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Abstract: A wavelet neural network (WNN) control system is proposed to control the moving table of

a linear ultrasonic motor (LUSM) drive system to track periodic reference trajectories in this study. The

design of the WNN control system is based on adaptive sliding-mode control technique. First, the

structure and operating principle of the LUSM are introduced. Second, since the dynamic

characteristics and motor parameters of the LUSM are nonlinear and time-varying, a WNN control

system is designed based on adaptive sliding-mode control technique to achieve high-precision position

control. In the WNN control system, a WNN is used to learn the ideal equivalent control law, and a

robust controller is designed to meet the sliding condition on the sliding surface. The adaptive learning

algorithms of the WNN and the bound estimation algorithm of the robust controller are derived from

the sense of Lyapunov stability analysis. Finally, the effectiveness of the proposed WNN control

system is verified by some experimental results in the presence of uncertainties.

Keywords: Wavelet neural network, Linear ultrasonic motor, Sliding-mode control, Adaptive learning

algorithm

I.  INTRODUCTION

    In recent years, the piezoelectric ceramic motors, which usually operate at ultrasonic frequency, have

been widely used in many practical applications due to their merits of smaller dimension, high-holding
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force, high force at low speed, silence, no electromagnetic interference and more minimum step size

than the classic electromagnetic motors [1]. The basic phenomena of piezoelectric materials permit

them to be used as sensors and actuators in a control system. The piezoelectric effects of actuator are

usually used to provide linear and rotational motion due to the capability of achieving fine motion

without the use of moving mechanical systems. The driving principles of linear ultrasonic motors

(LUSMs) are based on the ultrasonic vibration force of piezoelectric ceramic elements and mechanical

frictional force [1]. Therefore, their mathematical models are complex [2] and the motor parameters are

time-varying due to increasing in temperature and changing in motor drive operating condition [1];

moreover, the control characteristics of the LUSMs are complicated and highly nonlinear. Different

constructions and driving principles of LUSMs have been reported [3-6]. They permit high precision,

fast control dynamics and large driving force in small dimensions. However, these applications need

the detailed mathematical model acquired by complicated modeling process to design control laws in

control systems. Besides, the control accuracy is much influenced by the existence of uncertainties,

which usually comprises parameter variations, external disturbances and high-order dynamics, etc. In

addition, the investigations for the design of drive and control system for LUSM are still poor except

that an intelligent position control of a LC resonant LUSM drive system was proposed in Lin et al. [7].

An unipolar switching full bridge voltage source inverter using LC resonant technique was adopted to

implement a driving circuit of an LUSM. Moreover, a recurrent fuzzy neural network (RFNN)

controller with varied learning rates was investigated to control the moving table of the LUSM to

achieve high-precision position control. However, the voltage gain of the LC resonant inverter is

seriously varied for the variation of quality factor such that the output voltage is different under the

same driving frequency. Additionally, the stability of the RFNN control system can not be guaranteed.

Therefore, the activation of this study is to deal with the defect of driving circuit and control system for

an LUSM in the open literature [7]. Moreover, the driving circuit of the LUSM is a voltage source

inverter using LLCC resonant technique [8].

    In the past years, active research has been carried out in neural network control [9]. The

characteristics of fault-tolerance, parallelism and learning suggest that they may be good candidates for

implementing real-time adaptive control for nonlinear dynamical systems. It has been proven that

artificial neural network can approximate a wide range of nonlinear functions to any desired degree of

accuracy under certain conditions [9]. Moreover, much research has been done on applications of
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wavelet neural networks, which combine the capability of artificial neural networks in learning from

processes and the capability of wavelet decomposition [10-13], for identification and control of

dynamic systems [14-17]. In Zhang and Benveniste [14], the new notation of wavelet network was

proposed as an alternative to feedforward neural networks for approximating arbitrary nonlinear

functions based on the wavelet transform theory. In addition, a backpropagation algorithm was adopted

for the training of wavelet network. Zhang et al. [15] described a wavelet-based neural network for

function learning and estimation, and the structure of this network is similar to a radial basis function

(RBF) network except that the radial functions are replaced by orthonormal scaling functions. From the

point of view of function representation, the traditional RBF networks can represent any function that is

in the space spanned by the family of basis functions. However, the basis functions in the family are

generally not orthogonal and are redundant. It means that the RBF network representation for a given

function is not unique and is probably not the most efficient. In this study, the family of basis functions

for the RBF network is replaced by an orthogonal basis (i.e., the scaling functions in the theory of

wavelets) to form a wavelet neural network [15, 16].

The purpose of this study is to design a wavelet neural network (WNN) control system to control the

moving table of a linear ultrasonic motor (LUSM) drive system to track periodic reference trajectories.

Moreover, to guarantee the closed-loop stability of the proposed control system, the adaptive sliding-

mode control technique [18] is adopted to derive the learning and estimation algorithms in the WNN

control system.

II.  LINEAR ULTRASONIC MOTOR

The structure of the SP series LUSM is a large face of a relatively thin rectangular piezoelectric

ceramic device as depicted in Fig. 1 [6]. Four electrodes (A, A′, B and B′) are bounded to the front face

to form a checkerboard pattern of rectangles, and each substantially covers one-quarter of this face. The

rear face is substantially fully covered with a single electrode. Diagonally located electrodes (A and A′;

B and B′) are electrically connected by wires. The single electrode on the rear face is grounded via the

tuning inductor that can change the resonant frequency. To generate the different moving direction, the

electrodes electrified by an AC voltage in the pairs of the diagonal electrodes.

The movement of LUSM is constrained by four support springs with large stiffness. These support

springs along a pair of long edges of the LUSM contact the piezoelectric ceramic at points of zero
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movement in the x direction. A relatively hard ceramic spacer is attached with cement to a short edge

of piezoelectric ceramic at the center of the edge. In general, the moving table usually mounts in a V-

flat way. A friction force exists on the surface between the moving table and the V-flat way. Besides, it

also exists on the contact surface between the moving table and the spacer. In order to transmit the

motion of the spacer to the moving table, a preload spring, which is preferably pressed against the

middle of a second short edge of piezoelectric ceramic opposite to the short edge with the spacer, is

designed to supply pressure between the spacer and the moving table. For a friction drive system, the

main efforts contain a normal force, a driving force and a lumped friction force. The normal force is

related to the combination of the preload force and the equivalent force of external electric field.

Moreover, the driving force of the LUSM, which varies with the trajectory of the spacer, is transmitted

to the moving table via the spacer. In addition, the lumped friction force includes the static friction,

Coulomb friction and viscous friction, etc. According to the above description, a hypothetical dynamic

motion equation can be assumed to take the following form:

);()();();()( tXWtUtXGtXFtX ++=&& (1)

where X is the position of the moving table of the LUSM; );( tXF  denotes a nonlinear dynamic

function, which is related to the components of stress, strain and electric field; );( tXG  expresses the

control gain of LC resonant inverter; )(tU  is the control input, and );( tXW  represents the pre-load

force, friction force and unmodelled dynamics in practical applications. Due to the nonlinear and time-

varying characteristics of the LUSM, the precise dynamic models are unavailable. Moreover, the
LUSM drive system is assumed to be controllable and the sign of );( tXG  is assumed to be positive.
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Fig. 1. Structure of LUSM.
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III. WAVELET NEURAL NETWORK CONTROL SYSTEM

A four-layer WNN [14, 16] shown in Fig. 2 which is comprised of an input layer (the i layer), a

wavelet layer (the j layer), a product layer (the k layer), and an output layer (the o layer), is adopted to

implement the proposed WNN controller. The inputs of the WNN are r  and )1( 1−− zr , in which 1−z

is a time delay and r  is an integral sliding-surface; the output of the WNN is the control input WNNÛ .

The signal propagation and the basic function in each layer are introduced in the following paragraphs.

For every node i in the input layer, the net input and the net output are represented as follows:
2,1,)(, 111111 ==== inetnetfyxnet iiiiii (2)

where rx =1
1  and )-z(rx -11

2 1= . Moreover, a family of wavelets is constructed by translations and

dilations performed on a single fixed function called the mother wavelet. In the wavelet layer each
node performs a wavelet jφ  that is derived from its mother wavelet. The first derivative of a Gaussian

function, )x(--x(x)φ 2exp 2= , is adopted as a mother wavelet in this study. It may be regarded as a

differentiable version of the Haar mother wavelet, just as the sigmoid is a differentiable version of a

step function, and it has the universal approximation property [16]. For the jth node

njnetnetfy
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net jjjjj
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j ,,1,)()(, 2222

1
2 L===
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(3)

where mij  and ijσ  are, respectively, the translation and dilation in the jth term of the ith input 1
iy  to the

node of wavelet layer, and n is the total number of the wavelets with respect to the input nodes. In

addition, each node k in the product layer is denoted by ∏ , i.e., the product of j monodimensional

wavelets with respect to the input node [16]. For the kth rule node
lknetnetfyywnet kkkk

j
jjkk ,,1,)(, 3333233 L==== ∏ (4)

where 2
jy  represents the jth input to the node of product layer; 3

jkw  represents the weights between the

wavelet layer and the product layer and are set to be unity; inl =  is the number of nodes in product

layer if each input node has the same wavelet nodes. Furthermore, the single node o in the output layer

is labeled as ∑ , which computes the overall output as the summation of all input signals
1,)(, 4444344 ==== ∑ onetnetfyywnet o

k
oookkoo (5)

where the connecting weight 4
kow  is the output action strength of the oth output associated with the kth

wavelet; 3
ky  represents the kth input to the node of output layer; WNNo Uy ˆ4 = .
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Fig. 2. Structure of WNN.
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    The control object of this study is to design a WNN control system based on adaptive sliding-mode

control technique so that the moving table can track any desired periodic reference trajectories with

guaranteed closed-loop stability. To achieve this object, first an integral sliding surface is defined as

∫+=
t

X de
dt
dtr

0
2 )()()( ττλ (6)

where λ  is a positive constant; )()()( tXtXte mX −=  and )(tX m  is the reference trajectory.

Differentiate )(tr  with respect to time and using (1), the following equation can be obtained

)()(2);()();();(

)()(2)()(
2
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tetetetr

XXm
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++−−−=

++=

&&&

&&&&

XXX
(7)

Now a control law )(tU  is designed to keep the system trajectory on the sliding surface 0)( =tr  for

0>t . First, the equivalent control )(tUeq  is determined by

0)( =
= eqUUtr& (8)

Use (7) and (8) and assume all the system parameters are known, then
0)()(2);()();();( 2 =++−−− tetetWtUtGtFX XXm λλ &&& XXX (9)

The equivalent control can be obtained as follows:
)]()(2);();()([);()( 21 tetetWtFtXtXGtU XXmeq λλ ++−−= − &&& XX (10)

Thus, using 0)( =tr&  for 0>t , the dynamic in the sliding surface is

0)()(2)( 2 =++ tetete XXX λλ &&& (11)

The desired system dynamics, e.g., the rise-time, overshoot and settling-time, can be easily obtained

with the proper selection of λ . However, since the precise dynamic models of the LUSM motion

equation are unavailable, (11) is unable to achieve. Moreover, the stability of the closed-loop control

system can’t be guaranteed. Therefore, the adaptive sliding-mode control technique is adopted in the

design of the WNN control system to satisfy both the performance and stability requirements.

    According to the structure of the WNN, its output can be represented by the following equation:
WQSmW ≡),,,(ˆ rUWNN (12)

where [ ] kT
koo ww ×∈= 144

1 RW L  is the adjustable weights vector in the product-to-output

layers; [ ] )(33
1 ixPQ(P)Q Θ===

T
kyy L  1×∈ kR  is the output vector of wavelet

layer; [ ] jkT
jkk ww ×∈= R33

1 LΘ  is the interconnection weights matrix in the wavelet-to-product layer

and all the components are set to be one; the first derivative of the Gaussian function

]2/)(exp[)()( 2

S
mx

S
mx

xP ii
i

−
−

−
−= 1×∈ jR  is adopted as the wavelet functions, in which 1×∈ jRm
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and 1×∈ jRS  are the adjustable parameter vectors of the first derivative of the Gaussian functions;

ix Tzrr )]1([ 1−−= 12×∈R  is the input vector of WNN. An optimal WNN controller *
WNNU  is

designed to learn the idea equivalent control law
εε +≡+= ***** QWSmW ),,,()( * rUtU WNNeq (13)

where ε  is a minimum reconstructed error; *W , *m and *S  are optimal parameters of W、m andS .

The control law of the WNN control system is designed as follows:

ssWNN UUrUtU +≡+= QWSmW ˆˆ)ˆ,ˆ,ˆ,(ˆ)( (14)

where WNNÛ  is a WNN controller； sU  is a robust controller； Ŵ、 m̂ and Ŝ  are the adjustable

parameters in WNN. The WNN control WNNÛ  is used to learn the ideal equivalent control law due to

the unknown system dynamics, and the robust control sU  is designed to meet the sliding condition on

the sliding surface 0)( =tr . Using (1) and (10), the error equation governing the closed-loop system

can be obtained:
)()]()()[;(2 2 trtUtUtXGeee eqXXX &&&& =−=++ λλ (15)

Subtracting (14) from (13), the difference between the equivalent control law and the designed control

law of the WNN control system can be obtained

sseq UUUUU −++=−−+=−= εε QWQWQWQW *** ~ˆ~ˆˆ~ (16)

where WWW * ˆ~ −=  and QQQ * ˆ~
−= . To meet the requirements of closed-loop stability and perfect

trajectories tracking, the adaptive learning algorithms for the adjustable parameters of the WNN are

derived as follows. The linearization technique is employed to transform the nonlinear wavelet
functions into partially linear form so that the expansion of Q~  in Taylor series is obtained [19, 20]
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where 1×∈ jROn  is a vector of the high-order terms of Taylor series. Using the following definitions:
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then (17) can be represented as

nSm OSmQ Θ+Θ+Θ=
~~~ PP (18)

where mmm ˆ~ * −=  and SSS ˆ~ * −=  are the approximation errors. Equation (18) can be rewritten as

nSm
* OSQmQQQ Θ+++=

~~ˆ (19)

where jk
mm RPQ ×∈Θ=  and jk

SS RPQ ×∈Θ= . Using (16) and (19), the following equation can be

obtained:

sUU −−+= QWQW ** ˆˆ~ ε

sm U−−+Θ+++= QWOSQmQQW nS
* ˆˆ]~~ˆ[ ε

n
*

Sm
* OWSQWWmQWWQWW Θ+−+++++−= sUε~)ˆ~(~)ˆ~(ˆ)ˆ(

ε+Θ+++−++= n
*

SmSm OWSQWmQWSQWmQWQW ~~~~~ˆ~ˆˆ~
sU

EU s +−++= SQWmQWQW Sm
~ˆ~ˆˆ~ (20)

where the lumped uncertainty term ε+Θ++= n
*

Sm OWSQWmQW ~~~~E  is assume to be bounded

by ψ≤|| E .

THEOREM 1: Consider the LUSM drive system represented by (1). If the control law is designed as (14),

in which the adaptive learning algorithms of the WNN controller are designed as (21) ~ (23) and the

robust controller is designed as (24) with the adaptive bound estimation shown in (25), then the

stability of the proposed WNN control system can be guaranteed.
TtXGtr QW ˆ);()(ˆ

1η=
& (21)

TtXGtr ]ˆ[);()(ˆ 2 mQWm η=& (22)
TtXGtr ]ˆ[);()(ˆ

3 SQWS η=& (23)

))(sgn()(ˆ trtU s ψ= (24)

);()()(ˆ 4 tXGtrt ηψ =& (25)

where 1η , 2η , 3η  and 4η  are learning rates which are positive constants; )sgn(⋅  is a sign function;

)(ˆ tψ  is an on-line estimated value of the lumped uncertainty bound ψ .

Proof: Define the approximation error of the uncertainty bound as follows:
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)(ˆ)(~ tt ψψψ −= (26)

Then, the following Lyapunov function candidate is selected
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Differentiating (27) and using (15) and (20), it is concluded that
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If the adaptation laws of the WNN are chosen as (21) ~ (23) and the robust controller are designed as

(24) with the adaptive bound estimation shown in (25), equation (28) can be rewritten as follows:

))(ˆ();()()(ˆ);()();()(

)];()()[(~1))(sgn()(ˆ);()();()( 4
4

ttXGtrttXGtrEtXGtr

tXGtrttrttXGtrEtXGtrLb

ψψψ

ηψ
η

ψ

−−−=

−−=&

ψψ );()();()();()();()( tXGtrEtXGtrtXGtrEtXGtr −≤−=

0);()()();()( ≤−=−= tXGtrEtXGtr βψ (29)

Since 0)~,~,~),(~),(( ≤SmWttrLb ψ& , )~,~,~),(~),(( SmWttrLb ψ&  is negative-semidefinite (i.e.,

)~,~,~(0),~),0(()~,~,~),(~),(( SmWSmW ψψ rLttrL bb ≤ ), which implies )(tr 、 )(~ tψ 、W~ 、m~  and S~  are

bounded. Let function ≡)(tΞ bLtXGtr &−≤);()(β , and integrate )(tΞ  with respect to time

)~,~,~),(~),(()~,~,~(0),~),0(()(0 SmWSmW ttrLrLd bb
t ψψττ −≤Ξ∫ (30)

Because )~,~,~),0(~),0(( SmWψrLb  is bounded and )~,~,~),(~),(( SmWttrLb ψ  is nonincreasing and

bounded, the following result is obtained
∞<Ξ∫

∞→
ττ dt

t 0 )(lim (31)

It can be concluded that )(tΞ&  is bounded, and )(tΞ  is uniformly continuous. Using Barbalat’s Lemma
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[21, 22], it can be shown that 0)(lim =Ξ
∞→

t
t

. Thus, 0)( →tr  as ∞→t . As a result, the stability of the

proposed WNN control system can be guaranteed.                             Q.E.D.

    According to the unavailable system states, the );( tXG  in the tuning algorithms is reorganized as

));(sgn();( tXGtXG  in practical applications. Therefore, the adaptive laws for the proposed WNN

control system shown in (21) ~ (23) and (25) can be reorganized as follows:
TtXGtr QW ˆ));(sgn()(ˆ

1α=
& (32)

TtXGtr ]ˆ[));(sgn()(ˆ 2 mQWm α=& (33)
TtXGtr ]ˆ[));(sgn()(ˆ

3 SQWS α=& (34)

));(sgn()()(ˆ 4 tXGtrt αψ =& (35)

where the terms );( tXGiη  are absorbed by the learning-rate parameters or the adaptation gains iα ,

which are some positive constant to be determined. Consequently, only the sign of );( tXG  is required

in the design procedure, and it can be easily obtained from the physical characteristic of the controlled

system. The proposed WNN control system is shown in Fig. 3.

IV.  PC-BASED LUSM DRIVE AND EXPERIMENTAL RESULTS

The adopted LUSM is SP-2 with 10W 270Vrms 0.14Arms 8N. A servo control card is installed in

PC-based control computer [7], which includes multi-channels of D/A, A/D, PIO and encoder interface

circuits. The position of the moving table is fed back using a linear scale. Digital filters and frequency

multiplied by 4 circuits are built into the encoder interface circuits to increase the precision of position

feedback. The resulted resolution is 1µ m. The proposed WNN control system is realized in the

Pentium using the “Turbo C” language. The control interval of the WNN control system is set at 1msec.

The amplitude of the DC-link voltage is controlled by the push-pull DC/DC converter [8] in which the

output of the WNN control system, )(tU , is used as the pulse-width-modulation (PWM) control

voltage for the push-pull DC/DC converter. The output of the LLCC resonant tank [8] is a high voltage

sinusoidal wave operating at the geometric frequency, and the amplitude is proportional to the variable

amplitude control. The high voltage sinusoidal wave is applied to electrode pair A, A′ or B, B′ as shown

in Fig. 1 to move the moving table in the desired direction. Two test conditions are provided in the

experimentation, which are the nominal case and the parameter variation case. The parameter variation

case is the addition of one iron disk with 3.7kg weight on the moving table.
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Fig. 3. Block diagram of WNN control system.
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    To show the effectiveness of the WNN control with small rule set, the WNN has two, fourteen,

seven and one neurons at the input, wavelet, product and output layers, respectively. The λ  in the

sliding surface is set at 0.5. Moreover, a 2nd-order transfer function of the following form with rise

time 0.3sec is chosen as the reference model for the periodic step command:

11689325
1168

2 222

2

.s.s
.

ss nn

n

++
=

++ ωζω
ω

(36)

where s is the Laplace operator; ζ  and nω  are the damping ratio (set at one for critical damping) and

undamped natural frequency. When the command is a sinusoidal reference trajectory, the reference

model is set to be one. The control objective is to control the moving table to move 2.5cm periodically

for periodic step command and to move ± 2.5cm periodically for periodic sinusoidal command.

    All the gains in the adaptive laws of the WNN control system should be chosen to achieve the best

control performance in the experimentation considering the limitation of control effort, the requirement

of stability and the possible operating conditions. The following adaptation gains are chosen for various

test condition:

1α =12、 2α =4、 3α =4 and 4α =0.001 (37)

The experimental results due to periodic step and sinusoidal commands at the nominal case using the
adaptation gains shown in (37) are depicted in Fig. 4. The tracking response, tracking error )(teX  and

control effort )(tU  for periodic step command are depicted in Figs. 4(a), 4(b) and 4(c). The tracking

response, tracking error )(teX  and control effort )(tU  due to periodic sinusoidal command are given

in Figs. 4(d), 4(e) and 4(f). From the experimental results, good tracking responses can be obtained and

the tracking errors converge quickly, and the chattering phenomena do not exist in the control efforts

for various reference trajectories with properly selected adaptation gains.

    To further test the robust control performance of the proposed WNN control system, the

experimental results for the parameter variation case using the adaptation gains (37) with adaptive
bound estimation are shown in Fig. 5. The tracking response, tracking error )(teX  and control effort

)(tU  for periodic step command are depicted in Figs. 5(a), 5(b) and 5(c). The tracking response,

tracking error )(teX  and control effort )(tU  due to periodic sinusoidal command are given in Figs.

5(d), 5(e) and 5(f). From the experimental results, the tracking errors converge quickly, and the robust

control characteristics of the proposed WNN control scheme under the occurrence of uncertainties for

various reference trajectories can be clearly observed.



１５

Fig. 4. Experimental results of WNN control system with adaptive lumped uncertainty bound at nominal case:
(a), (b), (c) tracking response, tracking error )(teX , and control effort )(tU  due to periodic step command; (d),

(e), (f) tracking response, tracking error )(teX , and control effort )(tU  due to periodic sinusoidal command.
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 Fig. 5. Experimental results of WNN control system with adaptive lumped uncertainty bound at parameter

variation case: (a), (b), (c) tracking response, tracking error )(teX , and control effort )(tU  due to periodic step

command; (d), (e), (f) tracking response, tracking error )(teX , and control effort )(tU  due to periodic

sinusoidal command.
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V.  CONCLUSIONS

    The dynamic characteristics of the LUSM are nonlinear and time-varying and the precise dynamic

model is difficult to obtain. Therefore, a WNN control system has been proposed to control the position

of the moving table of the LUSM to achieve high-accuracy position control via the adaptive sliding-

mode control technique in this study. In the WNN control system, a WNN is used to learn the ideal

equivalent control law, and a robust controller is designed to meet the sliding condition on the sliding

surface. All the adaptive laws in the WNN control system are derived in the sense of Lyapunov

stability analysis, thus, the system-tracking stability can be guaranteed in the closed-loop system.

Moreover, no constrained conditions and prior knowledge of the controlled system are required in the

design process. To verify the effectiveness of the proposed control scheme, the WNN control system is

implemented in a PC-based computer control system, and the LUSM is driven by a voltage source

inverter using LLCC resonant technique. From the experimental results, the position tracking responses

of the moving table can be controlled to closely follow the reference trajectories under various

operating conditions.
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