained, a
dictionary-based approach can be employed to
obtain the repeating patterns.

A partial repeating pattern problem can be

managed. For example, if there are two patterns
‘AB’ and ‘BC’, where ‘A’, ‘B’ and ‘C’ are
patterns longer than given a threshold, we create a
virtual pattern ‘ABC’ to replace the two patterns.
This approach can reduce the space for the main
melody candidates and save the search time.

For repeating pattern search problem, many

methods have been presented. Most of these
methods have complexities in with
different constants [5][1], where n is the number
of music notes. Some of them in

)(2nΟ

(mn)Ο [4],
where m is the length of the longest repeating
pattern and n is the length of the contour. We can
produce further improvement by adopting this
method.

 Another open problem is the variation in the
music work, which can be overcome by using one
of the techniques for searching the longest
common sequence, which are widely applied at
gene engineering. The improvement of this
system can also be achieved by the use of a voice
transcription module to allow users to input a
query by singing a piece of a song.

References：

[1] Colin Meek and William P. Birmingham,

“Thematic Extractor”, International
Symposium on Music Information Retrieval,
2001, 119-128.

[2] H. Shih, Shrikanth S. Narayanan and C. C.
Jay Kuo, “Automatic Main Melody
Extraction from MIDI Files with a Modified
Lempel-Ziv Algorithm”. In Proceedings of
2001 International Symposium on Intelligent
Multimedia, Video and Speech Processing,
Hong Kong, 2001.

[3] C. C. Liu, J. Hsu, Arbee L. P. Chen,
“Efficient Theme and Non-Trivial Repeating
Pattern Discovering in Music Database”. In
Proceedings IEEE International Conference
on Data Engineering, 1999, 14-21,.

[4] Yuen-Hsien Tseng, “Content-Based
Retrieval for Music Collections”. In
Proceedings of the ACM International
Conference on Research and Development
in Information Retrieval （SIGIR）, Berkeley,
CA, 1999. 176-182.

[5] Jia-Lien Hsu, Arbee L. P. Chen, C. C. Liu,
“Efficient Repeating Pattern Finding in
Music Database”, Proceedings of the
seventh international conference on
Information and knowledge management,
Bethesda, Maryland, United States,
November 02-07, 1998, 281-288.

[6] Edward Aldwell and Carl Schachter,
“Harmony and Voice Leading, second
edition”, Harcourt Brace Jovanovich College
Publishers, 1989.

[7] Joseph Kerman, “Listen”, Worth Publishers,
1976.

