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Abstract
This paper is concerned with the stability problem of a neura network (NN) large-scale
system which consists of a few interconnected subsystems represented by NN models. First, the
dynamics of each NN model is converted into LDI (linear differential inclusion) representation.
Subsequently, based on the LDI representations, a stability criterion in terms of Lyapunov's
direct method is derived to guarantee the asymptotic stability of NN large-scale systems. Finally,
anumerical example with smulationsis given to illustrate the results.
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|. Introduction

A great number of today’s problems are brought about by present-day technology and
societal and environmental processes which are highly complex, large in dimension, and
stochastic by nature. The field of large-scale systems exists so widely that covers either the
fundamental theory of modeling, optimization, and control or certain particular aspects and
applications. In addition, large-scale systems analysis, design, and control theory has attained
considerable maturity and sophistication and is receiving increasing attention from theorists and
practitioners, for both its methodological attraction and its important real-life applications [1]. In
real systems, the large-scale systems include electric power systems, nuclear reactors, aerospace
systems, large electric networks, economic systems, process control systems, chemical and
petroleum industries, different types of societal systems, and ecological systems. Such systems
consist of a number of interdependent subsystems which serve particular functions, share

resources, and are governed by a set of interrelated goas and constraints [2]. Recently, many
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approaches have been used to investigate the stability and stabilization of large-scale systems, as
proposed in the literature [3-6].

During the past several years, neural network (NN)-based modeling has become an active
research field because of its unique merits in solving complex nonlinear system identification
and control problems. Neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. Then, we can train a neural network
to represent a particular function by adjusting the weights between elements. However, the
stability analysis of nonlinear large-scale systems via NN model-based control is so difficult that
rare researches were reported. Therefore, the LDI representation is employed in this study to deal
with the stability analysis of nonlinear large-scale systems.

In this paper, we consider an NN large-scale system composed of a set of subsystems with
interconnections. One critical property of control systems is stability and considerable reports
have been issued in the literature on the stability problem of NN dynamic systems (see [7-9] and
the references therein). However, as far as we know, the stability problem of NN large-scale
systems remains unresolved. Hence, a stability criterion in terms of Lyapunov's direct method is
derived to guarantee the asymptotic stability of NN large-scale systems. This paper may be
viewed as a generalization of the approach of [8] to the stability analysis of NN large-scale
systems.

This study is organized as follows. First, the system description is presented. Next, based on
Lyapunov approach, a stability criterion is derived to guarantee the asymptotic stability of NN
large-scale systems. Finally, a numerical example with simulations is given to demonstrate the

results, followed by conclusions.

II. System description and stability analysis

Consider a neural-network (NN) large-scale system N which consists of J subsystems with

interconnections. In addition, the jth isolated NN subsystem (without interconnection) of N,
shown in Fig. 1, has S, (=1 2,J ) layers with R* (7 =1, 2,lM1S ;) neurons for each layer,

inwhich x; (k) ~ x,(k—m+1) arethe state variables. It is assumed that v is the net input and all

the transfer functions 7'(v) of units in the jth isolated NN subsystem are described by the



following sigmoid function:

(1)

where ¢, A >0 arethe parameters associated with the sigmoid function. In addition, we need to

introduce some additional notations to specify these layers. The superscripts are used for

identifying the layers. Specifically, we append the number of the layer as a superscript to the

names of the variables. Thus, the weight matrix for the nth layer is written as W", and the

transfer function vector of the nth layer can be defined as

Vo) =[ne) o) mr,m), =12,

where 7, (v) (I =1, 20IR") are the transfer functions associated with W' (v). Then the

final output of the jth isolated NN subsystem can be inferred as follows:

x; (k)

x;(k—m+1)

v

x; (k+1) = W™ oS @S Hig-1-Rpe A isataes N SUPRYHER. (1)) rmm))

where

X () =[x, (k) x,(k+1) O x,(k-m+1).

)



Next, a linear differentia inclusion (LDI) system in the state-space representation is
introduced and it can be described as follows [10] :
ylk+D) = AGERDR),  AGH) =3 ()4, 3
where r; is a positive integer, z(k) is a vector signifying the dependence of 4, ()] on its the

elementsand y(k) = [yl(k) vo(k) ..y, (k)] " . Furthermore, it is assumed that
h(z(k)) 2 0, S by (z(k)) =1.
i=1
From the properties of LDI, without loss of generality, we can use 4, (k) instead of &, (z(k)).

Then, the procedure of the conversion of the jth isolated NN subsystem (2) into an LDI

representation is given as follows[9].
First, it can be found obviously that the output of transfer function7'(v) satisfies

gvsT(v) < gy, v=20
gov<T(v) < gqv, v<0

where g, and g, are the minimum value and the maximum value of the derivative of 7'(v),

and they are given in the following:

0 1=min—d§(v) =0
_ 1%
g(T)_D _ dT(V) _ A (4)
s, =MAX——=—
% v dv 2

Subsequently, given transfer function vectors W' (v) and net input vectors v', the min-max
matrix G(v',W") isdefined asfollows:
GO, Wh) = diag(g(T,)), =12 ..R". (5)
Moreover, based on the interpolation method and Eq. (2), we can obtain

X; (k+1)—[;[umz h (k)[um“ (k)G(vf w3y [[DIEZ[D]D; hg (k) (kg (k)
4’ —lq g 4 q,-1 ¢,,=1

G2, WA ;Eﬂmz fig (k) Mg: ()G, WH X (k)D)] )]
= ZEI]]DZhv; (k) DI (k)G(v™ , W)™ TIG(, WX (k)
=2h, k)4, (7, W)X, k), (6)

where



@ ®o, 1, S h 0 =1,

S A ()= SO0y A () TR, (6),

A, (7, W) =GOY, W MG, WHm?,
> h, (k)= y LI A, (k) O (k) =1,

h, (k)2 0.

According to Eq. (3), the dynamics of the jth isolated NN subsystem (6) can be rewritten as the

following LDI representation:

X, (k+1) =3 b (k) 4, X, (K), -
where h;(k) =0, _ijh,-,-(k)=1,

4, (k) is a constant matrix with appropriate dimension associated with 4, (W,%) and r, isa

positive integer.
Based on the analysis above, the jth NN subsystem N, with interconnections can be

described as follows:

Exf (k+D)= Zl h; (k) 4, X ; (k) + @, (k) (8a)
Nj : |:| J "
0w, (k)= 3 C, X, (k) (8b)

n#j
where C,; istheinterconnection matrix between the nth and jth subsystems.

In the following, a stability criterion is proposed to guarantee the asymptotic stability of
the NN large-scale system N. Prior to examination of asymptotic stability, a useful concept is
given below.

Lemma 1[11] : For any matrices A and B with appropriate dimension, we have
A"B+B"A<kA"A+KB'B

where K isapositive constant.

Theorem 1. The NN large-scale system N is asymptotically stable, if there exists positive

constant Kk ischosen to satisfy



(1) A, =A,(0,)+a,, <0, for  i=12,r; j=1200U

Ay =M, (0,)+2a,, <0, for i<f<r,; j=12[V

or
04, w2k, - U240
2A,,. A, e 1127, .
(”) g./ . 12 .2] . / '2”/:/ B<O for lezlmm]
o - - : R 0
0/2h,, 124, - A, B
where
~ J 2
n#j
~ s J-1 —r T
AM(Qg'n)z/\M(Qg/n)"'nZlK lT’ Q;‘/ = Az‘jTPinj _P./"

— 4T _ — T _ — AT T _
Qy =d; P A, + AP A, _ZPJ' Q,, =k4; P.C,,C, P4,

nj =~ nj i

P, =P >0,

(9a)

(9b)

(10)

and A, (9,), A,(Q4) and A, (Q,,) denotes the maximum eigenvaues of the matrix 0O,

0, and Q,, , respectively.

1. Example

Consider a neural-network (NN) large-scale system composed of three NN subsystems which are

described as follows.

Subsystem 1:

The first isolated NN subsystem with two layers where the hidden layer contains two

neurons and the output layer isasingle neuron is shown in Fig. 2. From thisfigure, we havef

T Thesymbol v, denotesthe net input of the bth neuron of the ath layer in the cth subsystem.



Fig. 2. Thefirst isolated NN subsystem.

v}l = VVlilxl(k) + VV[]élxl(k _1) 1 l:]‘l 21 (11)
V121 = W1i1T (Vlll) + VVlng (Vgl) , (12)
X, (k+1) =T(v,), (13)
where

1 2

T(vy) = - -1, I=1,2, (14)
Vi
1+exp
% 0.75

2 2

T(vy) = -1 (15)

2
1+exp 1
0.75
According to Egs. (14-15), the minimum value and the maximum value of the derivative of

T'(v) can be obtained asfollows:

an=min T =0, g = mac 102, (16)
Further, based on the interpolation method, Egs. (14-15) can be represented, respectively,
T(v) = (hyy (K)guy + hyn () g0 )vyy,  1=1.2 17)
T(vyy) = (hiyy (k) gy + iy (k) g0 )Vs, - (18)
From Egs. (13, 18), we have
506 +D) = (i (D) + i (D2:)V = 3 B (K2 (19

Substituting Egs. (12, 16-17) into Eq. (19) yields



2 2
x(k+1) = Z hﬁl(k)gil Wlf;lT(viyl) -

VE:

2 2
= Z hﬁl (k)g . ZWlil{ h;lzll (k)gu, + h;lzzl (k)g21}vi;1
= P=

2

2 2
= Z h]fl (k)g Z hllpl (k)h;sl (kg prV]jlv]]:l tg lelglv;l .
i= P

By plugging Eg. (11) into Eqg. (20), we obtain

AEHESS SVACUMOUAE

i=1p=ls
Heqlg p1W1i1Wll11 tg S1W1§1W2111]x1 (k) +g.lg p1W1i1W2111 tg sll/VlngZ:LZl]xl (k -1)}

The matrix representation of EQ. (21) is

X,k +1) =5 3 3 B2 ()R (k)i (k) A, X, (k)

i=1p=ls=1

where

4 = %u{g plleillejil tg ‘Y1W1§1W2111} g ;1{8 p1W1i1W1121 tg s1Wl§1W2121} B
ips J
0 1 0 0

X, (6) =[x, (k) x (k-1
Next, we assume that
Wlln =1, Wllzl =-05, Wzln =-1, W2121 =-05, W1i1 =1, W1§1 =1.

Substituting Egs. (16, 24) into Eq. (23) yeilds

M 0O +0.4444 -0.222201

A =4 =4 =4 =4 = A = \

111 112 121 122 211 H OEI’ 212 % 1 0 E
A = [0.4444 -0.222217 4 = 0 -0.44440
221 % 1 0 % 222 H 0 %

(20)

(21)

(22)

(23)

(24)

(25)

After al, by renumbering the matrices, the first isolated NN subsystem (22) can be rewritten as

the following LDI representation:



X,k +1D) = 3, () A,X, (k) (26)

A21 = A212 ! A31 = A221’ A41 = A222 ' (27)

Iuq (k) = Ry (R iy (k) hgaq (k) + R (R g (k) Agor (k) + i (k) hipy (k) gy ()
+ hiyy (k) by (k) h3a (k) + hiy (K) iy (k) h3y (),

By (k) = Ry (k) iy (k) o (K)
haq (k) = hiy (k) iy (k) iy (K)

hy (k) = hipy (k) hipy (k) sy (k) .
Subsystem 2:
The second isolated NN subsystem with two layers where the hidden layer contains three

neurons and the output layer isasingle neuron is shown in Fig. 3. From thisfigure, we have

Vzlz = I/Vzizxz (k) + Wzlzzxz (k-1), =1,2,3 (28)
V122 = WlizT (Viz) + ngzT (Véz) + VV:L?%ZT (Véz) ) (29)
X (k+1) =T(2), (30)
where

T(vllz) = ;1 -1, [=1,2,3 (31)

1+exp Viz

0.7
T(vfz):;—l. (32)

According to Egs. (31-32), the minimum value and the maximum value of the derivative of

T(v) can be obtained as follows:



(33)

Using the same procedure as that in subsysteml, we obtain

Xk +D) = 5 55 5 B, (kR o ()b, (K () A, X, (R) (34)

i=1 p=ls=1¢=

iy

where

4 = %[Z{g pZW;iZVVfiZ +g sleiszlu tg z2W1§2W;,112} 8 iz{g pZVV:ﬁ.ZVVIIéZ tg szWészlzz tg zzWézWalzz} % (35)
ipst
O 1 0 O

X, (k) =[x, (k) x, (k=)
Next, we assume that
I/Vll12 =0.5, Wzl12 =0.5, ng12 =0.25, Wll22 =0.25,

Wy, =035, Wg, =05, W2, =025, W2, =-0.75, W2, =1, (36)

Similarly, the second isolated NN subsystem (34) can be rewritten as the following LDI

representation:

X049 = 3 7, (04,X,(6) (37)
where
— 0 0f — [0.1276 0.2552]
A4, = st = Ay = %_ OH p,s,t=1,2, Ay = Ayypp = % 1 0 %
— +01913 -0.13397 — +0.0638 0.121727 — [0.0638 0.03191
Ay = Ay = | 1 0 ] Ap =App = | 1 0 [} Asy = Apppy = [l ]
0 0 0 0 01 0 O

10



_ 0.1913 0.28700 — #+0.1276 -0.10200 — M 0.15310
Ay = Ay = 1 0 0 4n=A4px =[] 00 A = Ao = H 7 (38)
0 0 01 0 [ 0 [

hyo (k) = 1o (k)i (k) hyp (k) igy (k) + R (K)o (k) B3y () g (k)
+ hi1p (k) iy (k)i (K) sy () + b (k) iy (k) g (kY hia ()
+ hi1p (k) g (k) iy (K) g () + b (k) iy () i3y (kY higo ()
+ hi1p (k) g (k) iz (K) sy (K) + b (k) iy () iy (kY o ()
+ i () By (k) ha0 (k) i35 (K),

hoo (k) = higg (K)o (K)o (K)o (K) | g (k) = By (k) hiyo (K)hag (k) h3g (K)
ha (k) = higg (K)o (k) (K)o (K) | sy (k) = hiy (k) iz (k)31 (k) h3g (K)
hea (k) = hip (k) iy (k)3 (K)gpo (k) hyp (k) = higo (k) hing (k) ey (K)o (K)

hgy (k) = hizg (k) iz (k) hiags (k) hzpa (k)
Subsystem 3:
The third isolated NN subsystem with two layers where the hidden layer contains two

neurons and the output layer isasingle neuron is shown in Fig. 4. From thisfigure, we have

Vzls = Wzisxs (k) + VVzlzaxs (k-1), =1, 2, (39)
V123 = WlisT (Vlls) + WésT (Vég) , (40)
x3(k+1) =T(vjy), (41)
where
1y _ 2 _

T(vj3) = — -1, [=1,2, (42

1+exp Yis.

0.6

2\ _ 2

T(vy)=———-1. (43)

2
=t

According to Egs. (42-43), the minimum value and the maximum value of the derivative of

T'(v) can be obtained as follows:

11



dT(v) dT(v) _5
W _0, g =max i =2 44
v dv f2 T 0 T “9

gz =min

Using the same procedure as that in subsysteml, we obtain

2 2 2 _
X3 (k + 1) = Zl z_lz_thfS (k)hfpS (k)h;Y3 (k)Azps X3 (k) (45)
=1 p=ls=
where
4 = %[3{gp3mi3mji3 + gs3VVlg3W2113} g[3{gp3VVli3VVvljé3 + gsszgstlzs} u (46)
ips D
0 1 0 0
T —
X, (k) =[x, (k) x,(k-1).
Next, assume that
W1113 =-0.5, Wllzs =1, Wzlls =025, Wzlzs =02, VVﬁs =05, VVl;S =-1 (47)

In similar fashion, the third isolated NN subsystem (45) can be rewritten as the following LDI

representation:
4 J—
X, (k4D = 3 by (07X, (6) (49
where
— M oOg — +0.1736 -0.13890
A13 = A111 = A112 = A121 = A122 = A211 = H OE A23 = A212 = E 1 0 H
_ +0.1736 0.34720 — +0.3472 0.20830
Ay = Ay = [ [ Ap = Ay = [ [ (49)
0 1 0 O n 1 0 O

Iz (k) = hiyg(k)hing (k) 315 (k) + hiyg (k) hing (k) haps (k) + iy (k) iy (k) 315 (k)
+ hiyg (k) iy (k) g (k) + g (k) hiys (k) 315 (),

12



hog(k) = iy (k)hizs (k) hgos (k)
hag (k) = s (k) s (k) hy5(k)

hag (k) = iy (k) hips (k) hos (k) .

Moreover, the interconnection matrices among three subsystems are in the following:

_01 -0150  , _3016 -0130 ., _(013 -0120
2"Ho o0 H s H o o H 2" Ho o H
3015 0120 012 -0 ., 012 017
»"Ho of ™ Ho of = Ho of

Therefore, the NN large-scale system can be represented as follows:

DXl(k +1) = zh,l(k)A,lX (k) + @ (k) (50a)
EfY 2(k+1) = Zhiz (k) A, X, (k) + @, (k) (S0b)
DX s(k+D = Zh,3(k)A,3X (k) + @5 (k) (50c)
goj (k) = z C X, (k). (50d)

In order to satisfy conditions (9), the matrix Q, in Eqg. (10) must be chosen to be negative
definite. Hence, based on Egs. (25, 38, 49), we can obtain the following matrices P, (=1, 2, 3)

by using LMI optimization algorithms such that Q 12,..,r;; j=1, 2, 3 are negative

i
definitewith Kk ==

(r5.5477 -0.13610 _[73.6939 1.2549 O [65.0683 -0.97590

P = , P, = P, = . 51
" Hoa1se1r 33.3816H ° Huzsao 387814H ° T Hoors0 35.7440H (51)

From Eq. (10), we have

240460 —24.0455 —24.0455 - 24.0450[]
) E— 240455 -00348 -9.0300 22617 E
LT [1240455 -9.0300 -06489 —2.6686 0

%— 240450 -22617 -2.6686 -—0.1526 E

13



3251950 —251280 —253659 —253006 —251320 -250621 —253052 —252458]
%251280 ~190678 -216630 —216611 —209184 —176653 —216279 —21559%
3253659 —216630 —211838 —223407 —236933 —235505 —220473 —227927]
A :%253096 ~216611 —223407 —239360 —-248798 -249905 —240321 —24.2421%
2T 3251320 —209184 —236399 —248798 —248548 —241769 -253892 -2515977
%250621 ~176635 —235595 —249950 —241768 —159050 —206019 —20341%
3253052 216279 —220473 —240321 —253802 —206019 —225228 —237997]
H 052458 —215593 —227927 —242421 —251507 -203412 —203412 —24396T
+19.8351 -19.6494 -19.7135 -19.5301[]
- 5—19.6494 ~14.1933 -15.0484 —12.7872% )
$T[3197135 -15.0484 -7.3156 ~-5772 [
195301 -12.7872 -57721 -19178 O
and the eigenvalues of them are given below:
A(A,) = -59.1586, - 0.1000, 8.6833, 25.6930 (53)
A(A,) = —186.0796, - 2.9920, — 2.3387, 0.1960, 2.7413, 3.0275, 8.4667 (54)
A(A,) = -60.1354, 0.6209, 2.5494,13.7033. (55)

Although the matrices A, (j=12,3) are not positive definite, the inequality (9) is satisfied.

Therefore, based on condition (I) of Theorem 1, the NN large-scale system N is asymptotically

stable. Simulation results of each subsystem are illustrated in Figs. 5-7 with initial conditions,

x,(0)=-2, x,(0)=-3and x,(0)=2.

0.5F

xl(k) ot

x, (k) %[

05}
At

-1.51

-2

Iterative number k Iterative number k&
Fig. 5. The state x, (k) of subsystem 1. Fig. 5. The state x, (k) of subsystem 2.

14
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x5 (k)

0.5F

-0.5

0 ;’: £O {5 2‘0 25
Iterative number k

Fig. 5. The state x,(k) of subsystem 3.

Conclusions
In this paper, a stability criterion is derived to guarantee the asymptotic stability of neural-
network (NN) large-scale systems. First, the dynamics of each NN model is converted into LDI
(linear differential inclusion) representation. Subsequently, based on the LDI representations, the
stability criterion in terms of Lyapunov's direct method is derived to guarantee the asymptotic
stability of NN large-scale systems. Our approach is conceptually simple and straightforward. If
the stability criterion is fulfilled, the NN large-scale system is asymptotically stable. Finally, a

numerical example with simulationsis given to illustrate the results.
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