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                                   Abstract

This paper is concerned with the stability problem of a neural network (NN) large-scale

system which consists of a few interconnected subsystems represented by NN models. First, the

dynamics of each NN model is converted into LDI (linear differential inclusion) representation.

Subsequently, based on the LDI representations, a stability criterion in terms of Lyapunov's

direct method is derived to guarantee the asymptotic stability of NN large-scale systems. Finally,

a numerical example with simulations is given to illustrate the results.
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I. Introduction

A great number of today’s problems are brought about by present-day technology and

societal and environmental processes which are highly complex, large in dimension, and

stochastic by nature. The field of large-scale systems exists so widely that covers either the

fundamental theory of modeling, optimization, and control or certain particular aspects and

applications. In addition, large-scale systems analysis, design, and control theory has attained

considerable maturity and sophistication and is receiving increasing attention from theorists and

practitioners, for both its methodological attraction and its important real-life applications [1]. In

real systems, the large-scale systems include electric power systems, nuclear reactors, aerospace

systems, large electric networks, economic systems, process control systems, chemical and

petroleum industries, different types of societal systems, and ecological systems. Such systems

consist of a number of interdependent subsystems which serve particular functions, share

resources, and are governed by a set of interrelated goals and constraints [2]. Recently, many
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approaches have been used to investigate the stability and stabilization of large-scale systems, as

proposed in the literature [3-6].

During the past several years, neural network (NN)-based modeling has become an active

research field because of its unique merits in solving complex nonlinear system identification

and control problems. Neural networks are composed of simple elements operating in parallel.

These elements are inspired by biological nervous systems. Then, we can train a neural network

to represent a particular function by adjusting the weights between elements. However, the

stability analysis of nonlinear large-scale systems via NN model-based control is so difficult that

rare researches were reported. Therefore, the LDI representation is employed in this study to deal

with the stability analysis of nonlinear large-scale systems.

In this paper, we consider an NN large-scale system composed of a set of subsystems with

interconnections. One critical property of control systems is stability and considerable reports

have been issued in the literature on the stability problem of NN dynamic systems (see [7-9] and

the references therein). However, as far as we know, the stability problem of NN large-scale

systems remains unresolved. Hence, a stability criterion in terms of Lyapunov's direct method is

derived to guarantee the asymptotic stability of NN large-scale systems. This paper may be

viewed as a generalization of the approach of [8] to the stability analysis of NN large-scale

systems.

This study is organized as follows. First, the system description is presented. Next, based on

Lyapunov approach, a stability criterion is derived to guarantee the asymptotic stability of NN

large-scale systems. Finally, a numerical example with simulations is given to demonstrate the

results, followed by conclusions.

II. System description and stability analysis

    Consider a neural-network (NN) large-scale system N which consists of J subsystems with

interconnections. In addition, the jth isolated NN subsystem (without interconnection) of N,

shown in Fig. 1, has jS ( Jj  ,2, ,1 ⋅⋅⋅= ) layers with τR  ( jS ,2, ,1 ⋅⋅⋅=τ ) neurons for each layer,

in which )1(~)( +− mkxkx jj  are the state variables. It is assumed that v is the net input and all

the transfer functions )(vΤ  of units in the jth isolated NN subsystem are described by the
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following sigmoid function:
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where ς , λ  > 0 are the parameters associated with the sigmoid function. In addition, we need to

introduce some additional notations to specify these layers. The superscripts are used for

identifying the layers. Specifically, we append the number of the layer as a superscript to the

names of the variables. Thus, the weight matrix for the nth layer is written as nW , and the

transfer function vector of the nth layer can be defined as

                   [ ]     ,)()()()(  
21  

T
R vTvTvTv τ

τ ⋅⋅⋅≡Ψ jS, 2, ,1 ⋅⋅⋅=τ

where )(vTl ( τRl  ,,2 ,1 ⋅⋅⋅= ) are the transfer functions associated with )(vτΨ . Then the

final output of the jth isolated NN subsystem can be inferred as follows:

 ))))))(((((()1( 1122211 ⋅⋅⋅⋅⋅⋅ΨΨ⋅⋅⋅⋅⋅⋅ΨΨΨ=+ −−− kXWWWWkx j
SSSSS
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where

               [ ])1()1()()( +−⋅⋅⋅+= mkxkxkxkX jjj
T

j .

Fig. 1. The jth isolated NN subsystem.
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    Next, a linear differential inclusion (LDI) system in the state-space representation is

introduced and it can be described as follows [10] :

              ),())(()1( kykzAky =+    ∑
=

=
jr

i
ii AkzhkzA

1
))(())(( ,                (3)

where jr  is a positive integer, )(kz  is a vector signifying the dependence of )(⋅ih  on its the

elements and [ ] T
m kykykyky  

21 )(...)()()( = . Furthermore, it is assumed that
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=
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i
i kzh

1
1))(( .

From the properties of LDI, without loss of generality, we can use )(khi  instead of ))(( kzhi .

Then, the procedure of the conversion of the jth isolated NN subsystem (2) into an LDI

representation is given as follows [9].

    First, it can be found obviously that the output of transfer function )(vΤ  satisfies
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where 1g  and 2g  are the minimum value and the maximum value of the derivative of )(vΤ ,

and they are given in the following:
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Subsequently, given transfer function vectors )(vτΨ  and net input vectors τv , the min-max

matrix ),( ττ ΨvG  is defined as follows:

       ))((),( lΤgdiagvG =Ψττ ,  τ, ..., R, l 21= .                             (5)

    Moreover, based on the interpolation method and Eq. (2), we can obtain
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According to Eq. (3), the dynamics of the jth isolated NN subsystem (6) can be rewritten as the

following LDI representation:
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i
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1
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where            0)( ≥khij ,  1)(
1
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kh
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i
ij ,

)(kAij  is a constant matrix with appropriate dimension associated with ),( ΨWAv  and jr  is a

positive integer.

Based on the analysis above, the jth NN subsystem jN  with interconnections can be

described as follows:
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where   njC  is the interconnection matrix between the nth and jth subsystems.

In the following, a stability criterion is proposed to guarantee the asymptotic stability of

the NN large-scale system N. Prior to examination of asymptotic stability, a useful concept is

given below.

Lemma 1 [11] : For any matrices A and B with appropriate dimension, we have

                          BBAAABBA TTTT 1−+≤+ κκ

where κ is a positive constant.

Theorem 1: The NN large-scale system N is asymptotically stable, if there exists positive

constant κ  is chosen to satisfy
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and )( ijM Qλ , )( ifjM Qλ  and )( ijnM Qλ  denotes the maximum eigenvalues of the matrix ijQ

ifjQ  and ijnQ , respectively.

III. Example

Consider a neural-network (NN) large-scale system composed of three NN subsystems which are

described as follows.

Subsystem 1:

    The first isolated NN subsystem with two layers where the hidden layer contains two

neurons and the output layer is a single neuron is shown in Fig. 2. From this figure, we have†

                                                
† The symbol a

bcv  denotes the net input of the bth neuron of the ath layer in the cth subsystem.
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    According to Eqs. (14-15), the minimum value and the maximum value of the derivative of

)(vΤ  can be obtained as follows:
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Further, based on the interpolation method, Eqs. (14-15) can be represented, respectively,
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From Eqs. (13, 18), we have
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Substituting Eqs. (12, 16-17) into Eq. (19) yields
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Fig. 2. The first isolated NN subsystem.
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By plugging Eq. (11) into Eq. (20), we obtain
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The matrix representation of Eq. (21) is
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After all, by renumbering the matrices, the first isolated NN subsystem (22) can be rewritten as

the following LDI representation:
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Subsystem 2:

    The second isolated NN subsystem with two layers where the hidden layer contains three

neurons and the output layer is a single neuron is shown in Fig. 3. From this figure, we have
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    According to Eqs. (31-32), the minimum value and the maximum value of the derivative of

)(vΤ  can be obtained as follows:
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Using the same procedure as that in subsystem1, we obtain
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Similarly, the second isolated NN subsystem (34) can be rewritten as the following LDI

representation:
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Fig. 3. The second isolated NN subsystem.
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Subsystem 3:

    The third isolated NN subsystem with two layers where the hidden layer contains two

neurons and the output layer is a single neuron is shown in Fig. 4. From this figure, we have
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    According to Eqs. (42-43), the minimum value and the maximum value of the derivative of

)(vΤ  can be obtained as follows:
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Fig. 4. The third isolated NN subsystem.
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Using the same procedure as that in subsystem1, we obtain

∑ ∑ ∑=+
= = =

2

1

2

1

2

1
3

1
32

1
31

2
313 )()()()()1(

i p s
ipsspi kXAkhkhkhkX                      (45)

where








 ++
=

01
}{}{ 1

223
2

1233
1

123
2

11333
1
213

2
1233

1
113

2
11333 WWgWWggWWgWWgg

A spispi
ips ,             (46)

   [ ])1()()( 333 −= kxkxkX T .

Next, assume that

5.01
113 −=W , 11

123 =W , 25.01
213 =W , 2.01

223 =W , 5.02
113 =W , 12

123 −=W .               (47)

In similar fashion, the third isolated NN subsystem (45) can be rewritten as the following LDI

representation:

              ∑=+
=

4

1
3333 )()()1(

i
ii kXAkhkX                               (48)

where









======

01
00

21112212111211113 AAAAAA , 






 −−
==

01
1389.01736.0

21223 AA ,








 −
==

01
3472.01736.0

22133 AA ,   






 −
==

01
2083.03472.0

22243 AA ,               (49)

),()()()()()(         

)()()()()()()()()()(
1
213

1
113

2
123

1
223

1
123

2
113

1
213

1
123

2
113

1
223

1
113

2
113

1
213

1
113

2
11313

khkhkhkhkhkh

khkhkhkhkhkhkhkhkhkh

++

++=

)1(3 +kx
)(3 kx

)1(3 −kx

1
113W

1
213W
1

123W 1
223W

2
113W

2
123W

)( 1
13vT

)( 1
23vT

)( 2
13vT
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)()()()( 1
223

1
113

2
12323 khkhkhkh = ,

)()()()( 1
213

1
123

2
12333 khkhkhkh = ,

)()()()( 1
223

1
123

2
12343 khkhkhkh = .

Moreover, the interconnection matrices among three subsystems are in the following:

     






 −
=

00
15.01.0

12C ,    






 −−
=

00
13.016.0

13C ,    






 −
=

00
12.013.0

21C ,

     






 −
=

00
12.015.0

23C ,   






 −
=

00
1.012.0

31C ,       







=

00
1.012.0

32C .

    Therefore, the NN large-scale system can be represented as follows:


















=

+=+

+=+

+=+

∑

∑

∑

∑

≠
=

=

=

=

)d50(                                                                                                                   .)()(

  (50c)                                                                                         )()()()1(

    (50b)                                                                                        )()()()1(

   (50a)                                                                                          )()()()1(

:

3

1

33

4

1
333

22

8

1
222

11

4

1
111

jn
n

nnjj

i
ii

i
ii

i
ii

kXCk

kkXAkhkX

kkXAkhkX

kkXAkhkX

N

φ

φ

φ

φ

In order to satisfy conditions (9), the matrix ijQ  in Eq. (10) must be chosen to be negative

definite. Hence, based on Eqs. (25, 38, 49), we can obtain the following matrices jP  ( j=1, 2, 3)

by using LMI optimization algorithms such that ijQ , jri  ..., ,2 ,1= ; j=1, 2, 3 are negative

definite with 
7
1=κ :









−

−
=

3816.331361.0
1361.05477.75

1P ,  ,
7814.382549.1

2549.173.6939
2 








=P  








−

−
=

7440.350.9759
0.97590683.65

3P .     (51)

From Eq. (10), we have



















−−−−
−−−−
−−−−
−−−−

=Λ

1526.06686.22617.20450.24
6686.26489.00300.90455.24
2617.20300.90348.00455.24
0450.240455.240455.240460.24

1 ,



                                                                                         14































−−−−
−−−−
−−−−
−−−−

−−−−
−−−−
−−−−
−−−−

−−−−
−−−−
−−−−
−−−−

−−−−
−−−−
−−−−
−−−−

=Λ

3967.243412.203412.201597.25
7997.235228.226019.203892.25
3412.206019.209050.151768.24
1597.253892.251769.248548.24

2421.247927.225593.212458.25
0321.240473.226279.213052.25
9950.245595.236635.170621.25
8798.246399.239184.201320.25

2421.240321.249905.248798.24
7927.220473.225595.236933.23
5593.216279.216653.179184.20
2458.253052.250621.251320.25

9360.233407.226611.213096.25
3407.221838.216630.213659.25
6611.216630.210678.191280.25
3096.253659.251280.251950.25

2 ,



















−−−−
−−−−

−−−−
−−−−

=Λ

9178.17721.57872.125301.19
772.53156.70484.157135.19
7872.120484.151933.146494.19
5301.197135.196494.198351.19

3                             (52)

and the eigenvalues of them are given below:

       25.6930 8.6833, ,1000.0 ,1586.59)( 1 −−=Λλ                               (53)

       8.4667 3.0275, 2.7413, ,1960.0 ,3387.2 ,9920.2 ,0796.186)( 2 −−−=Λλ           (54)

       13.7033 2.5494, ,6209.0 ,1354.60)( 3 −=Λλ .                               (55)

Although the matrices jΛ  ( 3 2, ,1=j ) are not positive definite, the inequality (9) is satisfied.

Therefore, based on condition (I) of Theorem 1, the NN large-scale system N is asymptotically

stable. Simulation results of each subsystem are illustrated in Figs. 5-7 with initial conditions,

2)0(1 −=x , 3)0(2 −=x  and 2)0(3 =x .

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

)(1 kx )(2 kx

Iterative number k

Fig. 5. The state )(1 kx  of subsystem 1. Fig. 5. The state )(2 kx  of subsystem 2.
Iterative number k
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Conclusions

In this paper, a stability criterion is derived to guarantee the asymptotic stability of neural-

network (NN) large-scale systems. First, the dynamics of each NN model is converted into LDI

(linear differential inclusion) representation. Subsequently, based on the LDI representations, the

stability criterion in terms of Lyapunov's direct method is derived to guarantee the asymptotic

stability of NN large-scale systems. Our approach is conceptually simple and straightforward. If

the stability criterion is fulfilled, the NN large-scale system is asymptotically stable. Finally, a

numerical example with simulations is given to illustrate the results.
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