
Maintenance of Discovered Sequential Patterns for Record Modification

Ching-Yao Wang1, Tzung-Pei Hong2 and Shian-Shyong Tseng1

1Institute of Computer and Information Science, National Chiao-Tung University
2Department of Electrical Engineering, National University of Kaohsiung
cywang@cis.nctu.edu.tw, tphong@nuk.edu.tw, sstseng@cis.nctu.edu.tw

Abstract

In the past, some researchers proposed efficient
incremental mining algorithms for maintenance of
sequential patterns as records were inserted or
deleted. In addition to record insertion and deletion,
record modification is also very commonly seen.
Although maintenance of sequential patterns for
record modification can be performed by usage of
the deletion procedure and then by the insertion
procedure, twice the computation time of a single
procedure is needed. In this paper, we thus attempt to
design an effective maintenance algorithm for
sequential patterns as records are modified. Our
proposed algorithm utilizes previously discovered
large sequences in the maintenance process, thus
greatly reducing numbers of rescanning databases
and improving the performance. Experimental results
also show the performance of the proposed approach.
It is thus useful for dynamic database mining.

1. Introduction

Mining useful information and helpful knowledge
from large databases has evolved into an important
research area [1][3]. Among them, finding sequential
patterns in temporal transaction databases is
important since it allows modeling of customer
behavior [2][7][9]. Although customer behavior
models can be efficiently extracted by Agrawal and
Srikant’s mining algorithm [2] to assist managers in
making correct and effective decisions, the
sequential patterns discovered may become invalid
or inappropriate when databases are updated.
Conventional approaches may re-mine entire
databases to get up-to-date sequential patterns.
However, when a database is massive in size, this
will require considerable amounts of computation
time.

In the past, some approaches were proposed to
improve maintenance performance. Examples for
associations rules are the FUP algorithm proposed by
Cheung et al. [4][5], the adaptive algorithm proposed

by Sarda and Srinivas [8], the incremental mining
algorithm based on the pre-large concept proposed
by Hong et al. [6], the incremental updating
technique based on negative borders proposed by
Thomas et al. [10]. As to maintenance of sequential
patterns, Lin and Lee proposed the FASTUP
algorithm for inserted records [7]. Wang et al. then
proposed a maintenance algorithm for deleted
records [11]. The common idea of all the above
approaches is that previously information mined
should be utilized as much as possible to reduce
maintenance costs.

In addition to record insertion and deletion, record
modification in databases is also commonly seen in
applications. Developing an efficient mining
algorithm to maintain discovered information as
records are modified is thus important in the field of
data mining. Although maintenance of sequential
patterns for record modification can be performed by
usage of the deletion procedure and then by the
insertion procedure, twice the computation time of a
single procedure is needed. In this paper, we thus
attempt to design an effective maintenance algorithm
for sequential patterns as records are modified.

2. Maintenance of Sequential Patterns for
Record Modification

When records are modified in databases, the
original sequential patterns may become invalid, or
new implicitly valid patterns may appear in the
resulting updated databases. For example, assume a
database has three attributes, Cust_id, Trans_time
and Trans_content. Cust_id records the unique
identification of a customer, Trans_time stores the
time a transaction occurred, and Trans_content stores
what items were purchased in a transaction. Also
assume that the database consists of twenty records,
sorted first by Cust_id and then by Trans_time, as
shown in Table 1.

Let a sequence be an ordered list of itemsets and a
customer sequence be a sequence of all transactions
for a customer in order of transaction times. Note

2

Table 1: The twenty records sorted first by Cust_id
and then by Trans_time

Cust_id Trans_time Trans_content
1 1998/01/01 A
1 1998/01/20 B
2 1998/01/11 C, D
2 1998/02/02 A
2 1998/02/11 E, F, G
3 1998/01/07 A, H, G
4 1998/02/09 A
4 1998/02/19 E, G
4 1998/02/23 B
5 1998/01/05 B
5 1998/01/12 C
6 1998/01/05 A
6 1998/01/13 B, C
7 1998/01/01 A
7 1998/01/17 B, C, D
8 1998/01/23 E, G
9 1998/01/02 A
9 1998/01/03 B, C
9 1998/01/07 G

10 1998/01/05 E, F, G

that each transaction in a customer sequence
corresponds to an itemset. A sequence A is contained
in a sequence B if the former is a sub-sequence of the
latter. Take the data in Table 1 as an example. These
records in Table 1 are transformed into customer
sequences as shown in Table 2.

Table 2: The customer sequences transformed from
the records in Table 1

Cust_id Customer sequence
1 <(A)(B)>
2 <(C, D)(A)(E, F, G)>
3 <(A, H, G)>
4 <(A)(E, G)(B)>
5 <(B)(C)>
6 <(A)(B, C)
7 <(A)(B, C, D)>
8 <(E, G)>
9 <(A)(B, C)(G)>

10 <(E, F, G)>

Assume the minimum support is set at 50% (i.e.,
four customer sequences for this example). All the
large sequences mined from the customer sequences
in Table 2 by Agrawal and Srikant’s AprioriAll
approach [2] are presented in Table 3.

If the two records, Cust_id = 2 with Trans_time =
1998/01/11 and Cust_id = 3 with Trans_time =
1998/01/07, are modified as shown in Table 4, the

Table 3: All large sequences mined from the
customer sequences in Table 2

Large sequences
1-sequence Count 2-sequence Count

<(A)> 7 <(A)(B)> 5
<(B)> 6
<(C)> 5
<(G)> 6

Table 4: The two modified records
Cust_id Trans_time Trans_content

2 1998/01/11 D
3 1998/01/07 A, E, G

Table 5: The large sequences after record
modification

Large sequences
1-sequence Count 2-sequence Count

<(A)> 7 <(A)(B)> 5
<(B)> 6
<(E)> 5
<(G)> 6

<(E, G)> 5

large sequences in Table 3 will be modified as those
shown in Table 5.

The original large sequence <(C)> will become
small and the original small sequences <(E)> and
<(E, G)> will become large after the two records are
modified. Conventional batch-mining algorithms
must re-process the entire updated database to find
the updated sequential patterns for managing these
situations.

3. Review of the FUP and the FASTUP
Approaches

In 1996, Cheung et al. first proposed and applied
the concept of intermediate information to design an
incremental mining algorithm, called FUP [4][5], for
association rules as new records are inserted. Using
FUP, large itemsets with their counts in preceding
runs are recorded for later use in maintenance. As
new transactions are added, FUP first scans them to
generate candidate 1-itemsets (only for these new
transactions), and then compares these itemsets with
the previous ones retained in the intermediate
information. FUP partitions candidate 1-itemsets into
two parts according to whether they are large for the
original database. If a candidate 1-itemset from the
newly inserted transactions is also among the large 1-
itemsets from the original database, its new total

3

count for the entire updated database can easily be
calculated from its current count and previous count
since all previous large itemsets with their counts are
kept by FUP. Whether an original large itemset is
still large after new transactions are inserted is
determined from its support ratio as its total count
over the total number of transactions. By contrast, if
a candidate 1-itemset from the newly inserted
transactions does not exist among the large 1-
itemsets in the original database, one of two
possibilities arises. If this candidate 1-itemset is not
large for the new transactions, then it cannot be large
for the entire updated database, which means no
action is necessary. If this candidate 1-itemset is
large for the new transactions but not among the
original large 1-itemsets, the original database must
be re-scanned to determine whether the itemset is
actually large for the entire updated database. Using
the processing tactics mentioned above, FUP is thus
able to find all large 1-itemsets for the entire updated
database. After that, candidate 2-itemsets from the
newly inserted transactions are formed and the same
procedure is used to find all large 2-itemsets. This
procedure is repeated until all large itemsets have
been found. The FUP algorithm thus focuses on
newly added transactions and utilizes intermediate
information to save computation time in maintaining
association rules.

Lin and Lee then proposed the FASTUP algorithm
[7] to maintain sequential patterns as new records are
inserted by extending the FUP algorithm.
Maintaining sequential patterns is much harder than
maintaining association rules since the former must
consider both itemsets and sequences.

4. Four Cases Caused from Record
Modification

When records are modified in a database, they are
first merged with the other records from the same
customers to form the modified customer sequences.
For example, assume the original records and
customer sequences are the same as those shown in
Tables 1 and 2. When the two original records are
modified as shown in Table 4, the two corresponding
original customer sequences shown in Table 6 will be
transformed into the modified customer sequences
shown in Table 7.

Table 6: The two original customer sequences
Cust_id Customer sequence

2 <(C, D)(A)(E, F, G)>
3 <(A, H, G)>

Table 7: The two modified customer sequences
Cust_id Customer sequence

2 <(D)(A)(E, F, G)>
3 <(A, E, G)>

The subsequences from the modified customer
sequences and from the corresponding old customer
sequences are then compared to obtain the
subsequence differences resulting from record
modification. Let modified candidate sequences for
record modification be defined as the sequences
mentioned above, with their count differences not
being zero. For the above example, the candidate 1-
sequences are shown in Table 8.

Table 8: The candidate 1-sequences with their counts
Candidate 1-sequences

Candidate 1-sequence Count difference
<(C)> -1
<(E)> 1
<(H)> -1

<(C, D)> -1
<(E, G)> 1
<(A, E)> 1
<(A, H)> -1
<(H, G)> -1

<(A, H, G)> -1
<(A, E, G)> 1

Considering original customer sequences in terms
of minimum support threshold and modified
sequences in terms of positive or negative count
differences, there exist four cases illustrated in
Figure 1.

Figure 1: Four cases arising from modifying records
in existing databases

In Figure 1, Cases 1 and 4 will not affect the final
sequential patterns. The final sequences in Case 1
will always be large and those in Case 4 will always
be small. Case 2 may add new large sequences, and
Case 3 may remove existing large sequences. If we
retain all large sequences with their counts in the
original database, then Cases 1 and 3 can be easily

43

21

CaseCase

CaseCase

Large
sequences

Original
customer
sequences

Modified
sequences
Modified
sequences

Small
sequencesPositive

sequences

Negative
sequences

4

handled. Thus, only sequences in Case 2 need to be
rescanned. The maintenance cost can thus be
reduced.

5. The Proposed Maintenance Algorithm
for Record Modification

In the proposed algorithm, the originally large
sequences with their counts from preceding runs are
retained for later use in maintenance. As records are
modified, they are first merged with the other
original records from the same customers to form
modified customer sequences. The candidate 1-
sequences are then found from the customer
sequences before and after record modification. The
candidate 1-sequences are then compared to the large
1-sequences which were previously retained. They
are thus divided into two parts according to whether
they are large or small in the original database. If a
candidate 1-sequence is also among the previously
retained large 1-sequences, its new total count for the
entire updated database can easily be calculated from
its current count and previous count. On the contrary,
if a candidate 1-sequence does not exist among the
previously retained large 1-sequences and its current
count is positive, this sequence may be large for the
entire updated database, and rescanning the original
database is necessary; otherwise, it must be a small
sequence and can be ignored. The proposed
algorithm can thus find all large 1-sequences for the
entire updated database. After that, candidate 2-
sequences from modified customer sequences are
formed, and the same procedure is used to find all
large 2-sequences. This procedure is repeated until
all large sequences have been found. The details of
the proposed maintenance algorithm are described
below.

The proposed maintenance algorithm for record
modification:
INPUT: A predefined minimum support s, a set of

large sequences for the original database D
consisting of d customer sequences, and a
set of t modified customer sequences from
the modified transactions.

OUTPUT: A set of sequential patterns for the
updated database.

STEP 1: Set k = 1, where k is used to record the
number of itemsets in the sequences
currently being processed.

STEP 2: Find all the candidate k-sequences T
kC

with their count differences from the
modified customer sequences.

STEP 3: Divide the candidate k-sequences in T
kC

into two parts according to whether they
are large or small for the original database.

STEP 4: Do the following substeps for each k-

sequence I existing in both T
kC and D

kL :

Substep 4-1: Set the new count SU(I) =
SD(I) + ST(I).

Substep 4-2: If SU(I)/d ≥ s, then assign I
as a large sequence, set SD(I)
= SU(I), and keep I with
SD(I); otherwise, remove I.

STEP 5: For each sequence I that is in T
kC but not

in D
kL , if ST(I) is positive, then put it into

the rescan-set R.
STEP 6: If R is null, then do nothing; otherwise,

rescanning the original database to
determine whether the sequences in the
rescan set R are large.

STEP 7: Form candidate (k+1)-sequences T
1kC + ,

each of which must be a (k+1)-sequence
difference from the record modification
and must have all their k-subsequences
existing in the large k-sequences.

STEP 8: Set k = k+1.
STEP 9: Repeat STEPs 2 to 8 until no candidate k-

sequences are found.

After Step 9, the large sequences for the updated
database can thus be found.

6. An Example

Assume that the initial customer sequences are the
same as those shown in Table 2 and s is set at 50%.
The large sequences for the given data set are thus
the same as those shown in Table 3.

If the two records, Cust_id = 2 & Trans_time =
1998/01/11 and Cust_id = 3 & Trans_time =
1998/01/07 from Table 1 have been modified to
those shown in Table 4, TC1

 with their count

differences are thus the same as those shown in Table
8.

According to whether they are large or small for
the original database, TC1

are divided into two parts

as shown in Table 9. The new count of the originally
large 1-sequence <(C)> thus becomes 4, since its
new support ratio is less than s, <(C)> thus becomes
a small sequence. The other candidate 1-sequences
with positive count differences are then put in the
rescan set R. Results are shown in Table 10.

5

Table 9: Two parts of TC1
 in Table 8

Originally large
1-sequence

Originally small
1-sequence

1-sequence
Count

Differenc
e

1-sequence
Count

difference

<(C)> -1 <(E)> 1
<(H)> -1

<(C, D)> -1
<(E, G)> 1
<(A, E)> 1
<(A, H)> -1
<(H, G)> -1

<(A, H, G)> -1
<(A, E, G)> 1

Table 10: The 1-sequences put in the rescan set R

1-sequence
Count

difference
<(E)> 1

<(E, G)> 1
<(A, E)> 1

<(A, E, G)> 1

Since R is not null, rescanning the original
transactions in Table 2. Table 11 shows the resulting
large 1-sequences in R.

Table 11: The resulting large 1-sequences in R
1-sequence New count

<(E)> 5
<(E, G)> 5

The modified 2-sequences with count differences
not equal to zero are those with the 1-subsequences
<(C)> or <(C, D)> at the front. Since the 1-
subsequences <(C)> or <(C, D)> are not large from
the previous results, no candidate 2-sequences are
formed. The final large sequences are shown in
Table 12.

Table 12: The final large sequences after record
modification

Large sequences
1-sequence Count 2-sequence Count

<(A)> 7 <(A)(B)> 5
<(B)> 6
<(E)> 5
<(G)> 6

<(E, G)> 5

7. Experiments

The section reports on experiments made to show
the performance of the proposed approach. It was
implemented in C++ on a Pentium-III 800 dual-
processor workstation with 512M RAM. The
experimental datasets were generated by the program
developed by Agrawal and his co-workers in [2].
100000 customer sequences were generated at
random, with each sequence having an average of 5
transactions of single items for a customer. The mean
size of the maximal potentially sequential patterns
was 4. Figure 2 shows the relationships between
computational times and numbers of modified
customer sequences for our proposed approach and
for the Aprioriall approach, with the minimum
support = 0.6%.

Figure 2. The relationships between computational
times and numbers of modified customer sequences

(the minimum support = 0.6%)

Figure 3. The relationships between computational
times and numbers of customer sequences (the

minimum support = 0.6%)

From Figure 2, it is easily seen that the
computational times by the proposed approach are
much less than those by the Aprioriall approach for
sequence modification. Experiments were then made

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

Number of Modified customer sequences

C
o

m
p

ut
a

tio
n

tim
e

(s
ec

.)
The AprioriAll approach The proposed approach

0

20

40

60

80

100

120

140

160

100K 200K 300K 400K 500K

Number of customer sequences

C
om

pu
ta

tio
n

tim
e

(s
ec

.)

The AprioriAll approach The proposed approach

6

for a comparison of different datasets. The
relationships between computational times and
numbers of customer sequences, when the number of
modified customer sequences is 500 and the
minimum support is 0.6%, are shown in Figure 3.

From Figure 3, it is easily seen that the execution
time increased by the proposed algorithm for datasets
with larger numbers of customer sequences is little
when compared to those by the Aprioriall algorithm.

8. Conclusions

In this paper, we have proposed an efficient
maintenance algorithm to sequential patterns for
record modification. Experimental results have also
showed the performance of the proposed approach.
In summary, the proposed algorithm has the
following attractive features.

1. It utilizes previously discovered information in
maintenance.

2. It focuses on modified customer sequences,
thus greatly reducing the number of candidate
sequences.

3. It uses a simple check to further filter the
candidate sequences in modified customer
sequences.

4. The performance is even better for a larger
database.

These characteristics are especially useful for
real-world applications.

Acknowledgement

This research was supported by the Ministry of
Education and the National Science Council of the
Republic of China under Grand No. 89-E-FA04-1-4,
“High Confidence Information Systems”.

References

[1] R. Agrawal, T. Imielinksi and A. Swami,
“Database mining: a performance perspective,”
IEEE Transactions on Knowledge and Data
Engineering, Vol. 5, No. 6, pp. 914-925, 1993.

[2] R. Agrawal and R. Srikant, ”Mining sequential
patterns,” The Eleventh IEEE International

Conference on Data Engineering, pp. 3-14,
1995.

[3] M. S. Chen, J. Han and P. S. Yu, “Data mining:
an overview from a database perspective,” IEEE
Transactions on Knowledge and Data
Engineering, Vol. 8, No. 6, pp. 866-883, 1996.

[4] D. W. Cheung, J. Han, V. T. Ng and C. Y.
Wong, “Maintenance of discovered association
rules in large databases: an incremental updating
approach,” The Twelfth IEEE International
Conference on Data Engineering, pp. 106-114,
1996.

[5] D. W. Cheung, S. D. Lee and B. Kao, “A general
incremental technique for maintaining
discovered association rules,” The International
Conference on Database Systems for Advanced
Applications, pp. 185-194, Melbourne, Australia,
1997.

[6] T. P. Hong, C. Y. Wang and Y. H. Tao, “A new
incremental data mining algorithm using pre-
large itemsets,” An International Journal:
Intelligent Data Analysis, Vol. 5, No. 2, pp. 111-
129, 2001.

[7] M. Y. Lin and S. Y. Lee, “Incremental update on
sequential patterns in large databases,” The
Tenth IEEE International Conference on Tools
with Artificial Intelligence, pp. 24-31, 1998.

[8] N. L. Sarda and N. V. Srinivas, “An adaptive
algorithm for incremental mining of association
rules,” The Ninth International Workshop on
Database and Expert Systems Applications, pp.
240-245, 1998.

[9] R. Srikant and R. Agrawal, “Mining sequential
patterns: generalizations and performance
improvements,” The Fifth International
Conference on Knowledge Discovery and Data
Mining, pp. 269-274, 1995.

[10] S. Thomas, S. Bodagala, K. Alsabti and S.
Ranka “An efficient algorithm for the
incremental update of association rules in large
databases,” The International Conference on
Knowledge Discovery and Data Mining, pp.
263-266, 1997.

[11] C. Y. Wang, T. P. Hong and S. S. Tseng "A
Pattern-maintenance Algorithm for Record
Deletion in Temporal Transaction Databases,"
The Sixth Conference on Artificial Intelligence
and Applications, Kaohsiung, Taiwan, 2001.

