
PAPER SUMMITTED TO WORKSHOP ON MULTIMEDIA TECHNOLOGIES

A SIMPLE MUSIC TRANSPOSITION METHOD FOR COMPUTERS

Shingchern D. You

Department of Computer Science and Information Engineering

National Taipei University of Technology

1, Sec. 3, Chung-hsiao East Road,

Taipei 104, Taiwan

Tel: +886-2-2771-2171 Ext 4234

Fax: +886-2-8773-2945

Email: you@csie.ntut.edu.tw

ABSTRACT

This paper presents a simple approach to implement the music transposition function in personal

computers. This approach uses an inaccurate but simple method for sampling rate conversion and an

overlap-add method for compensating the duration change due to different sampling rates. The approach,

implemented by C on a Celeron 466 MHz PC, consumes less than 3% of CPU power.

Index terms: Music transposition, Sampling rate conversion, Overlap-add.

1. INTRODUCTION

The key-control function to adjust the pitch of music is almost a standard function in any karaoke-based

amplifier or player. Despite the popularity of the function, papers discussing the implementation details

were only a few [1]. In addition, commercial PC-based players are still not equipped with such a function.

By using the limited references, we implement such a function suitable for players running on PC.

2. BACKGROUND

The key-control function in a karaoke-based machine is to shift (transpose) the key of a piece of recorded

music up or down by a certain music intervals (semitones). The equal-tempered scale, used in pianos and

other musical instruments, divides an octave into 12 intervals each containing a semitone. The frequency

ratio between two consecutive semitones, e.g., C and C#, is a constant equal to 2 (1/12) = 1.059463.

Therefore, if we transpose all the notes of a piece of music up by one semitone, then we observe that the

frequency components of the music are all shifted by a ratio of 1.059463. It is quite easy to implement

frequency shift in discrete-time system. For example, if one second of 1 kHz sinusoidal signal is sampled

at 3 ks/s and reconstructed by a D/A converter at 6 ks/s, then the reconstructed signal is a 2 kHz

sinusoidal signal with a duration of one-half second, as shown in Figure 1. This example implies that if

the sampling rate of the pre-recorded music is different from the reconstructed one, then music

transposition occurs although the playback time of the music is different from the record time. Along with

the change of the playback time, the tempo (speed) of the music is changed also. This situation is not

desirable. Thus, the contents of the digitized music must be modified in order to keep the tempo. In

addition, using a lower reconstruction rate than the sampling rate implies that aliasing effect may occur

during reconstruction, and a digital low-pass filter may be needed before reconstruction. Therefore, a key-

control (transposition) system must be able to change the reconstruction rate and to modify the contents

and the length of the sampled music. Figure 2 depicts the block diagram of such a system. The system

performs the key shift by changing the reconstruction rate. To have the same tempo on the modified

music, the length of the sampled-version of signal is also modified in the system. Such system may be

embedded in a karaoke-based machine. However, this approach is not practical to be realized on a PC.

One reason is that changing the sampling rate on a PC requires to flush the audio buffer and to reset the

audio codec. This will produce an audible music pause (gap). The second, and more important, reason is

that the conversion rates available to choose from are very limited on a PC, thus a required conversion

rate may not be supported.

3. THE PROPOSED APPROACH

Based on the previous discussion, we know that the key-control system realized on a PC should use a

fixed reconstruction rate. In addition, the available inputs to the system are PCM samples at pre-defined

sampling rates, e.g., 44.1 ks/s or 48 ks/s, dependent on the signal sources. Under these conditions, we

must change the sampling rate of the incoming PCM samples in digital domain so that the sampling and

reconstruction rates are different. Accordingly, the change of sampling rate increases or decreases the

number of PCM samples in a fixed time. This implies that the total playback time of the modified PCM

samples is shortened or prolonged. Therefore the data length adjustment is also required. Combining

these two parts, the proposed approach, shown in Figure 3, is suitable to be realized on a PC. Note that

Figure 3 is for shifting up the music scale. To shift down the scale, we should perform decimation before

low-pass filtering. We now describe the proposed approach in details in the following.

3.1. Sampling-rate conversion

The process of sampling-rate conversion is to change the sampling rate of the PCM samples so that the

reconstruction rate can be fixed. Assuming that at first the pre-recorded music is sampled at 48 ks/s. The

D/A converter on a PC is also set to 48 ks/s. To shift up the scale of the music by one semitone, we have

to set the sampling rate of the music to

fs' = fs * r = 48 * 0.9438743 = 45.31 ks/s

where r is a scale factor. If the re-sampled piece of music is reconstructed at 48 ks/s on a PC, the

frequency scale of the music is shifted up by 48 / 45.31 = 1.0594, i.e., one semitone. On the other hand,

shifting down the music by one semitone requires changing the sampling rate of the music to

fs' = fs * r = 48 * 1.059463 = 51.33 ks/s

Tables 1 and 2 summarize the scale factor r and the corresponding target sampling rates for shifting up or

down based on the sampling and reconstruction rates of 48 ks/s.

In the above discussion, we need to convert the sampling rate of the PCM samples from 48 ks/s to

45.31 ks/s. Widely used in digital signal processing, this type of conversion can be achieved in three steps.

As shown in Figure 4, the first step of the conversion is to interpolate the samples by (M – 1). The second

step is to pass the resultant samples through a low-pass filter, and the final step is to decimate the filtered

samples by M. The value of M is calculated based on the scale factor r. For example, r = 0.9438743 is

approximated by

M
M 10.9438743 −

≈

Therefore, an approximate value of M is M = 18. Tables 1 and 2 also contain the values of M for various

scale factors r and the approximation errors. Efficient implementation of sampling-rate conversion is

available by using the polyphase Decomposition [2]. However, since the entire system is to be

implemented on a PC, the computational load is a major concern. Besides that, a PC-based karaoke

system is by no means to be a professional one. At least the quality of the reproduced sound is not very

good due to the PC speakers. Considering these factors, we decided not to use the re-sampling approach

mentioned previously. Instead, we used an imprecise, yet low-complexity, approach to perform the

conversion as follows. To reduce the sampling rate, the PCM samples are filtered by a second-order IIR

low-pass filter. One out of N filtered samples is then discarded. If the sampling rate is to be increased, one

zero is inserted out of N samples. Then, the IIR filter mentioned previously is used to smooth out the

zeros. Based on this method, we are unable to shift up or down the musical scale by more than 6

semitones. The subjective experiments showed that the quality of the modified music was mainly

determined by the overlap-and-add procedure mentioned later, not the sampling-rate conversion.

3.2. Resize the PCM samples

The PCM samples after the sampling-rate conversion have a total length different from its originals. For

the musical scales to be shifted up, we are in short of samples. For the scales to be shifted down, we have

too many samples. Therefore, we need to add or discard samples according to the shift condition. Note

that if samples are evenly added or discarded over the entire sample stream, then its effect is to undo the

sampling-rate conversion. Therefore, the samples to be added or discarded should be on a block base.

That is, a segment of samples in a block is to be added or discarded in one length-adjustment process. In

order to smoothly add or discard samples in a block, we use the overlap-add (OLA) [3] technique. The

following gives a brief explanation of adding samples. At first, the input samples are converted to the

desired sampling rate. The re-sampled results are stored in a buffer, and the OLA procedure is performed

on a block-base with each block containing N = 2048, samples. Along with the sampling rate change, the

number of samples discarded, Nd, is also calculated. Once a block of samples is collected, we then expect

to add Nd samples at the end of block to keep the tempo of the music unchanged. As shown in Figure 5,

the block with additional samples are obtained by putting together the original block and a replica of the

original block through the OLA operation. The window function used in the operation is a simple

triangular window with height of 1 and length of W = 2048. Note that only one-half the number of the

window length, i.e., 1024, samples are to be added together. The place in a block where the OLA

operation is performed greatly affects the reproduced sound quality. Fewer artifacts will be detected if the

similarity is high between the original and the replica in the region performing OLA. Therefore, we

should calculate individual similarities for a range of samples and choose the one having highest

similarity as the beginning point. The target number of samples Nt to be added is

Nt = min (Nd , (6/14) * W)

The OLA procedure is postponed to next block if the value of Nt is smaller than a pre-determined value,

say 125. Since the exact place to perform OLA varies from one block to another, this number is used to

find the range where similarities should be measured. Let the samples of the block be numbered from 1 to

N. The search for the best-fit point is from the sample N1 = (Nt - N0) to N2 = (Nt + N0). The value of N0 is

chosen to be 100. The similarity is measured by correlation. High correlation means high similarity.

Specifically, similarity Sk for starting point at sample k with N1 ≦ k ≦ N2 is calculated as

][][
2/

knsnsS
Wk

kn
k −= ∑

+

=

When Sk is found, the highest similarity value Skm and its corresponding index km can be obtained. The

OLA procedure is then applied to the block, i.e.,

2/1],2/[][][][][WnWnwkmnsnwnsny K=+•++•=

where y[n] holds the results of the OLA. With the overlap-add procedure, the number of samples in the

block becomes (N + km - 1) samples. Then, Nd is updated accordingly to reflect the true number of

samples to be added in the following block. During the correlation calculation, to increase the

computation speed, index k increments by 3 instead of 1. This greatly reduces the computational burden

of the correlation computation. The procedure for deleting samples is done in a similar procedure.

4. THE RESULTS

The proposed approach was implemented in a PC running a Linux OS. The CPU is a Celeron 466. The

program, written in C, was implemented as a filter program. The input to the program was PCM samples

and the output from the program was the altered PCM samples. A simple GUI was also implemented to

select the desirable key shift value. Several different kinds of music were used to test the performance of

the proposed approach. The subjective experiments indicated that the sound quality was acceptable for

most music for the entire key-control range. The only defect is that when key control was set to +/- 1,

sometimes we could hear trembling in female-vocal music. Overall speaking, the reproduced sound

quality is adequate for the PC-based applications. Also the reproduced music has no obvious playback

time difference between the original and the reproduced one. This confirms that the adaptive selection of

overlapping area is effective in adjusting the music length.

5. CONCLUSION

We have presented a low-complexity music transposition method suitable for PC implementation. The

proposed approach uses a non-precise, yet simple, sampling-rate conversion, and it is followed by an

overlap-and-add scheme to adjust the duration of the transposed music. The actual implementation

confirms that the performance is adequate and the computational load is light.

6. REFERENCES

[1] B. Lawlor and A. D. Fagan, “A Novel Efficient Algorithm for Music Transposition,” Proceedings of

the IEEE EUROMICRO, pp. 48-54, 1999.

[2] G. Zelniker and F. Taylor, Advanced Digital Signal Processing: Theory and Applications, chapter 7,

Marcel Dekker, New York, 1994.

[3] H. Sanneck, et al., "A New Technique for Audio Packet Loss Concealment," Proceedings of the IEEE

GLOBECOM, pp. 48- 52, 1996.

 # r = fs' / fs

r * 48

(Ks/s)
M

(M -1)/ M

* 48 (Ks/s)
Error %

1 0.9438743 45.31 18 45.33 0.07 %

2 0.8909001 42.76 9 42.67 0.21 %

3 0.8408964 40.36 6 40 0.89 %

4 0.7937005 38.10 5 38.4 0.79 %

5 0.7491535 35.96 4 36 0.11 %

6 0.7071067 33.94 3 32 5.72 %

Table. 1. The shift-up scale and the corresponding re-sampling factor M.

 b r = fs' / fs

r * 48

(Ks/s)
M

(M +1)/ M

* 48 (ks/s)
Error %

1 1.0594361 50.85 17 50.82 0.05 %

2 1.1224602 53.88 8 54 0.22 %

3 1.1892071 57.08 5 57.6 0.91 %

4 1.259921 60.48 4 60 0.79 %

5 1.3348399 64.07 3 64 0.11 %

6 1.4142136 67.88 2 72 6.07 %

Table. 2. The shift-down scale and the corresponding re-sampling factor M.

Figur

Figure

1 kHz,
1 sec

A/D

fs =
3 ks/

1 kHz,
1 sec

1 kHz, 1 sec
fs = 48 ks/s LPF

 17

Searc
A/D
e 1. A simple system

 2. A practical system

Figure 3. The prop

Figure 4. The sampli

s

Data Lengt
Adjustment

r = 0.94

r = (N-1)/ N

1 kH
fs'=

h range
D/A
2 kHz,
0.5 sec
fs =
3 ks/s
fs =
6 ks/s
 for music transposition.

 for music transposition.

osed approach.

ng-rate conversion.

D/A

fs =
6 ks/s

2 kHz,
1 sec

h

D/A

fs =
48 ks/s

1.06 kHz,
1 sec

Data Length
Adjustment

z, 0.94 sec
45.33 ks/s

 18

 Original signal

Second-half of window

A replica of the original signal

First-half of window

Results after
overlap-and-add

Figure 5. The overlap-add operation to increase the data length.

Overlap-and-
add region

1

1

	PAPER SUMMITTED TO WORKSHOP ON MULTIMEDIA TECHNOLOGIES
	A SIMPLE MUSIC TRANSPOSITION METHOD FOR COMPUTERS
	ABSTRACT

