Submitted to Workshop on Artificial Intelligence

Computational Evidence on Genetic Algorithms and
Reinforcement Learning Algorithms for Module
Assignment in Distributed Systems

Peng-Yeng Yin'", Yung-Pin Cheng®, Chung-Chao Yeh® and Benjamin B. M. Shao*

'Department of Computer Science, Ming Chuan University, Taoyuan, Taiwan
*Department of Information and Computer Education, National Taiwan Normal University, Taipei, Taiwan
3Department of Computer Science, National Taiwan Ocean University, Keelung, Taiwan
*School of Accountancy and Information Management, Arizona State University, Tempe, AZ, USA

pyyin@mcu.edu.tw, ypc@ice.ntnu.edu.tw, ccyeh@cs.ntou.edu.tw, Benjamin.Shao@asu.edu

ABSTRACT

In a distributed system, it is important to find an assignment of program modules to
processors such that system cost is minimized or system throughput is maximized.
Researchers have proposed several versions of formulation to this problem. However,
most of the versions proposed are NP-complete, and thus finding the exact solutions is
computationally intractable. In this paper, we propose a genetic algorithm and a
reinforcement learning algorithm to find the near-optimal module assignment. We present
the computational evidence of the two algorithms with a set of simulated data. The
direction of future research is suggested according to the experimental results.

Keywords: Module assignment problem, distributed systems, genetic algorithms,
reinforcement learning.

"Corresponding author: Peng-Yeng Yin
5 Teh-Ming Rd., Taoyuan 333, Taiwan

1. Introduction

In a distributed system environment, it is important to find an assignment of program
modules to a number of distributed processors such that a certain measure of system costs
incurred by this assignment is minimized. There are several versions of the module
assignment problems (MAP) proposed by researchers for dealing with various system
costs and environmental constraints. But in general, the MAP is NP-complete [1].
Therefore, finding exact solutions to large-scale MAP problems is impractical.

The endeavors of interested researchers have been mainly devoted to two directions.
One direction is to develop efficient algorithms that can derive exact solutions to
simplified MAP versions under some particular constraints. For example, Nicol and
O’Hallaron [2] proposed several efficient algorithms for tackling the particular MAP in
linear array, shared-memory, and host-satellite systems. Fernandez-Baca and Medepalli [3]
proposed a divide-and-conquer algorithm that can solve, in polynomial time, the MAP
with a partial k-tree communication graph. The other direction is to design heuristic
algorithms to yield approximate solutions to the MAP of more general cases. Lo [4]
proposed a family of highly efficient heuristic algorithms that minimize the system costs
of the module assignment as well as more complex existing algorithms. Hamam and
Hindi [5] used a simulated annealing approach to find approximate solutions of several
MAP models.

Our analysis is concentrated on the second direction. In this paper, we present the
computational experience of employing genetic algorithms and reinforcement learning

algorithms to find the optimal assignment of the program modules to heterogeneous

processors such that the total execution and communication costs are minimized.

The remainder of this paper is organized as follows. Section 2 presents the problem
definition of the MAP that will be addressed. A genetic algorithm and a reinforcement
learning algorithm are proposed for the MAP in Sections 3 and 4, respectively. The
simulation results are presented and discussed in Section 5. Finally, Section 6 concludes

this work.
2. Problem Definition

In a distributed system, we have r program modules to be assigned to n
heterogeneous processors. Assume module 7 requires memory resource and computation
resource of m; and p; units, respectively, to accomplish its execution. However, each
processor has its own resource capacities and such limit cannot be exceeded. Let M; and
P; be the memory capacity and the computation capacity of processor 4. First, we define
an assignment X as a specification of »xn random variables x4, 1 <i<rand 1 <k < n,
where

H if moduleiisassigned to processor k;
X, =
ik

O (1
) otherwise,

and

> =1, @)

since each module can be assigned to one processor only.

To satisfy the capacity constraints, we have

Z)cikmi <M,, (3)
and

le.kpl. <P. 4

i=1

Further, we assume the communication link between two different processors is also
capacitated, and the communication load on this link can not exceed this capacity. Let the
communication capacity between processor k£ and processor / be Dy and the

communication load between module 7 and module j be d;;. We thus have

xuXyd,; <Dy, Uk#I. (5)
1

=T 7=

In this paper, we consider two types of system costs, namely, the execution cost and

the communication cost. Since the processors are heterogeneous, the execution cost
incurred by assigning a module to different processors is not necessarily the same, so is
the communication cost. We denote by e; the execution cost if we assign module i to

processor k, and by c,, the communication cost if we assign modules i and j to

processors k and /, respectively. The optimal module assignment seeks to minimize the

sum of the two costs. As such, the objective function of our MAP is

Minimize =~ MAP(X) = Z Z Xik € +Z Z Z Z_ XgX 4Cia > (6)
=1 f= e ER= e

subject to constraints (1)-(5).
The above version of the MAP is NP-complete [5]. Therefore, pursuing exact
solutions to the MAP of large problem size is impractical. In the following sections, we

employ a genetic algorithm and a reinforcement learning algorithm to approximate the

optimal solution of the MAP.

3. Genetic Algorithms for Optimal Module Assignment

This section starts with an introduction of genetic algorithms, and the application to

the MAP is then described.

3.1 Genetic algorithms

Genetic algorithms (GAs) are meta-heuristic algorithms based on natural genetic
systems [6]. It has been theoretically proved that GAs provide robust search even when
the search space is not continuous. GAs have found a variety of applications in
combinatorial optimization problems. To solve an optimization problem, GAs maximize
a fitness function corresponding to the merit of the underlying problem. The fitness
function is parameterized by a binary string of 0’ s and 1’s, called a chromosome, and is
used to evaluate the goodness of a possible assignment of parameter values. The effect of
binary coding is to increase the number of dimensions of the search space such that the
fitness function is stretched and the probability of being confined to a local optimum is
decreased. A collection of such strings forms a population. GAs start with an initial
population generated at random. The number of strings in the population is fixed during
all generations. The population evolves to the next population using three genetic
operators: selection, crossover, and mutation. The evolution process is iterated until either
a near-optimal string is obtained or a pre-specified number of generations is reached.

Selection operator mimics the natural survival of the fittest. The probability with

which a string is selected is proportional to the string fitness that is derived by calculating
the fitness function of the corresponding string. The selected strings form a mating pool
for the crossover operation. Crossover operator is a process by which each individual
string can interchange information with its mate chosen at random from the mating pool.
Since the highly fit strings occupy a large proportion of the population, they experience
more trials of crossover operations and the search is navigated to “good” regions of the
solution space. Crossover operator is performed with a crossover probability, p., which is
usually among [0.6, 1.0] in various applications. Mutation operator is an occasional
alteration of a string with a very small mutation probability, p,. Mutation preserves
sufficient diversity between strings of the population to prevent the unwilling premature
convergence, and it also guarantees a non-zero probability of the search to any feasible
string.

The user is required to specify the following parameters for applying GAs: the
population size P, crossover probability p., mutation probability p,,, and maximal number

of generations G. Next, we describe how GAs are applied to solve the MAP.

3.2 String representation and fitness function

Each assignment of an MAP can be encoded into a string as

A=a,a, &, (7)
where @;[[1,n] represents the index of the processor to which module i is assigned. Note

that character a; can be encoded in binary with [Ipg, n[] bits. String 4 can be easily

transformed to a corresponding assignment X (see Eq. (1)) of » modules to n processors;

however, this assignment may violate constraints (2)-(5). The fitness of string A4, in a

sense, is inversely proportional to the sum of the incurred cost and the exceeded

requirement of the resources. Thus, we define the fitness function of string A4 as

fld) =K - (MAP(A) + E(A)), (8)
where K is a constant, MAP(A) is the total execution and communication costs (see Eq.
(6)) incurred by assignment 4, and E(A) is a possible excess of resource requirement

determined by

E(A)=zEnax§inkmi _Mk’()% + Z%ﬂaxggxikpi ‘ﬂ,O%
+ ZZE’U&X%ZX%xﬂdﬁ —Dkl,O%)

3.3 Genetic operators

A population of P strings according to (7) is generated at random. This population
then repeatedly evolves to subsequent populations using the three genetic operators
described next.
Roulette-wheel selection. This operator reproduces P strings from the current

population. Each string of the current population is selected with a probability

proportional to its fitness, i.e., Select; = f (A,.)/ z; f(A;), where Select; is the

selection probability of string A;.

Single-point crossover. This operator randomly makes P/2 pairs from the strings of
the population such that each string belongs exactly to one pair. Each pair would probably
undergo crossover with a crossover probability. Let strings 4; and 4; be one pair to which

the crossover operator is applied, for example,

A;=10100 01011,
A;=00111 11001.

The operator then randomly generates a crossover position A between [1, r [Ibg, n[].
Notice that r [Ipg, n[] is equivalent to the string length. Two offspring 4; and A; are
produced by interchanging the substrings starting at position A of A; and A4;. For example,
say, A = 5, we obtain

A; =10101 11001,

4; =00110 01011.
As such, the solution space is explored by interchanging information between strings.
Mutation. Each string may undergo mutation with a mutation probability. Note
that we perform the mutation operator on character scale instead of binary bit. Let string
A;=a,a, &, be chosen to be mutated. The operator randomly substitutes a new value

for one character.

4. Reinforcement Learning for Optimal Module Assignment

This section introduces the reinforcement learning and illustrates how we solve the

MAP by utilizing the most popular approach, Q-learning algorithm, to implement the

reinforcement learning.

4.1 Reinforcement learning

The reinforcement learning addresses the issue of how a simple agent can learn a

task through a sequence of trial-and-error interactions with its environment [7, 8]. The
general concept of the reinforcement learning is depicted in Fig. 1. The agent examines
the current state of its environment and makes a decision of choosing an action to
perform. The state of the environment is, therefore, triggered by the agent’s action and
changed to another state. The agent observes the new state and receives a reward
regarding the desirability about the state transition. The process is repeated and the agent
learns an optimal policy that maximizes the expected sum of the cumulative rewards

received over time.

4.2 Applying the reinforcement learning algorithm to the MAP

The optimal assignment of the MAP can be learned by a reinforcement learning
algorithm. Fig. 2 depicts the relationship between them. The directed graph consists of
r+2 layers of nodes. The first layer and the last layer contain only one node, namely,
the starting node and the sinking node. The remaining r layers represent the possible
assignments of the » modules. Each of these layers contains » nodes and each of the n
nodes corresponds to the assignment of this module to a specific processor. A path
emanating from the starting node and terminating at the sinking node represents one
possible assignment of the » modules. Next, we define the five key components of the

reinforcement learning for the MAP as follows.

(1) The set of environment states, S = {so ,S f} U {s.

l.} . .Flements s, and s, are
»J I<isr 1< j<n /

the initial state and the final state corresponding to the starting node and the sinking

node, respectively, and s, ; indicates the state that module i is assigned to processor
Jj.

(2) The set of agent actions, A ={a,} <ic, - Selecting action @, to perform means
assigning the next module to processor i. The action selection rule will be further
discussed.

(3) The set of scalar rewards, R. The reward value is computed by the reward function
discussed below.

4) The state transition function, 9(s, .,a,) =s.,, ,. This is apparent by the definitions of
i,j k i+l,k pp y

Sand 4.

(5) The reward function,

i+l i+l i+l i+l

z<M zxm)+z(P zxwpw)+zz<D "3 3 ntd,)

p(slj’ak)_ t= w=1 w=l u= (10)

n

ei+l,k + z Z xwtcw1+l Wtk
w=l =

Since we have already known the assignment of the first i+1 modules when we receive

the reward p(s, . ,a,), the remaining resource capacity and the extra system costs

iy
incurred by the assignment of the (i+1)" module can be computed. We design the
reward function to favor the assignment of the next module that maximizes the
remaining resource capacity (for later use) and results in least system cost (for

optimization objective).

Q-learning algorithm is commonly used to learn the optimal policy in the

reinforcement learning [8] and, hence, we employ the Q-learning algorithm to learn the

10

optimal assignment of the MAP. First, we define the Q function, O(s, .,a,), as the

i

maximum cumulative reward which can be attained by performing action a, in state

s,; and then proceeding optimally until the final state s, is observed. The recursive

definition of OC(s, ;,a,) 1is given by

Q(Si,ja ak) = ,O(S,-,j, ak) + yIna;aXQ(SHl,k b al) s (1 1)

where y[1(0,1) is the discounting factor that determines the relative value of the

rewards received in the future. The agent then initializes a table of the estimate of the O
function for each possible state-action pair. These table entries are iteratively updated
using Eq. (11). The Q-learning algorithm for the MAP is summarized in Table 1. The
algorithm is repeated for a pre-specified maximum number of iterations. Then the r
sequential actions chosen by the learned optimal policy constitute the optimal assignment.
There still remains an issue of how we choose the action in a given state (see Step 4 in
Table 1). Obviously, if every action can be visited infinitely often, the optimal assignment
can be reached. However, in the real-world applications where the computational time is
limited, how do we choose the minimum number of actions which can sufficiently
explore the policy space?

Assume that the agent is in state s, ; and faces the choice among a set of available

actions {ak} We propose a thresholded maximum-exploitation action selection rule

1<k<n ®

to determine the probability of choosing action a, as follows.

11

,if g<q,and k = argmaxQ(si’j,al);
i

pla.ls,)= ,if g<g,and k # argmaxQ(s, La); (12)
k|Pi,j 0 . i,j i

g@g .

, otherwise,

where ¢[][0,1] is a randomly drawn number, ¢,[1(0,1) is the threshold controlling

the relative emphasis on each sub-rule. This rule facilitates the controlled tradeoff

A

between the selection of the action that delivers the maximum estimate of (J and the

uniform random selection. It has been empirically proved that the thresholded

maximum-exploitation action selection rule outperforms several other competing rules

[9].

5. Simulation Results

In this section we present the computational evaluations on the proposed algorithms
for a set of simulated MAPs. The proposed algorithms were encoded in C++ language
and were executed on a 233MHz PC with 32MB RAM. The testing problem set was
generated at random for various values of number of modules () and number of
processors (n). According to the values of » and n, the testing problems can be classified
into small-scale (Problems 1-6), medium-scale (Problems 7-11), and large-scale problems
(Problems 12-20), as shown in the first three columns of Table 2. For each problem, we

draw parameter values at random from the following ranges, m, 0[1,20], M, O[1,100],

12

p;U[L,20], A 0O[L,100], 4,0([,4], D,U[L100], e, O[1,100], and ¢ U[1,100] To
simulate the communication graph between modules, we randomly generate a spanning
tree with r—1 edges covering » nodes. Each node represents a module and each edge
specifies the communication requirement between its two connecting modules. The
communication direction is decided randomly.

To evaluate the comparative performances between the genetic algorithm and the
Q-learning algorithm, we specify the same CPU time limit for the executions of both
algorithms. The CPU time limits are 1 second for small-scale problems, 10 seconds for
medium-scale problems, and 500 seconds for large-scale problems (see the last column in
Table 2). Since both the genetic algorithm and the Q-learning algorithm are probabilistic
and each independent run of the same algorithm on a same testing problem may yield a
different result, we calculate the average costs incurred over 10 independent runs for each
problem (see the fourth and the fifth columns in Table 2). It is observed that the
QO-learning algorithm consistently outperforms the genetic algorithm on all but the first
two problems. Since the first two problems are relatively small, both algorithms can
obtain the same optimal solution. To provide a clearer view on the comparative
performances, the cost offset that is computed as the ratio between the cost difference and
the cost derived by O-learning algorithm is tabulated in the sixth column of Table 2. It is
seen that the cost offset ranges from 0% to 14.20%, and the average cost offset is 5.26%
over all problems. Therefore, the experimental results manifest that, using our current
implementation schemes, the Q-learning algorithm is more effective than the genetic
algorithm for the MAP. We argue the following are the possible reasons. Within each

iteration, the Q-learning algorithm constructs a solution module-by-module by examining

13

the immediate rewards that express the desirability about the assignment of the module
currently under consideration. It is therefore easier to meet the capacity constraints when
assigning the next module (as we model in the reward function (10)). On the other hand,
the genetic algorithm produces offspring by fostering a pool of population. Each member
of the population is a solution for the assignment of all modules, and the fitness function
(see Eq. (8)) of the member measures the desirability about the assignment of all modules
instead of the assignment of a single module. Thus, it is hard to predict the feasibility of
the yielded offspring. This theoretical difference is often referred to as the reason why
genetic algorithms appear to be less effective than other meta-heuristics in various
applications [6]. Researchers have suggested to develop customized genetic operators for
specific applications [10], and their experiments showed the performance can be
significantly improved by such tailored operators. Consequently, our future research will

be concentrated on the development of customized genetic operators for the MAP.

6. Conclusions

In this paper, we have proposed a genetic algorithm and a reinforcement learning
algorithm for the module assignment problem. The underlying problem has been formally
defined and the rationale of converting the problem to appropriate forms was derived. A
set of simulated problems of different scales is experimented with. The computational
experience manifests that, under our current implementation scheme, the Q-learning
algorithm outperforms the genetic algorithm in solving the module assignment problem.

The performance of the genetic algorithm may be improved by developing more

14

sophisticated operators, which suggest the avenues for future research.

REFERENCES

[1] V. M. Lo, “Task assignment in distributed systems”, Ph.D. dissertation, Dep. Comput.
Sci., Univ. Illinois, Oct. 1983.

[2] D. M. Nicol and D. R. O’Hallaron, “Improved algorithm for mapping pipelined and
parallel computations”, IEEE Trans. on Computers, Vol. 40, 1991, pp. 295-306.

[3] D. Fernandez-Baca and A. Medepalli, “Parametric module allocation on partial
k-trees”, IEEE Trans. on Computers, Vol. 42, 1993, pp. 738-742.

[4] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems”, IEEE
Trans. on Computers, Vol. 37, 1988, pp. 1384-1397.

[5] Y. Hamam and K. S. Hindi, “Assignment of program modules to processors: A
simulated annealing approach”, European Journal of Operational Research, Vol. 122,
2000, pp. 509-513.

[6] D. E. Goldberg, Genetic Algorithms: Search, Optimization and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

[7] L. P. Kaelbling and A. W. Moore, “Reinforcement learning: a survey”, Journal of
Artificial Intelligence Research, Vol. 4, 1996, pp. 237-285.

[8] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[9] P. Y. Yin, “Maximum entropy-based optimal threshold selection using deterministic
reinforcement learning with controlled randomization”, to appear in Signal

Processing, 2002.

15

[10]S. Y. Hoand Y. C. Chen, “An efficient evolutionary algorithm for accurate polygonal

approximation”, Pattern Recognition, Vol. 34, 2001, pp. 2305-2317.

16

action

reward
state

Agent

Fig. 1 General concept of the reinforcement learning.

17

rocessQr 1
a, P

Cln processor

sink

processor n processor n

Fig.2 The relationship between the MAP and the reinforcement learning.

18

Table 1

The Q-learning algorithm for the MAP.

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

Step 7

Step 8

Initialize the table entry Q(s.

ij»a;) =1 foreachi,j, k.
Set Iteration = 1.

Start with the initial state s, .

Select an action according to the action selection rule.

Update the table entry Q(s.

i;»@;) using Eq. (11).
If the final state s, is not yet reached, goto Step 4.

If Iteration < MAX ITERATION // the stopping criterion is not yet satisfied//
Set Iteration = Iteration + 1, and goto Step 3.

Start from the initial state s,, output the sequence of actions which result in the

maximum () values until the final state s, is reached.

19

Table 2 The average total costs obtained by applying the genetic algorithm and
Q-learning algorithm with their offsets given the same CPU time limits.

Total cost (1) Total cost (2) M-, 100% .
Problem 8 Genetic algorithm Q-learning algorithm 2) CPU time
1 10 5 492 492 0.00%
2 10 7 478 478 0.00%
3 30 15 869 845 2.84% 1 second
4 30 20 853 827 3.14%
5 50 25 1739 1594 9.10%
6 50 35 1520 1331 14.20%
7 80 40 2276 2215 2.75%
8 80 50 2007 1921 4.48%
9 100 50 2634 2575 2.29% 10 seconds
10 100 60 2556 2315 10.41%
11 100 70 2318 2160 7.31%
12 130 60 3640 3383 7.6%
13 130 80 2613 2544 2.71%
14 130 100 2666 2418 10.26%
15 150 75 3359 3199 5.00% 500 seconds
16 150 95 3138 2933 6.99%
17 150 115 2887 2700 6.93%
18 180 90 3852 3664 5.13%
19 180 110 3791 3687 2.82%
20 180 130 3343 3304 1.18%
Average 5.26%

20

