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Abstract 
 

For supporting resource-limited mobile clients, such 
as the PDA, with the QoS-guaranteed real-time SMIL 
multimedia presentation over the wireless ATM network, 
we propose an adaptive prefetching protocol for VBR-
encoded streaming objects between the mobile client and 
the media server to minimize the size of extra buffer under 
fluctuated ATM ABR bandwidth and transmission delay. 
Simulation results exhibit excellent performances of this 
protocol for VBR video clips with different degrees of bit 
rate burstiness. Further, the scenario to reduce the 
protocol overhead, i.e., the number of transmitted control 
messages, is described. We also investigate the tradeoff 
between the size of extra buffer and the frequency of 
control messages. 
  
1. Introduction 
 

The World Wide Web Consortium (W3C) has 
standardized the Synchronized Multimedia Integration 
Language (SMIL) [1] for real-time streaming multimedia 
presentations. The SMIL presentation can be composed of 
streaming audio segments, streaming video clips, images, 
texts, and other media objects. These media objects could 
be stored at different media servers and accessed by their 
universal resource locators (URL). According to the 
temporal relationship specified in the SMIL presentation, 
the client requests media objects, which should be 
transmitted to the client in real-time for synchronous 
playback. However, the SMIL specification does not 
discuss how to support real-time transmission of diverse 
media objects from different servers through networks. 
These object data may suffer different delays, jitters and 
data losses, which makes the client difficult to have a 
smooth and synchronous presentation. 

For continuous streaming video and audio objects in 
the SMIL presentation, necessary portion of media data 
must be transmitted from corresponding media servers 
and received by the client to continue their playbacks 
without interruptions. If any media data miss their 
playback time, which is called as their deadline, the client 
must have to resolve this problem with more extra efforts 
to keep the whole presentation synchronized. For example, 
the client may request media data more earlier, buffer all 

incoming media data, examine whether these data miss 
their deadlines and drop them if needed to catch up with 
other media objects during the SMIL presentation. With 
this kind of approach, network bandwidth and system 
buffers are consumed much more than necessarily to 
transmit and store the media data, even though parts of 
these data are discarded finally. This approach cannot 
work on resource-limited mobile clients, such as the 
personal digital assistant (PDA), those usually only own 8 
to 16MB RAM. Further, the SMIL 2.0 specification 
defines a “prefetch” element to improve the rendering 
performance of the document [2]. The mediaSize, 
mediaTime and bandwidth attributes are used to define 
how much of the resource is fetched as a function of the 
file size, file duration and network bandwidth. Most 
SMIL implementations [3-5] lack mechanisms to support 
this element and provide the user with a guaranteed 
quality of service (QoS) for the SMIL presentation. 
Consequently, an adaptive approach is necessary to 
guarantee the SMIL QoS requirement with minimal 
resource consumption for the mobile client. 

In this paper, we first assume the client operates in a 
wireless ATM environment. Each streaming object is 
transmitted by an available bit rate (ABR) connection 
because of its inexpensive cost [6]. Available bandwidth 
for the ABR service is varied with the background 
constant bit rate (CBR) and variable bit rate (VBR) 
services because it uses the remaining bandwidth left by 
the CBR and VBR services. Second, the video objects are 
variable bit rate (VBR) encoded. It means they have 
different degrees of bit rate burstiness, which is defined as 
the ratio of its peak rate divided by the average rate [7]. 
Finally, the cost of consuming extra buffer spaces in the 
resource-limited client is much higher than the cost of 
transmitting control messages to the media server.  

In the paper, related works are summarized in section 
two. We will propose an adaptive protocol for the VBR-
encoded video in section three to control the prefetching 
process between the mobile client and media server with 
minimal buffer consumptions and guaranteed the SMIL 
QoS. We will also describe the scenario to reduce the 
number of control messages and investigate the tradeoff 
between the size of extra buffer and the control frequency. 
Simulation results are shown in section four to exhibit 



excellent results for video clips with different burstiness 
values. Finally, section five concludes this paper. 
2. Related works 
 

Reisslein et al. [8] described their high-performance 
prefetching protocol for the transport of VBR prerecorded 
video over a shared channel. During frequent periods, 
which the network bandwidth is under utilized, the server 
can prefetch frames from any of the ongoing videos and 
send the frames to the buffers in the appropriate clients. 
Lin et al. [9] proposed a scheduling algorithm for the 
VBR video to generate conflict-free network transmission 
schedules on clustered VOD system. Its goal is to achieve 
near 100% bandwidth utilization by prefetching high-rate 
portions of video during periods of low-rate portions 
where network bandwidth is underutilized. They assumed 
network bandwidth to be constant for calculating laxity 
values of video blocks and then scheduling them with 
these values. Sabat and Williamson proposed a technique 
called cluster-based smoothing [10] to reduce the average 
per-stream effective bandwidth for the transmission of 
MPEG compressed video streams. By rearranging the 
transmission order of frames within windows, the 
technique exploits the periodic structure of an MPEG 
video stream, and the bit rate fluctuations across scenes. 
Lee and Yeom proposed the tip prefetching protocol [11], 
which prefetched parts of the largest blocks of VBR 
videos in the buffer to avoid reserving buffers and disk 
bandwidth according to the size of the largest block. 

Approaches described above have several defects for 
the real-time SMIL presentation. First, these approaches 
focused on averaging bandwidth requirements for VBR-
encoded videos in the VOD system, which consists of the 
video data only. No matter how these schemes operate, 
extra buffers are consumed in the client to store the 
prefetched video data for later display. Without precise 
buffer management for continuous media in the SMIL 
presentation, resource-limited mobile devices such as the 
PDA may run out of their buffers and hence interrupt the 
SMIL presentation. Under this circumstance, the client 
suffers QoS degradation. Second, these approaches did 
not mention how to cooperate with underlying network 
protocols. If no bandwidth reservation scheme applied 
over the entire transmission path, available network 
bandwidth for the continuous SMIL object may 
dynamically change with time without any control. In this 
way, the SMIL player has the problem to handle the out-
of-synchronization media data, as discussed in section one. 
However, current bandwidth reservation scheme like 
RSVP [12] is a sophisticated and expensive process. We 
will not base on the bandwidth reservation in this paper. 
In section three, we will propose our adaptive prefetching 
protocol for the client and media server with a much 
easier approach that continuously monitors the available 
ATM ABR bandwidth and delay to calculate the most 

appropriate prefetching time for next periods of video 
data such that client buffer consumption can be minimized. 
 
3. The QoS-Guaranteed prefetching protocol 
 

In this paper, whole duration of the continuous object 
is divided into multiple periods, which are equal to the 
minimal unit of the object. For example, duration of the 
Group of Picture (GOP) in the MPEG-encoded video is 
used for this purpose. The duration of a period for a 
MPEG-encoded video object i is fixed and called as DUi. 
In order to minimize the size of consumed buffers for the 
continuous object in the client as close as possible to what 
the SMIL player actually needs for next display period, 
our protocol must calculate the most appropriate 
prefetching time for each period according to the 
dynamically changed ATM ABR bandwidth (BW) and 
transmission delay (D). If the transmission delay and 
network bandwidth from the media server to the client for 
next period is known in advance, our prefetching protocol 
can exactly request the media server for these data at the 
most appropriate time to minimize the size of extra 
buffers. However, because the delay and bandwidth are 
affected by instantaneous network traffic along the path, it 
is hard to predict their exact values before the client has 
received these data. In such a way, our protocol simply 
uses the observed D and BW values of current period to 
calculate the prefetching time of next period. We will 
discuss how to measure the bandwidth and delay, and 
then how to use these two values to estimate the 
prefetching time for object data of next period in the 
following. 
 
3.1. Measurement of transmission delay (D) 
 

If the client and server are clock-synchronized, the 
server can carry the timestamp value, which is assigned as 
the system time of it when the packet is emitted to the 
client, in the data packet. Whenever the client receives the 
data packet, it can subtract the timestamp value from its 
current system time to measure the delay of current period. 
However, system time synchronization is a well-known 
problem in the distributed system [13] and all machines 
are not assumed to be clock-synchronized in this paper. In 
our approach, the client sends a Request packet with its 
timestamp value, which is called as T1, to the server and 
then the server sends back the Reply packet with this 
value. Whenever the client receives the Reply packet, it 
can calculate the Dp value with Equation 1 as half of the 
round trip time, which is the difference between the 
current time, i.e., T2, of the client and T1, of period p. The 
time the Request packet of period p received by the server 
is called as i

pRT . This operation is shown in Figure 1. The 

more frequently the request packet sends, the more 
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Figure 1. Operation for measuring the delay and 
bandwidth 

 
3.2. Measurement of ATM ABR bandwidth (BW) 
 

Immediately after the Reply packet, the server sends 
data bits of the period to the client and then stops its 
transmission. For stored continuous objects in the SMIL 
presentation, the data size of period p for object i is i

pNB , 

which is known by the media server in advance. If 
MaxRTTi is the maximum round trip delay of object i 
along the path from the server to the client and i

pDT  is the 

display time of period p, the server must send out i
pNB  

bits with the rate i
pR calculated by Equation 2. The 

number of eligible received bits, i.e., i
pRB , by the client 

before i
pDT  is less than or equal to the value of i

pNB . 

With Equation 3, the client can calculate the average 
bandwidth of period p, i.e., i

pBW , by dividing i
pRB  with 

the measured transfer time, i.e., i
pTT . The bandwidth 

measurement operation is also shown in Figure 1. 
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3.3. Calculation of the prefetching time (PT) 
 

The scenario of our adaptive protocol is shown in 
Figure 1. The prefetching time of period 1, i.e., iPT1 , is 
the time when the first Request packet is received. It is 
equal to the iRT1  value. The prefetching time of period 

p+1 ( i
pPT 1+ ) can be calculated by the server with the 

prefetching time ( i
pPT ), delay ( i

pD ) and transfer time 
( i

pTT ) of period p with Equation 4, where both i
pTT  and 

i
pD  are sent within the Request packet from the client.  
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If the actual bandwidth and delay of current period are 
different from those of the previous period, the calculated 
prefetching time by Equation 4 would be inaccurate. We 
propose an adaptation mechanism to compensate for this 
defect. As shown in Figure 2, there are three cases for the 
calculated iPT2 value. They are denoted as x, y and z 
respectively and are formulated with three general 
equations. 

Figure 2. Scenario of the prefetching protocol 
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If the calculated prefetching time satisfies Equation 5 
or 6, this prefetching time is reasonable because it is equal 
to or latter than the time the Request packet is received. 
The server transmits data of this period at the calculated 
prefetching time. Otherwise, this value is rejected and 
should be modified as i

pRT . In this case, the server starts 
to transmit data immediately after the Reply packet is sent. 

Whenever the server has decided the prefetching time, 
the data is transmitted to the client. However, because of 
fluctuation of the bandwidth and delay during 
transmission, the time at which the data is completely 
received by the client falls in three possible cases: 
 
Case (a) or (b): In these two cases, data bits of the period 
are completely arrived before or exactly at the display 
time i

pDT . The transfer time i
pTT  is measured as the 
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duration between receiving the first and last bit of this 
period. The client then plays back the data and sends next 
Request packet to the server at the display time. 
 
Case (c): Data bits received before their display time are 
counted up as the eligible received bits i

pRB , but others 
should be dropped by the client. The transfer time i

pTT  is 

measured as the duration between receiving the first bit 
and the display time i

pDT  of this period. For minimizing 
the effect of dropping data, many approaches are possible. 
The first approach is to use scalable video coding [14] to 
reduce the data size of next period on the fly. The second 
one is to dynamically adjust bandwidth among concurrent 
SMIL objects [14]. The third one is to rearrange the 
transmission sequence for MPEG-encoded video with I 
and P frames first [9].  
 

The proposed prefetching algorithms for the server and 
the client are listed below: 
The server algorithm: 
Begin 

Accept the connection from the client for continuous object i 
if the access control is granted; 

Initialize current period p as 1; 
While (not end of object i)  

Wait for the Request packet from the client; 
If (p=1)  // the first Request packet 

ii RTPT 11 = ; 
Else  

Calculate the prefetching time of period p;  
i
p

i
p

i
p

i
p TTDPTPT 111 2 −−− ++= ; 

If ( i
p

i
p RTPT < ) then 

i
p

i
p RTPT = ; 

Endif 
Send the Reply packet back to the client; 
Transmit total data bits of period p to the client with rate 

i
pR ; 

Advance to next period, p = p+1; 
End;  // of while 
Terminate the connection with the client; 

End 
 
The client algorithm: 
Begin    

Setup a connection with the server for continuous object i; 
Initialize current period p as 1; 
While (not end of object i) 

If (p=1)  // the first Request packet 
Send the Request packet to the server; 

Else  
Send i

pD 1−
 and i

pTT 1−
 within the Request packet to the 

server; 
Endif 
Wait for the Reply packet from the server; 

Calculate i
pD  of current period; 

Store data bits arrived before i
pDT  in the buffer and drop 

following bits; 
Calculate i

pRB , i
pTT  and corresponding i

pBW ; 

Display the media data of period p; 
p = p+1; 

End;  //of while 
Terminate the connection with the server; 

End. 
 
3.4. Scenario for reducing the Request packet 
 

For reducing the number of the Request packet, the 
client sends it to the server every L periods, which is 
called as the macro period in this paper, instead of every 
period. Whenever the server receives the Request packet, 
it will calculate the prefetching time for this macro period 
and send back the Reply packet as described in the server 
algorithm. A few modifications are as follow. The server 
continues transmitting total data bits of this macro period 
to the client. The client then calculates the total transfer 
time during this macro period and sends it back to the 
server with the delay. Equation 4 is modified as Equation 
8 to calculate the prefetching time of macro period p. 
However, the client still has to monitor every period and 
drop data bits received after its display time, as described 
in the client algorithm. With this approach, the number of 
the Request packet is reduced to one L-th of the original 
requests. However, the calculated prefetching time would 
be more inaccurate if the delay, ATM ABR bandwidth 
and encoded video bit rate fluctuate more severely during 
this macro period. In this way, consumed buffers in the 
client may not be minimized. We will examine the 
tradeoff of this approach in the following simulations. 

Figure 3. Scenario for reducing the Request packet 
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4. Simulation results 
 

The wireless ATM simulation environment based on 
the parking lot configuration [16] is shown in Figure 4. 
Link bandwidth is assumed to be 155Mbps. The last link 
to the mobile client is a wireless ATM connection. The 
background VBR connection passes through all three 
switches from Server 2. The background ABR1 
connection comes from Server 3 to Client 1 through all 
three switches and the background ABR2 connection 
comes from Server 7 to Client 2 through Switch 3. Three 
VBR-encoded video clips with different burstiness values 
are transmitted individually by an inexpensive ABR 
connection, whose bandwidth is varied due to the 
background VBR and ABR connections, from Server 1 to 
mobile Client 3 through all three switches. The cell delay 
within a switch is linearly proportional to the queue 
length of each switch. Traffic parameters of all 
connections are listed in Table 1. Their bit rate diagrams 
are shown in Figure 5, 6 and 7 respectively and their 
burstiness values are listed in Table 1. With the GOP 
sequence of these MPEG-encoded videos as 
IBBPBBPBBPBBPBB, the display duration is 500ms in 
our simulations. 
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Figure 4. The Wireless ATM simulation environment 

 
Table 1. Traffic parameters in the simulation 

 
Object 
Name 

Size 
(Mbps) 

Peak 
Rate 

Min. 
Rate 

Avg. 
Rate 

Burstiness 
(Peak/Avg.) Source 

VBR 84.8 6.4 2.34 4.29 1.49 Poisson process 
(λ=200 cell/ms) 

ABR1 8 0.6 0.04 0.42 1.42 Poisson process 
(λ=18 cell/ms) 

ABR2 8 0.6 0.04 0.42 1.42 Poisson process 
(λ=18 cell/ms) 

Video1 15.7 0.9 0.1 0.41 2.2 Rush Hour MPEG2 
40:14-40:34 sec. 

Video2 14.3 0.52 0.1 0.37 1.41 Runaway Bride MPEG2 
25:50-26:10 sec 

Video3 11.2 0.34 0.12 0.27 1.26 Runaway Bride MPEG2 
37:44-38:04 sec 

 

Simulation results with three prefetching protocols, i.e., 
no prefetching, fixed prefetching, and our adaptive QoS-
guaranteed prefetching schemes, are compared. With the 
no prefetching scheme, the media server uses all available 
ABR bandwidth to transmit the video data to the mobile 
client. With the fixed prefetching protocol, the server 
simply transmits data bits of next period one period, i.e., 
500ms, earlier. It then stops and waits for next period. 
However, video bits of next period in our adaptive 
scheme can be sent at the most appropriate time which is 
adjusted with the client’s feedback information.  

First, Figure 8, 9 and 10 show curves of the total 
received data with time for three video clips by these 
three schemes on the client. Because the no prefetching 
scheme conveys video data with all available bandwidth, 
the mobile client receives more data such that its curves 
are far away from those of other two schemes. With our 
adaptive scheme, the server dynamically transmits the 
data depending on the measured bandwidth and delay 
values such that its curves are far close to those of the 
client actually needs than curves of the fixed scheme are.  
Second, the extra buffer percentage at each time is 
defined as the difference between the total received data 
and the actual needed data divided by the bit rate of the 
video at that time. As shown in Figure 11, 12 and 13, our 
adaptive scheme consumes much less percent of extra 
buffer to store video data not necessary at that time than 
the fixed scheme, let alone the no prefetching scheme. 
Table 2 lists the average percentages of extra buffer for 
these three schemes. Our adaptive scheme significantly 
reduces the extra buffer consumption to at least one tenth 
of the fixed scheme. Third, different L values are 
simulated to reduce the overhead of our adaptive scheme. 
Their percentages of extra buffer for the three video clips 
are shown in Figure 14, 15 and 16 respectively. Their 
average percentage values are illustrated in Table 3. The 
larger the L value is, the more average percentage the 
extra buffer consumed. Our adaptive scheme with a 
specific L value still outperforms over the fixed scheme 
that prefetches data of next L periods once. Further, these 
performance metrics are closely related to the burstiness 
values of the video clips. The larger the burstiness value 
of the video clip is, the larger the ratio, which is average 
extra buffer percentages of the fixed scheme over that of 
the adaptive scheme, is. It means if the VBR-encoded 
video has larger burstiness value, the adaptive scheme is 
much better than the fixed scheme (table 2) and the 
average percentage of extra buffer grows faster with the 
increasing L value (table3). 

 
 
 
 
 
 



Table 2. Average percentages of extra buffer for video 
1, 2 and 3 with three prefetching schemes 

 
Video Object 
(Burstiness) 

Adaptive  Fixed No  Fixed/Adaptive 
Ratio 

Video1 
(2.2) 0.15% 3.23% 544.63% 21.53 

Video2 
(1.41) 0.13% 1.35% 656.44% 10.38 

Video3 
(1.26) 0.11% 1.05% 937.47% 9.55 

 
 

Table 3. Average percentages of extra buffer for 
video 1, 2 and 3 with different request (L) values by 

the adaptive scheme 
 

Object L=1 L=2 L=4 L=8 
Video1 (2.2) 0.15% 3.2% 8.41% 26.09%
Video2 (1.41) 0.13% 3.1% 8.04% 22.67%
Video3 (1.26) 0.11% 2.0% 4.24% 10.70%

 
5. Conclusion 
 

In this paper, an adaptive QoS-guaranteed prefetching 
scheme for VBR-encoded continuous objects is proposed 
to minimize the size of extra buffer used by the resource-
limited client under fluctuated network bandwidth and 
delay. A scenario to reduce the scheme overhead is also 
described. Simulation results illustrate excellent 
performance results of this scheme over other two 
prefetching schemes, especially for bursty video clips. It 
achieves at least ten times reduction on average consumed 
extra buffer. 
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Fig. 5 Bit rate diagram of video 1. 
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Fig. 6 Bit rate diagram of video 2. 
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Fig. 7 Bit rate diagram of video 3. 
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Fig. 8 Total received sizes for video 1 

with three prefetching schemes 
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Fig. 9 Total received sizes for video 2 

with three prefetching schemes 

0

2

4

6

8

10

12

14

16

0 5000 10000 15000 20000

time

M
B Actual

Adaptive
Fixed
No

Fig. 10 Total received sizes for video 
3 with three prefetching schemes 
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Fig. 11 Extra buffer percentages for 

video 1 with two prefetching schemes 
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Fig. 12 Extra buffer percentages for 

video 2 with two prefetching schemes
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Fig. 13 Extra buffer percentages for 

video 3 with two prefetching schemes
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Fig. 14 Extra buffer percentages for 

video 1 with different L values 
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Fig. 15 Extra buffer percentages for 
video 2 with different L values 
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Fig. 16 Extra buffer percentages for 
video 3 with different L values 

 


