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Abstract 

The job-shop scheduling problems have been categorized as NP-complete problems. 
The exponential growth of the time required to obtain an optimal solution makes the 
exhaustive search for global optimal schedules very difficult or even impossible. Recently, 
stochastic search techniques such as genetic algorithms have shown the feasibility to solve the 
job-shop scheduling problems. However, a pure GA-based approach tends to generate illegal 
schedules due to the crossover and the mutation operators, it is often the case that the gene 
expression or the genetic operators need to be specially designed to fit the problem domain or 
some other schemes may be combined to solve the scheduling problems.  

This paper presents a GA-based approach with a feasible energy function to generate 
good-quality schedules. In our work, we design an easy-understood genotype to generate 
legal schedules without modifying the genetic algorithm or genetic operators and the 
proposed approach converges rapidly. 
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Abstract 

The job-shop scheduling problems have been categorized as NP-complete problems. 

The exponential growth of the time required to obtain an optimal solution makes the 

exhaustive search for global optimal schedules very difficult or even impossible. Recently, 

stochastic search techniques such as genetic algorithms have shown the feasibility to solve the 

job-shop scheduling problems. However, a pure GA-based approach tends to generate illegal 

schedules due to the crossover and the mutation operators, it is often the case that the gene 

expression or the genetic operators need to be specially designed to fit the problem domain or 

some other schemes may be combined to solve the scheduling problems.  

This paper presents a GA-based approach with a feasible energy function to generate 

good-quality schedules. In our work, we design an easy-understood genotype to generate 

legal schedules without modifying the genetic algorithm or genetic operators and the 



proposed approach converges rapidly. 

Keywords: scheduling, genetic algorithm, optimization. 

1. Introduction 

The job-shop scheduling problems have been categorized as NP-complete problems. 

The time required to obtain an optimal solution increases exponentially with the augmentation 

of the number of jobs to be processed, the number of operations for each job and the number 

of flexible machines that can perform the processes. The exponential growth makes the 

exhaustive search for global optimal schedules very difficult or even impossible. Therefore, 

adaptive search approaches have been implemented to generate good-quality schedules 

instead of global optimal schedules. In 1999 and 2001, Huang and Chen [1][2] proposed an 

energy function for the Hopfield neural network (HNN) to schedule multiprocessor job with 

resource and timing constraints. Then, in 2001, they integrated fuzzy c-means clustering 

strategies into a Hopfield neural network to solve scheduling problems [3]. 

Recently, stochastic search techniques such as genetic algorithms have shown the 

feasibility to solve the job-shop scheduling problems. In 1999, Correa, Ferreira and  

Rebreyend proposed a knowledge-augmented genetic approach to schedule multiprocessor 

tasks [4]. In 2000, Hajra and etc. presented a controlled genetic algorithm based on fuzzy 

logic  and belief functions to solve job-shop scheduling problems [5]. In 2001, Yang 

developed a GA-based discrete dynamic programming approach for scheduling in flexible 



manufacturing system (FMS) environments [6]. However, a pure GA-based approach tends to 

generate illegal schedules due to the crossover and the mutation operators, it is often the case 

that the gene expression or the genetic operators need to be specially designed to fit the 

problem domain or some other schemes may be combined to solve the scheduling problems.  

This paper presents a GA-based approach with a feasible energy function to generate 

good-quality schedules. Unlike other schemes suffering from rapidly converging to the local 

optima, the genetic algorithms provide a better chance to obtain the global optima.  

This paper is organized as follows. The energy function of the scheduling problem is 

defined in Section 2. Next, the genetic algorithms are reviewed and the energy function is 

translated into the evaluation function in Section 3. The mathematical proof of the 

convergence of the energy function is then illustrated in Section 4. After this, the simulation 

examples and experimental results are presented in Section 5. Finally, conclusions of this 

paper are discussed in Section 6. 

2. Energy Function of the Scheduling Problem 

Job-shop scheduling problems differ from case to case. The scheduling problem domain 

to be considered in this paper is defined as follows. Suppose there are N jobs, each of which 

can be segmented, and there are M machines that are capable of performing the operations of 

all jobs. The execution time required by each job is predetermined and can be estimated by 

calculating the machine cycles. It is also assumed that different segments of a job cannot be 



assigned to different machines, inferring that the job migration between machines is 

prohibited. Furthermore, the deadline constraint for each job is imposed on the proposed 

system. Besides, a resource is not allowed to be shared by two jobs simultaneously. Based on 

the above assumptions, we attempt to generate legal schedules. 

To solve this problem, the energy function of the problem regarding all constraints is 

derived. In 1999 and 2001, Huang and Chen [1][2] proposed an energy function for the 

Hopfield neural network (HNN). The energy function is modified and reduced in this paper. 

A state variable Vijk is defined as representing whether or not the job i is executed on machine 

j at a certain time k. Moreover, the state Vijk =1 denotes that the job i is run on machine j at 

the time k; otherwise, Vijk =0.  

Since a machine j can process only one job i at any certain time k, the energy term can 

be defined as 
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where Vijk are as defined above; where i represents a job with a range from 1 to N, the total 

number of jobs to be scheduled; where j represents a dedicated machine identified from 1 to 

M, the total number of machines to be assigned; where k represents a specific time from 1 to 

T, the latest deadline of the job. The same notations are used hereinafter. The minimum value 

of this term is zero, which occurs when either Vijk or Vi1jk equals zero. 



 As mentioned earlier, if a job is assigned on a dedicated machine, then all of its 

segments must be executed on the same machine. According this constraint, the energy term 

is defined as follows:  
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Since a job i can be processed on either machine j or machine j1 at any time, the minimum 

value of this term is zero, which occurs when either Vijk or Vij1k1 equals zero. 

As for the resource constraint, two jobs are not allowed to utilize the same resource 

instance simultaneously. Besides, the resource is non-preemptive so that the energy term can 

be defined as follows: 
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where F denotes the quantity of available resource instances, Ris and Ri1s are the elements of 

the resource requested matrix for job i and i1 respectively. The value Ris =1 indicates that job i 

requires resource s while Ri1s =1 implies that job i1 requests resource s. When two distinct jobs 

are scheduled to be processed on different machines j and j1 at the same time k (say Vijk =1 

and Vi1j1k =1), machines j and j1 cannot share the same resource at the time k. Hence, either Ris 

or Ri1s is zero. This observation implies that the energy term becomes zero if the resource 

constraint is satisfied. Correspondingly, the total energy function with all constraints can be 

induced as Eq.(4): 



,
2

22

1 1 1
1

1
11

11

1
11 1

3

11
1 1 1

1
11 11

2

1 1 1
1

1
11

1

∑∑∑∑∑∑

∑∑∑∑∑∑∑∑∑

= = =
≠
=

≠
= =

= = =
≠
= == = =

≠
=

+

+=

N

i

M

j

T

k
si

N

ii
i

kji

M

jj
j

is

F

s
ijk

kij

N

i

M

j

T

k

M

jj
j

T

k
ijk

N

i

M

j

T

k
jki

N

ii
i

ijk

RVRVC

VVCVVCE

                  (4) 

where C1, C2 and C3 refer to weighting factors and are assumed to be positive constants in our 
study.  

This work concentrates mainly on scheduling problems with constraint satisfaction. In 

the following section, genetic algorithms are introduced to solve the constraint satisfaction of 

the scheduling problems. 

3. Genetic Algorithms 

The exhaustive search for global optimal schedules is very difficult or even impossible. 

Therefore, adaptive search approaches have been implemented to generate good-quality 

schedules instead of global optimal schedules. To solve NP-hard optimization problems by 

using genetic algorithms have revealed their efficiency to generate good-quality schedules in 

relatively short computation time. Unlike other meta-heuristics such as simulated annealing, 

which processes a single point of the search space, genetic algorithms maintain a population 

of potential solutions [7]. Genetic algorithms perform a multi-directional search and 

encourage information exchange between different potential solutions so that the local 

optimum can be eliminated. The individuals in a population are called chromosomes, which 

consist of sets of genes. An initial population is randomly created. The population undergoes 

a simulated evolution by means of crossover and mutation to form a new population. At each 

iteration, the crossover point is randomly selected and couples of chromosomes swap the 



corresponding segments to form new solutions. The mutation operator is applied to arbitrarily 

alter one gene of a selected chromosome. The iteration terminates when the value of the 

energy function reaches zero. However, a pure GA-based approach tends to generate illegal 

schedules due to the crossover and the mutation operators, it is often the case that the gene 

expression or the genetic operators need to be specially designed to fit the problem domain or 

some other schemes may be combined to solve the scheduling problems. In this paper, we 

introduce a way of representing a schedule and present a GA-based approach with a feasible 

energy function to generate good-quality schedules. 

3.1 Representation of an Individual 

Since there are N jobs, each of which can be segmented, and there are M machines that 

are capable of performing the operations of all jobs, a state variable Vijk is defined as 

representing whether or not the job i is executed on machine j at a certain time k. Moreover, 

the state Vijk =1 denotes that the job i is run on machine j at the time k; otherwise, Vijk =0. 

Thus, Pijk is defined as representing the probability of Vijk =1. The chromosome, (Pijk ; 

i=1,…,N; j=1,…,M; k=1,…,T), represents a potential scheduling solution. The dimension of 

the chromosome is equal to N*M*T.  

3.2 Initial Population 

An initial population is created by generating each gene, Pijk, randomly. 

 



3.3 Generating a Schedule 

Due to the deadline constraint, no segment of a job is allowed to be assigned to a time 

later than the deadline of the job. Hence, Pijk is set to zero if k-di≤0, where di denotes the 

deadline of the job i. Furthermore, the time spent by all segments of job i should be equal to 

PTi, the processing time required by job i. The condition )(
1 1
∑∑
= =

=
M

j
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k
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satisfied. Therefore, for each job i, i=1,…,N, Vij1k =1 if Pij1k≥Thij1, where Thij1 is the PTi-th 

highest Pij1k on machine j1, k=1,…,T;otherwise, Vijk =0. Note that the job migration between 

machines is prohibited, so finding Thij1 is restricted on machine j1, where machine j1 contains 

the highest Pijk for j=1,…,M and k=1,…,T.  

3.4 Evaluation Function 

The evaluation function f(E) is calculated by 

ε+
=

E
Ef 1)(                                          (5) 

where E is the value of the energy function computed by Eq.(4) and ε is an extremely small 

value to prevent the denominator from becoming zero. 

3.5 Genetic Operators 

To make sure that the best member in the population survives, the elitist model is 

adopted. The best member of the previous generation is stored. If the best member of the 

current generation is worse than that of the previous generation, the latter one would replace 

the worst member of the current population. At each iteration, the crossover point is randomly 



selected and two individuals are paired randomly to swap the corresponding segments to form 

new solutions with a prescribed probability PC. The mutation operator is applied to arbitrarily 

alter one gene of a selected chromosome with a prescribed probability PM. 

4. Convergence of the Energy Function 

The defined energy function dominates the convergence during the iteration. In this 

section, Eq.(4) is proven to be an appropriate Lyapunov function. Hence, the convergence is 

assured. Eq.(4) consists of two parts, one containing a state Vlmn using resource f and the other 

containing the rest of the states. Thus, Vlmn=1 indicates a situation in which machine m 

processes job l at time n using resource f. Contrarily, Vlmn=0 refers to that job l is neither 

executed on machine m nor utilizes resource f at time n. Herein, the equation is divided into 

two parts to observe the change of the energy with respect to the state Vlmn change. The 

energy before updating is shown below: 
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where Vijk≠Vlmn and Vi1jk≠Vlmn apply to the indexed parenthesized item only and indicates that 

the condition have different values. Similarly, the energy, Enew, after updating is derived as 

follows: 
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Hence, according to Eq.(6) and Eq.(7), the changes of the energy can be calculated as follws: 
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According to Eq.(8), the total energy difference is involved in the change of (Vlmn
new-Vlmn). 

Whenever the state changes from 0→1, 1→0, 0→0, or 1→1, the change of (Vlmn
new-Vlmn) has 

different effects on the energy difference. For convenience, the above energy difference ∆Elmn 

is rewritten as Eq.(9) 
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According to Eq.(9), the change of energy concerns itself with state change of 

(Vlmn
new-Vlmn), where ∆Eitem1, ∆Eitem2, and ∆Eitem3 correspond to the associated items of C1, C2, 

and C3, respectively. Closely examining Eq.(9) again obviously reveals that when 

Vlmn
new=Vlmn, i.e. when state changes from 0→0 or 1→1, the system is in a stable condition 

and the energy difference is zero (∆Elmn=0). A state change from 0→1 (Vlmn
new-Vlmn =1) 

indicates that machine m is processing job l at time n. Hence, according to the state constraint 

definition, we can infer that ∆Eitem1 is zero.  
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As mentioned earlier, if a job is assigned on a dedicated machine, then all of its segments 

must be executed on the same machine. Thus, ∆Eitem2 is equal to zero. 
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Furthermore, ∆Eitem3 is also zero, 
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since Rls=1 indicates that resource f is used by job l, subsequently forcing Ris=0. 

Consequently, the energy difference, ∆Elmn =(1-0)(0+0+0), is equal to zero when the state 

Vlmn
new becomes one. 

Finally, when the state changes from 1→0, (Vlmn
new-Vlmn =-1), ∆Eitem1 has a maximum 

value of C1, 
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since a machine can process one job at most or does nothing at a certain time. ∆Eitem2 also has 

a maximum value of C2*Pl, 
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where Pl and C2 are both positive and Pl is the total execution time of job l. In addition, a 

situation in which Vlmn
new =0 implies that resource f is not used by job l, which will force Rls 

=0, and then ∆Eitem3 becomes zero, 
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Consequently, the energy difference, ∆Elmn ≤(0-1)(C1+ C2*Pl +0), is less than zero when the 

state Vlmn
new becomes zero. Correspondingly, the proposed energy function is a Lyapunov 

function. 

 

 



5. Simulation Examples and Experimental Results 

Three sets of resource and timing constraints were applied for the simulations. The 

constants of the energy function, C1, C2, and C3, were all set to 1 in this work. Each 

population of chromosomes of the genetic algorithm was initialized randomly. The population 

size was 100 and other parameters such as the probability of the crossover and the mutation 

were 0.4 and 0.06, respectively. The resource requested matrix and the timing constraints 

matrices for three cases are shown in Table 1 and Table 2. There are 2 machines available for 

Case 1 and 2 while there are 3 machines available for Case 3. 

 

Table 1. Resource Requested Matrix 

    

       



Table 2. Timing Constraints Matrix 

    

 

Figure 1 displays the energy curve of the best member in the population for 3 cases 

during iterations. The simulated scheduling results are graphically represented by using the 

Gantt charts and are shown in Figure 2. 
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Fig. 1. The energy curve of the best member in the population.(a)Case 1 (b)Case 2 (c)Case 3. 
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Fig. 2. The simulated scheduling results. (a)Case 1 (b)Case 2 (c)Case 3. 

6. Conclusions 

In this paper, we present a GA-based approach with a feasible energy function to 

generate good-quality schedules. Unlike other schemes suffering from rapidly converging to 

the local optima, the genetic algorithms provide a better chance to obtain the global optima. 

Besides, a pure GA-based approach tends to generate illegal schedules due to the crossover 

and the mutation operators, it is often the case that the gene expression or the genetic 

operators need to be specially designed to fit the problem domain or some other schemes may 

be combined to solve the scheduling problems.  



In our work, we design an easy-understood genotype to generate legal schedules 

without modifying the genetic algorithm or genetic operators. Also, the energy function 

proposed work efficiently. The time required to obtain an optimal schedules using an 

exhaustive search increases exponentially with the augmentation of the number of jobs to be 

processed, the number of operations for each job and the number of flexible machines that 

can perform the processes. Therefore, the complexity of the search space is O(2N*2M*2T). 

However, in the three simulated cases, the proposed scheme converges rapidly. In the future, 

we attempt to investigate the applicability of our approach to larger-size practical examples. 
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