
A QoS-Guaranteed Prefetching Protocol for Streaming VBR Videos to Resource-
Limited Mobile Clients Over Wireless ATM Networks

Ing-Chau Chang and Ming-Hung Huang
Department of Information Management,

Chaoyang University of Technology, Taichung County, Taiwan, R.O.C.
{icchang, s8854619}@cyut.edu.tw

Abstract

For supporting resource-limited mobile clients, such
as the PDA, with the QoS-guaranteed real-time SMIL
multimedia presentation over the wireless ATM network,
we propose an adaptive prefetching protocol for VBR-
encoded streaming objects between the mobile client and
the media server to minimize the size of extra buffer under
fluctuated ATM ABR bandwidth and transmission delay.
Simulation results exhibit excellent performances of this
protocol for VBR video clips with different degrees of bit
rate burstiness. Further, the scenario to reduce the
protocol overhead, i.e., the number of transmitted control
messages, is described. We also investigate the tradeoff
between the size of extra buffer and the frequency of
control messages.

1. Introduction

The World Wide Web Consortium (W3C) has
standardized the Synchronized Multimedia Integration
Language (SMIL) [1] for real-time streaming multimedia
presentations. The SMIL presentation can be composed of
streaming audio segments, streaming video clips, images,
texts, and other media objects. These media objects could
be stored at different media servers and accessed by their
universal resource locators (URL). According to the
temporal relationship specified in the SMIL presentation,
the client requests media objects, which should be
transmitted to the client in real-time for synchronous
playback. However, the SMIL specification does not
discuss how to support real-time transmission of diverse
media objects from different servers through networks.
These object data may suffer different delays, jitters and
data losses, which makes the client difficult to have a
smooth and synchronous presentation.

For continuous streaming video and audio objects in
the SMIL presentation, necessary portion of media data
must be transmitted from corresponding media servers
and received by the client to continue their playbacks
without interruptions. If any media data miss their
playback time, which is called as their deadline, the client
must have to resolve this problem with more extra efforts
to keep the whole presentation synchronized. For example,
the client may request media data more earlier, buffer all

incoming media data, examine whether these data miss
their deadlines and drop them if needed to catch up with
other media objects during the SMIL presentation. With
this kind of approach, network bandwidth and system
buffers are consumed much more than necessarily to
transmit and store the media data, even though parts of
these data are discarded finally. This approach cannot
work on resource-limited mobile clients, such as the
personal digital assistant (PDA), those usually only own 8
to 16MB RAM. Further, the SMIL 2.0 specification
defines a “prefetch” element to improve the rendering
performance of the document [2]. The mediaSize,
mediaTime and bandwidth attributes are used to define
how much of the resource is fetched as a function of the
file size, file duration and network bandwidth. Most
SMIL implementations [3-5] lack mechanisms to support
this element and provide the user with a guaranteed
quality of service (QoS) for the SMIL presentation.
Consequently, an adaptive approach is necessary to
guarantee the SMIL QoS requirement with minimal
resource consumption for the mobile client.

In this paper, we first assume the client operates in a
wireless ATM environment. Each streaming object is
transmitted by an available bit rate (ABR) connection
because of its inexpensive cost [6]. Available bandwidth
for the ABR service is varied with the background
constant bit rate (CBR) and variable bit rate (VBR)
services because it uses the remaining bandwidth left by
the CBR and VBR services. Second, the video objects are
variable bit rate (VBR) encoded. It means they have
different degrees of bit rate burstiness, which is defined as
the ratio of its peak rate divided by the average rate [7].
Finally, the cost of consuming extra buffer spaces in the
resource-limited client is much higher than the cost of
transmitting control messages to the media server.

In the paper, related works are summarized in section
two. We will propose an adaptive protocol for the VBR-
encoded video in section three to control the prefetching
process between the mobile client and media server with
minimal buffer consumptions and guaranteed the SMIL
QoS. We will also describe the scenario to reduce the
number of control messages and investigate the tradeoff
between the size of extra buffer and the control frequency.
Simulation results are shown in section four to exhibit

excellent results for video clips with different burstiness
values. Finally, section five concludes this paper.
2. Related works

Reisslein et al. [8] described their high-performance
prefetching protocol for the transport of VBR prerecorded
video over a shared channel. During frequent periods,
which the network bandwidth is under utilized, the server
can prefetch frames from any of the ongoing videos and
send the frames to the buffers in the appropriate clients.
Lin et al. [9] proposed a scheduling algorithm for the
VBR video to generate conflict-free network transmission
schedules on clustered VOD system. Its goal is to achieve
near 100% bandwidth utilization by prefetching high-rate
portions of video during periods of low-rate portions
where network bandwidth is underutilized. They assumed
network bandwidth to be constant for calculating laxity
values of video blocks and then scheduling them with
these values. Sabat and Williamson proposed a technique
called cluster-based smoothing [10] to reduce the average
per-stream effective bandwidth for the transmission of
MPEG compressed video streams. By rearranging the
transmission order of frames within windows, the
technique exploits the periodic structure of an MPEG
video stream, and the bit rate fluctuations across scenes.
Lee and Yeom proposed the tip prefetching protocol [11],
which prefetched parts of the largest blocks of VBR
videos in the buffer to avoid reserving buffers and disk
bandwidth according to the size of the largest block.

Approaches described above have several defects for
the real-time SMIL presentation. First, these approaches
focused on averaging bandwidth requirements for VBR-
encoded videos in the VOD system, which consists of the
video data only. No matter how these schemes operate,
extra buffers are consumed in the client to store the
prefetched video data for later display. Without precise
buffer management for continuous media in the SMIL
presentation, resource-limited mobile devices such as the
PDA may run out of their buffers and hence interrupt the
SMIL presentation. Under this circumstance, the client
suffers QoS degradation. Second, these approaches did
not mention how to cooperate with underlying network
protocols. If no bandwidth reservation scheme applied
over the entire transmission path, available network
bandwidth for the continuous SMIL object may
dynamically change with time without any control. In this
way, the SMIL player has the problem to handle the out-
of-synchronization media data, as discussed in section one.
However, current bandwidth reservation scheme like
RSVP [12] is a sophisticated and expensive process. We
will not base on the bandwidth reservation in this paper.
In section three, we will propose our adaptive prefetching
protocol for the client and media server with a much
easier approach that continuously monitors the available
ATM ABR bandwidth and delay to calculate the most

appropriate prefetching time for next periods of video
data such that client buffer consumption can be minimized.

3. The QoS-Guaranteed prefetching protocol

In this paper, whole duration of the continuous object
is divided into multiple periods, which are equal to the
minimal unit of the object. For example, duration of the
Group of Picture (GOP) in the MPEG-encoded video is
used for this purpose. The duration of a period for a
MPEG-encoded video object i is fixed and called as DUi.
In order to minimize the size of consumed buffers for the
continuous object in the client as close as possible to what
the SMIL player actually needs for next display period,
our protocol must calculate the most appropriate
prefetching time for each period according to the
dynamically changed ATM ABR bandwidth (BW) and
transmission delay (D). If the transmission delay and
network bandwidth from the media server to the client for
next period is known in advance, our prefetching protocol
can exactly request the media server for these data at the
most appropriate time to minimize the size of extra
buffers. However, because the delay and bandwidth are
affected by instantaneous network traffic along the path, it
is hard to predict their exact values before the client has
received these data. In such a way, our protocol simply
uses the observed D and BW values of current period to
calculate the prefetching time of next period. We will
discuss how to measure the bandwidth and delay, and
then how to use these two values to estimate the
prefetching time for object data of next period in the
following.

3.1. Measurement of transmission delay (D)

If the client and server are clock-synchronized, the
server can carry the timestamp value, which is assigned as
the system time of it when the packet is emitted to the
client, in the data packet. Whenever the client receives the
data packet, it can subtract the timestamp value from its
current system time to measure the delay of current period.
However, system time synchronization is a well-known
problem in the distributed system [13] and all machines
are not assumed to be clock-synchronized in this paper. In
our approach, the client sends a Request packet with its
timestamp value, which is called as T1, to the server and
then the server sends back the Reply packet with this
value. Whenever the client receives the Reply packet, it
can calculate the Dp value with Equation 1 as half of the
round trip time, which is the difference between the
current time, i.e., T2, of the client and T1, of period p. The
time the Request packet of period p received by the server
is called as i

pRT . This operation is shown in Figure 1. The

more frequently the request packet sends, the more

Server

Player

DTp

the last bit

RTp

 PTp

NBp bits…

t
T2

T1 = DTp-1

Dp

Request
(Dp-1, TTp-1)

Reply

Dp

the first bit

Period p DUi

TTp Dp

TTp

Dp

RTp+1

 PTp+1

accurate the Dp value is and the lesser extra buffers are
wasted. But unfortunately, the more network bandwidth is
consumed. We will discuss how to reduce the request
frequency in section 3.4.

)1(....................
2

12 TTDp
−

=

Figure 1. Operation for measuring the delay and
bandwidth

3.2. Measurement of ATM ABR bandwidth (BW)

Immediately after the Reply packet, the server sends
data bits of the period to the client and then stops its
transmission. For stored continuous objects in the SMIL
presentation, the data size of period p for object i is i

pNB ,

which is known by the media server in advance. If
MaxRTTi is the maximum round trip delay of object i
along the path from the server to the client and i

pDT is the

display time of period p, the server must send out i
pNB

bits with the rate i
pR calculated by Equation 2. The

number of eligible received bits, i.e., i
pRB , by the client

before i
pDT is less than or equal to the value of i

pNB .

With Equation 3, the client can calculate the average
bandwidth of period p, i.e., i

pBW , by dividing i
pRB with

the measured transfer time, i.e., i
pTT . The bandwidth

measurement operation is also shown in Figure 1.

.(3)........../

.(2).)/(

……………=

……−=
i
p

i
p

i
p

iii
p

i
p

TTRBBW

MaxRTTDUNBR

3.3. Calculation of the prefetching time (PT)

The scenario of our adaptive protocol is shown in
Figure 1. The prefetching time of period 1, i.e., iPT1 , is
the time when the first Request packet is received. It is
equal to the iRT1 value. The prefetching time of period

p+1 (i
pPT 1+) can be calculated by the server with the

prefetching time (i
pPT), delay (i

pD) and transfer time
(i

pTT) of period p with Equation 4, where both i
pTT and

i
pD are sent within the Request packet from the client.

)4.......(221 i
p

i
pi

p
i
p

i
p

i
p

i
p

i
p BW

RB
DPTTTDPTPT ++=++=+

If the actual bandwidth and delay of current period are
different from those of the previous period, the calculated
prefetching time by Equation 4 would be inaccurate. We
propose an adaptation mechanism to compensate for this
defect. As shown in Figure 2, there are three cases for the
calculated iPT2 value. They are denoted as x, y and z
respectively and are formulated with three general
equations.

Figure 2. Scenario of the prefetching protocol

)7.......(..........,

)6......(..........,

)5......(..........,

zcaseRTPT

ycaseRTPT

xcaseRTPT

i
p

i
p

i
p

i
p

i
p

i
p

>

=

<

If the calculated prefetching time satisfies Equation 5
or 6, this prefetching time is reasonable because it is equal
to or latter than the time the Request packet is received.
The server transmits data of this period at the calculated
prefetching time. Otherwise, this value is rejected and
should be modified as i

pRT . In this case, the server starts
to transmit data immediately after the Reply packet is sent.

Whenever the server has decided the prefetching time,
the data is transmitted to the client. However, because of
fluctuation of the bandwidth and delay during
transmission, the time at which the data is completely
received by the client falls in three possible cases:

Case (a) or (b): In these two cases, data bits of the period
are completely arrived before or exactly at the display
time i

pDT . The transfer time i
pTT is measured as the

 x y z

 a b c

Server

Player

DT1

RT1
=PT1

t

DT0

Request

Reply

D1

Period 1

TT1 D1

D1

DT2

Period 2

RT2
 PT2

the last bit

Request
(D1, TT1)

the first bit

duration between receiving the first and last bit of this
period. The client then plays back the data and sends next
Request packet to the server at the display time.

Case (c): Data bits received before their display time are
counted up as the eligible received bits i

pRB , but others
should be dropped by the client. The transfer time i

pTT is

measured as the duration between receiving the first bit
and the display time i

pDT of this period. For minimizing
the effect of dropping data, many approaches are possible.
The first approach is to use scalable video coding [14] to
reduce the data size of next period on the fly. The second
one is to dynamically adjust bandwidth among concurrent
SMIL objects [14]. The third one is to rearrange the
transmission sequence for MPEG-encoded video with I
and P frames first [9].

The proposed prefetching algorithms for the server and
the client are listed below:
The server algorithm:
Begin

Accept the connection from the client for continuous object i
if the access control is granted;

Initialize current period p as 1;
While (not end of object i)

Wait for the Request packet from the client;
If (p=1) // the first Request packet

ii RTPT 11 = ;
Else

Calculate the prefetching time of period p;
i
p

i
p

i
p

i
p TTDPTPT 111 2 −−− ++= ;

If (i
p

i
p RTPT <) then

i
p

i
p RTPT = ;

Endif
Send the Reply packet back to the client;
Transmit total data bits of period p to the client with rate

i
pR ;

Advance to next period, p = p+1;
End; // of while
Terminate the connection with the client;

End

The client algorithm:
Begin

Setup a connection with the server for continuous object i;
Initialize current period p as 1;
While (not end of object i)

If (p=1) // the first Request packet
Send the Request packet to the server;

Else
Send i

pD 1−
 and i

pTT 1−
 within the Request packet to the

server;
Endif
Wait for the Reply packet from the server;

Calculate i
pD of current period;

Store data bits arrived before i
pDT in the buffer and drop

following bits;
Calculate i

pRB , i
pTT and corresponding i

pBW ;

Display the media data of period p;
p = p+1;

End; //of while
Terminate the connection with the server;

End.

3.4. Scenario for reducing the Request packet

For reducing the number of the Request packet, the
client sends it to the server every L periods, which is
called as the macro period in this paper, instead of every
period. Whenever the server receives the Request packet,
it will calculate the prefetching time for this macro period
and send back the Reply packet as described in the server
algorithm. A few modifications are as follow. The server
continues transmitting total data bits of this macro period
to the client. The client then calculates the total transfer
time during this macro period and sends it back to the
server with the delay. Equation 4 is modified as Equation
8 to calculate the prefetching time of macro period p.
However, the client still has to monitor every period and
drop data bits received after its display time, as described
in the client algorithm. With this approach, the number of
the Request packet is reduced to one L-th of the original
requests. However, the calculated prefetching time would
be more inaccurate if the delay, ATM ABR bandwidth
and encoded video bit rate fluctuate more severely during
this macro period. In this way, consumed buffers in the
client may not be minimized. We will examine the
tradeoff of this approach in the following simulations.

Figure 3. Scenario for reducing the Request packet

Server

Player

DT(p-1)L+1

RT (p-1)L+1
 PT (p-1)L+1

t

DT(p-1)L

Request

Reply

D (p-1)L+1

Period
(p-1)L+1

TTpL

RTpL+1
 PTpL+1

Request
(D(p-1)L+1, ΣTT)

DTpL

Period
pL

Period
(p-1)L+2

Macro Period p

)8...(..........2

2

1)1(
1)1(1)1(

1)1(
1)1(1)1(1

∑

∑

+−=
+−+−

+−=
+−+−+

++=

++=

pL

Lpj
i
j

i
ji

Lp
i

Lp

pL

Lpj

i
j

i
Lp

i
Lp

i
pL

BW
RB

DPT

TTDPTPT

4. Simulation results

The wireless ATM simulation environment based on
the parking lot configuration [16] is shown in Figure 4.
Link bandwidth is assumed to be 155Mbps. The last link
to the mobile client is a wireless ATM connection. The
background VBR connection passes through all three
switches from Server 2. The background ABR1
connection comes from Server 3 to Client 1 through all
three switches and the background ABR2 connection
comes from Server 7 to Client 2 through Switch 3. Three
VBR-encoded video clips with different burstiness values
are transmitted individually by an inexpensive ABR
connection, whose bandwidth is varied due to the
background VBR and ABR connections, from Server 1 to
mobile Client 3 through all three switches. The cell delay
within a switch is linearly proportional to the queue
length of each switch. Traffic parameters of all
connections are listed in Table 1. Their bit rate diagrams
are shown in Figure 5, 6 and 7 respectively and their
burstiness values are listed in Table 1. With the GOP
sequence of these MPEG-encoded videos as
IBBPBBPBBPBBPBB, the display duration is 500ms in
our simulations.

SERVER1
Client#2

ATM SWITCH #1 ATM SWITCH #2 ATM SWITCH #3

SERVER2

SERVER3

SERVER4

SERVER5

SERVER6

SERVER7

Client#1

Mobile Host (Client#3)

Figure 4. The Wireless ATM simulation environment

Table 1. Traffic parameters in the simulation

Object
Name

Size
(Mbps)

Peak
Rate

Min.
Rate

Avg.
Rate

Burstiness
(Peak/Avg.) Source

VBR 84.8 6.4 2.34 4.29 1.49 Poisson process
(λ=200 cell/ms)

ABR1 8 0.6 0.04 0.42 1.42 Poisson process
(λ=18 cell/ms)

ABR2 8 0.6 0.04 0.42 1.42 Poisson process
(λ=18 cell/ms)

Video1 15.7 0.9 0.1 0.41 2.2 Rush Hour MPEG2
40:14-40:34 sec.

Video2 14.3 0.52 0.1 0.37 1.41 Runaway Bride MPEG2
25:50-26:10 sec

Video3 11.2 0.34 0.12 0.27 1.26 Runaway Bride MPEG2
37:44-38:04 sec

Simulation results with three prefetching protocols, i.e.,
no prefetching, fixed prefetching, and our adaptive QoS-
guaranteed prefetching schemes, are compared. With the
no prefetching scheme, the media server uses all available
ABR bandwidth to transmit the video data to the mobile
client. With the fixed prefetching protocol, the server
simply transmits data bits of next period one period, i.e.,
500ms, earlier. It then stops and waits for next period.
However, video bits of next period in our adaptive
scheme can be sent at the most appropriate time which is
adjusted with the client’s feedback information.

First, Figure 8, 9 and 10 show curves of the total
received data with time for three video clips by these
three schemes on the client. Because the no prefetching
scheme conveys video data with all available bandwidth,
the mobile client receives more data such that its curves
are far away from those of other two schemes. With our
adaptive scheme, the server dynamically transmits the
data depending on the measured bandwidth and delay
values such that its curves are far close to those of the
client actually needs than curves of the fixed scheme are.
Second, the extra buffer percentage at each time is
defined as the difference between the total received data
and the actual needed data divided by the bit rate of the
video at that time. As shown in Figure 11, 12 and 13, our
adaptive scheme consumes much less percent of extra
buffer to store video data not necessary at that time than
the fixed scheme, let alone the no prefetching scheme.
Table 2 lists the average percentages of extra buffer for
these three schemes. Our adaptive scheme significantly
reduces the extra buffer consumption to at least one tenth
of the fixed scheme. Third, different L values are
simulated to reduce the overhead of our adaptive scheme.
Their percentages of extra buffer for the three video clips
are shown in Figure 14, 15 and 16 respectively. Their
average percentage values are illustrated in Table 3. The
larger the L value is, the more average percentage the
extra buffer consumed. Our adaptive scheme with a
specific L value still outperforms over the fixed scheme
that prefetches data of next L periods once. Further, these
performance metrics are closely related to the burstiness
values of the video clips. The larger the burstiness value
of the video clip is, the larger the ratio, which is average
extra buffer percentages of the fixed scheme over that of
the adaptive scheme, is. It means if the VBR-encoded
video has larger burstiness value, the adaptive scheme is
much better than the fixed scheme (table 2) and the
average percentage of extra buffer grows faster with the
increasing L value (table3).

Table 2. Average percentages of extra buffer for video
1, 2 and 3 with three prefetching schemes

Video Object
(Burstiness)

Adaptive Fixed No Fixed/Adaptive
Ratio

Video1
(2.2) 0.15% 3.23% 544.63% 21.53

Video2
(1.41) 0.13% 1.35% 656.44% 10.38

Video3
(1.26) 0.11% 1.05% 937.47% 9.55

Table 3. Average percentages of extra buffer for
video 1, 2 and 3 with different request (L) values by

the adaptive scheme

Object L=1 L=2 L=4 L=8
Video1 (2.2) 0.15% 3.2% 8.41% 26.09%
Video2 (1.41) 0.13% 3.1% 8.04% 22.67%
Video3 (1.26) 0.11% 2.0% 4.24% 10.70%

5. Conclusion

In this paper, an adaptive QoS-guaranteed prefetching
scheme for VBR-encoded continuous objects is proposed
to minimize the size of extra buffer used by the resource-
limited client under fluctuated network bandwidth and
delay. A scenario to reduce the scheme overhead is also
described. Simulation results illustrate excellent
performance results of this scheme over other two
prefetching schemes, especially for bursty video clips. It
achieves at least ten times reduction on average consumed
extra buffer.

6. References

[1] W3C, “W3C Issues Synchronized Multimedia Integration
Language (SMIL 2.0) Specification”,
http://www.w3.org/TR/SMIL20.html, 2000.

[2] The SMIL 2.0 Prefetch Control Module,
http://www.w3.org/TR/smil20/smil-content.html#edef-prefetch,
2001.

[3] Microsoft Internet Explorer 6.0 Public Preview,
http://microsoft.com/windows/ie/preview/default.asp, 2001.

[4] Real One Platform,
http://www.realnetworks.com/solutions/ecosystem/realone.html?
src=rnhmfs, 2001.

[5] X-Smiles, http://www.x-smiles.org, 2001.

[6] Networkfusion, “Qwest Revealed to Network World Last
Week a New Line of Enterprise Services in the Basic Categories
Favored by the Big 3 Carriers: Frame Relay, ATM, Private
Lines and Internet Access”,
http://www.nwfusion.com/news/1214qwest.html, 1998.

[7] F. Fluckiger, “Understanding Networked Multimedia:
Applications and Technology”, Prentice Hall, 1995.

[8] M. Reisslein and K.W. Ross, “High-performance Prefetching
Protocols for VBR Prerecorded Video”, IEEE Network, Vol. 12,
Nov. 1998, pp. 46 – 55.

[9] C. S. Lin, M. Y. Wu and W. Shu, ”Transmitting Variable-
Bit-Rate Videos on clustered VoD systems”, IEEE International
Conference on Multimedia and Expo, Vol. 3, 2000, pp. 1461-
1464.

[10] R. Sabat and C. Williamson, “Cluster-based Smoothing for
MPEG-based Video-on-demand Systems”, IEEE International
Conference on Performance, Computing, and Communications,
2001, pp. 339-346.

[11] D. Y. Lee and H. Y. Yeom, “Tip Prefetching: Dealing with
the Bit Rate Variability of Video Streams”, IEEE International
Conference on Multimedia Computing and Systems, Vol. 2, June
1999, pp. 352 – 356.

[12] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala,
“RSVP: A New Resource ReSerVation Protocol”, IEEE
Network, Sept. 1993.

[13] B. Barak, S. Halevi, A. Herzberg and D. Naor, “Clock
Synchronization with Faults and Recoveries”, the Nineteenth
Annual ACM Symposium on Principles of Distributed
Computing, July 2000, pp. 133-142.

[14] D. Wu, Y.T. Hou and Y.Q. Zhang, “Scalable Video Coding
and Transport over Broad-Band Wireless Networks”,
Proceedings of IEEE, Vol. 89, No. 1, Jan. 2001, pp. 6-20.

[15] I. C. Chang and S. W. Hsieh, “An Adaptive QoS Guarantee
Framework for SMIL Multimedia Presentations with ATM ABR
Service”, Master Thesis, Department of Information
Management, Chaoyang University of Technology, 2001.

[16] C.L. Lee, Y.C. Chen and J.R Chen, “A Simplified
Approach Based on Source Control for ATM ABR Service”,
Computer Communication, vol. 24, pp.1272-1282, 2001.

Video1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

time

M
B

Fig. 5 Bit rate diagram of video 1.

Video2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

time

M
B

Fig. 6 Bit rate diagram of video 2.

Video3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5000 10000 15000 20000

time

M
B

Fig. 7 Bit rate diagram of video 3.

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000

time

M
B

Actual
Adaptive
Fixed
No

Fig. 8 Total received sizes for video 1

with three prefetching schemes

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000

time

M
B

Actual
Adaptive
Fixed
No

Fig. 9 Total received sizes for video 2

with three prefetching schemes

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000

time

M
B Actual

Adaptive
Fixed
No

Fig. 10 Total received sizes for video
3 with three prefetching schemes

-6%
-5%
-4%
-3%
-2%
-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

0 5000 10000 15000 20000
time

% Adaptive

Fixed

Fig. 11 Extra buffer percentages for

video 1 with two prefetching schemes

-6%
-5%
-4%
-3%
-2%
-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

0 5000 10000 15000 20000

time

% Adaptive

Fixed

Fig. 12 Extra buffer percentages for

video 2 with two prefetching schemes

-6%
-5%
-4%
-3%
-2%
-1%
0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%

0 5000 10000 15000 20000
time

% Adaptive

Fixed

Fig. 13 Extra buffer percentages for

video 3 with two prefetching schemes

-5%

5%

15%

25%

35%

45%

0 5000 10000 15000 20000

time

% L1

L2

L4

L8

Fig. 14 Extra buffer percentages for

video 1 with different L values

-5%

5%

15%

25%

35%

45%

0 5000 10000 15000 20000

time

% L1

L2

L4

L8

Fig. 15 Extra buffer percentages for
video 2 with different L values

-5%

5%

15%

25%

35%

45%

0 5000 10000 15000 20000

time

% L1

L2

L4

L8

Fig. 16 Extra buffer percentages for
video 3 with different L values

