
Scheduling Multi-Processor Tasks with Resource and Timing

Constraints Using Genetic Algorithm

2002 International Computer Symposium (ICS2002)

Workshop on Artificial Intelligence

Authors: Shu-Chen Cheng (contact author), PhD student, Department of Engineering
Science, National Cheng Kung University, Tainan, Taiwan, R.O.C.,
TEL: (886)6-2757575 ext: 63342-30, FAX: (886)6-2766549
E-mail address: n9889101@sparc1.cc.ncku.edu.tw

Shih-Tang Lo, PhD student, Department of Engineering Science, National Cheng
Kung University, Tainan, Taiwan, R.O.C.,
TEL: (886)6-2757575 ext: 63342-30, FAX: (886)6-2766549
E-mail address: edwardlo@mail.ksut.edu.tw

Yueh-Min Huang, Professor, Department of Engineering Science, National Cheng
Kung University, Tainan, Taiwan, R.O.C.,
TEL: (886)6-2757575 ext: 63336, FAX: (886)6-2766549
E-mail address: raymond@mail.ncku.edu.tw

Abstract

The job-shop scheduling problems have been categorized as NP-complete problems.
The exponential growth of the time required to obtain an optimal solution makes the
exhaustive search for global optimal schedules very difficult or even impossible. Recently,
stochastic search techniques such as genetic algorithms have shown the feasibility to solve the
job-shop scheduling problems. However, a pure GA-based approach tends to generate illegal
schedules due to the crossover and the mutation operators, it is often the case that the gene
expression or the genetic operators need to be specially designed to fit the problem domain or
some other schemes may be combined to solve the scheduling problems.

This paper presents a GA-based approach with a feasible energy function to generate
good-quality schedules. In our work, we design an easy-understood genotype to generate
legal schedules without modifying the genetic algorithm or genetic operators and the
proposed approach converges rapidly.

Keywords: scheduling, genetic algorithm, optimization.

Scheduling Multi-Processor Tasks with Resource and Timing

Constraints Using Genetic Algorithm

Shu-Chen Cheng1 Shih-Tang Lo2 Yueh-Min Huang3

Department of Engineering Science

National Cheng Kung University

E-mail: 1 n9889101@sparc1.cc.ncku.edu.tw

2edwardlo@mail.ksut.edu.tw

3raymond@mail.ncku.edu.tw

Abstract

The job-shop scheduling problems have been categorized as NP-complete problems.

The exponential growth of the time required to obtain an optimal solution makes the

exhaustive search for global optimal schedules very difficult or even impossible. Recently,

stochastic search techniques such as genetic algorithms have shown the feasibility to solve the

job-shop scheduling problems. However, a pure GA-based approach tends to generate illegal

schedules due to the crossover and the mutation operators, it is often the case that the gene

expression or the genetic operators need to be specially designed to fit the problem domain or

some other schemes may be combined to solve the scheduling problems.

This paper presents a GA-based approach with a feasible energy function to generate

good-quality schedules. In our work, we design an easy-understood genotype to generate

legal schedules without modifying the genetic algorithm or genetic operators and the

proposed approach converges rapidly.

Keywords: scheduling, genetic algorithm, optimization.

1. Introduction

The job-shop scheduling problems have been categorized as NP-complete problems.

The time required to obtain an optimal solution increases exponentially with the augmentation

of the number of jobs to be processed, the number of operations for each job and the number

of flexible machines that can perform the processes. The exponential growth makes the

exhaustive search for global optimal schedules very difficult or even impossible. Therefore,

adaptive search approaches have been implemented to generate good-quality schedules

instead of global optimal schedules. In 1999 and 2001, Huang and Chen [1][2] proposed an

energy function for the Hopfield neural network (HNN) to schedule multiprocessor job with

resource and timing constraints. Then, in 2001, they integrated fuzzy c-means clustering

strategies into a Hopfield neural network to solve scheduling problems [3].

Recently, stochastic search techniques such as genetic algorithms have shown the

feasibility to solve the job-shop scheduling problems. In 1999, Correa, Ferreira and

Rebreyend proposed a knowledge-augmented genetic approach to schedule multiprocessor

tasks [4]. In 2000, Hajra and etc. presented a controlled genetic algorithm based on fuzzy

logic and belief functions to solve job-shop scheduling problems [5]. In 2001, Yang

developed a GA-based discrete dynamic programming approach for scheduling in flexible

manufacturing system (FMS) environments [6]. However, a pure GA-based approach tends to

generate illegal schedules due to the crossover and the mutation operators, it is often the case

that the gene expression or the genetic operators need to be specially designed to fit the

problem domain or some other schemes may be combined to solve the scheduling problems.

This paper presents a GA-based approach with a feasible energy function to generate

good-quality schedules. Unlike other schemes suffering from rapidly converging to the local

optima, the genetic algorithms provide a better chance to obtain the global optima.

This paper is organized as follows. The energy function of the scheduling problem is

defined in Section 2. Next, the genetic algorithms are reviewed and the energy function is

translated into the evaluation function in Section 3. The mathematical proof of the

convergence of the energy function is then illustrated in Section 4. After this, the simulation

examples and experimental results are presented in Section 5. Finally, conclusions of this

paper are discussed in Section 6.

2. Energy Function of the Scheduling Problem

Job-shop scheduling problems differ from case to case. The scheduling problem domain

to be considered in this paper is defined as follows. Suppose there are N jobs, each of which

can be segmented, and there are M machines that are capable of performing the operations of

all jobs. The execution time required by each job is predetermined and can be estimated by

calculating the machine cycles. It is also assumed that different segments of a job cannot be

assigned to different machines, inferring that the job migration between machines is

prohibited. Furthermore, the deadline constraint for each job is imposed on the proposed

system. Besides, a resource is not allowed to be shared by two jobs simultaneously. Based on

the above assumptions, we attempt to generate legal schedules.

To solve this problem, the energy function of the problem regarding all constraints is

derived. In 1999 and 2001, Huang and Chen [1][2] proposed an energy function for the

Hopfield neural network (HNN). The energy function is modified and reduced in this paper.

A state variable Vijk is defined as representing whether or not the job i is executed on machine

j at a certain time k. Moreover, the state Vijk =1 denotes that the job i is run on machine j at

the time k; otherwise, Vijk =0.

Since a machine j can process only one job i at any certain time k, the energy term can

be defined as

V Vijk
i
i i

N

k

T

j

M

i

N

i jk
1 1
1

111
1

=
≠

===
∑∑∑∑

 (1)

where Vijk are as defined above; where i represents a job with a range from 1 to N, the total

number of jobs to be scheduled; where j represents a dedicated machine identified from 1 to

M, the total number of machines to be assigned; where k represents a specific time from 1 to

T, the latest deadline of the job. The same notations are used hereinafter. The minimum value

of this term is zero, which occurs when either Vijk or Vi1jk equals zero.

 As mentioned earlier, if a job is assigned on a dedicated machine, then all of its

segments must be executed on the same machine. According this constraint, the energy term

is defined as follows:

 .11
1 1 1

1
11 11

kij

N

i

M

j

T

k

M

jj
j

T

k
ijkVV∑∑∑∑∑

= = =
≠
= =

 (2)

Since a job i can be processed on either machine j or machine j1 at any time, the minimum

value of this term is zero, which occurs when either Vijk or Vij1k1 equals zero.

As for the resource constraint, two jobs are not allowed to utilize the same resource

instance simultaneously. Besides, the resource is non-preemptive so that the energy term can

be defined as follows:

V R V Rijk
s

F

j
j j

M

i
i i

N

k

T

j

M

i

N

is i j k i s∑∑∑∑∑∑
=
≠

=
≠

=== 1 1
1

1 1
1

111
1 1 1

 (3)

where F denotes the quantity of available resource instances, Ris and Ri1s are the elements of

the resource requested matrix for job i and i1 respectively. The value Ris =1 indicates that job i

requires resource s while Ri1s =1 implies that job i1 requests resource s. When two distinct jobs

are scheduled to be processed on different machines j and j1 at the same time k (say Vijk =1

and Vi1j1k =1), machines j and j1 cannot share the same resource at the time k. Hence, either Ris

or Ri1s is zero. This observation implies that the energy term becomes zero if the resource

constraint is satisfied. Correspondingly, the total energy function with all constraints can be

induced as Eq.(4):

,
2

22

1 1 1
1

1
11

11

1
11 1

3

11
1 1 1

1
11 11

2

1 1 1
1

1
11

1

∑∑∑∑∑∑

∑∑∑∑∑∑∑∑∑

= = =
≠
=

≠
= =

= = =
≠
= == = =

≠
=

+

+=

N

i

M

j

T

k
si

N

ii
i

kji

M

jj
j

is

F

s
ijk

kij

N

i

M

j

T

k

M

jj
j

T

k
ijk

N

i

M

j

T

k
jki

N

ii
i

ijk

RVRVC

VVCVVCE

 (4)

where C1, C2 and C3 refer to weighting factors and are assumed to be positive constants in our
study.

This work concentrates mainly on scheduling problems with constraint satisfaction. In

the following section, genetic algorithms are introduced to solve the constraint satisfaction of

the scheduling problems.

3. Genetic Algorithms

The exhaustive search for global optimal schedules is very difficult or even impossible.

Therefore, adaptive search approaches have been implemented to generate good-quality

schedules instead of global optimal schedules. To solve NP-hard optimization problems by

using genetic algorithms have revealed their efficiency to generate good-quality schedules in

relatively short computation time. Unlike other meta-heuristics such as simulated annealing,

which processes a single point of the search space, genetic algorithms maintain a population

of potential solutions [7]. Genetic algorithms perform a multi-directional search and

encourage information exchange between different potential solutions so that the local

optimum can be eliminated. The individuals in a population are called chromosomes, which

consist of sets of genes. An initial population is randomly created. The population undergoes

a simulated evolution by means of crossover and mutation to form a new population. At each

iteration, the crossover point is randomly selected and couples of chromosomes swap the

corresponding segments to form new solutions. The mutation operator is applied to arbitrarily

alter one gene of a selected chromosome. The iteration terminates when the value of the

energy function reaches zero. However, a pure GA-based approach tends to generate illegal

schedules due to the crossover and the mutation operators, it is often the case that the gene

expression or the genetic operators need to be specially designed to fit the problem domain or

some other schemes may be combined to solve the scheduling problems. In this paper, we

introduce a way of representing a schedule and present a GA-based approach with a feasible

energy function to generate good-quality schedules.

3.1 Representation of an Individual

Since there are N jobs, each of which can be segmented, and there are M machines that

are capable of performing the operations of all jobs, a state variable Vijk is defined as

representing whether or not the job i is executed on machine j at a certain time k. Moreover,

the state Vijk =1 denotes that the job i is run on machine j at the time k; otherwise, Vijk =0.

Thus, Pijk is defined as representing the probability of Vijk =1. The chromosome, (Pijk ;

i=1,…,N; j=1,…,M; k=1,…,T), represents a potential scheduling solution. The dimension of

the chromosome is equal to N*M*T.

3.2 Initial Population

An initial population is created by generating each gene, Pijk, randomly.

3.3 Generating a Schedule

Due to the deadline constraint, no segment of a job is allowed to be assigned to a time

later than the deadline of the job. Hence, Pijk is set to zero if k-di≤0, where di denotes the

deadline of the job i. Furthermore, the time spent by all segments of job i should be equal to

PTi, the processing time required by job i. The condition)(
1 1
∑∑
= =

=
M

j

T

k
iijk PTV must be

satisfied. Therefore, for each job i, i=1,…,N, Vij1k =1 if Pij1k≥Thij1, where Thij1 is the PTi-th

highest Pij1k on machine j1, k=1,…,T;otherwise, Vijk =0. Note that the job migration between

machines is prohibited, so finding Thij1 is restricted on machine j1, where machine j1 contains

the highest Pijk for j=1,…,M and k=1,…,T.

3.4 Evaluation Function

The evaluation function f(E) is calculated by

ε+
=

E
Ef 1)((5)

where E is the value of the energy function computed by Eq.(4) and ε is an extremely small

value to prevent the denominator from becoming zero.

3.5 Genetic Operators

To make sure that the best member in the population survives, the elitist model is

adopted. The best member of the previous generation is stored. If the best member of the

current generation is worse than that of the previous generation, the latter one would replace

the worst member of the current population. At each iteration, the crossover point is randomly

selected and two individuals are paired randomly to swap the corresponding segments to form

new solutions with a prescribed probability PC. The mutation operator is applied to arbitrarily

alter one gene of a selected chromosome with a prescribed probability PM.

4. Convergence of the Energy Function

The defined energy function dominates the convergence during the iteration. In this

section, Eq.(4) is proven to be an appropriate Lyapunov function. Hence, the convergence is

assured. Eq.(4) consists of two parts, one containing a state Vlmn using resource f and the other

containing the rest of the states. Thus, Vlmn=1 indicates a situation in which machine m

processes job l at time n using resource f. Contrarily, Vlmn=0 refers to that job l is neither

executed on machine m nor utilizes resource f at time n. Herein, the equation is divided into

two parts to observe the change of the energy with respect to the state Vlmn change. The

energy before updating is shown below:

])(

)([
2

])()([
2

])()([
2

11

11

1

1 1 1
1

1
11

11

1
11 1

1 1
1

11
1

11
111

3

11
1 1 1

1
11 11

1
11 1 111

11
2

1 1 1
1

1
11

1
11 1

1
1

lmnkji

lmnijk

lmnkij

lmnijk

lmnjki

lmnijk

VV
and

VV

N

i

M

j

T

k
si

N

ii
i

kji

M

jj
j

is

F

fs
s

ijk

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijkls

N

li
i

M

mj
j

n

nk
si

f

fs
kjilmn

VV
and

VVkij

N

i

M

j

T

k

M

jj
j

T

k
ijk

l

li

M

mj
j

l

li

M

mj
j

T

k
ijk

T

k
kijlmn

VV
and

VV

N

i

M

j

T

k
jki

N

ii
i

ijk

N

li
i

m

mj

N

li
i

m

mj

n

nk
ijk

n

nk
jkilmn

RVRV

RRVRRVVC

VVVVVC

VVVVVCE

≠

≠
= = =

≠
=

≠
=

≠
=

≠
=

≠
= = =

≠
=

≠
= = =

≠

≠
= = =

≠
= ==

≠
= =

≠
= ==

≠

≠
= = =

≠
=

≠
= =

≠
= = ==

∑∑∑∑∑∑

∑∑∑∑∑∑∑∑

∑∑∑∑∑∑∑ ∑∑∑∑

∑∑∑∑∑∑ ∑∑∑∑

+

++

+++

++=

 (6)

where Vijk≠Vlmn and Vi1jk≠Vlmn apply to the indexed parenthesized item only and indicates that

the condition have different values. Similarly, the energy, Enew, after updating is derived as

follows:

])(

)([
2

])()([
2

])()([
2

11

11

1

1 1 1
1

1
11

11

1
11 1

1 1
1

11
1

11
111

3

11
1 1 1

1
11 11

1
11 1 111

11
2

1 1 1
1

1
11

1
11 1

1
1

new
lmnkji

new
lmnijk

new
lmnkij

new
lmnijk

new
lmnjki

new
lmnijk

VV
and

VV

N

i

M

j

T

k
si

N

ii
i

kji

M

jj
j

is

F

fs
s

ijk

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijkls

N

li
i

M

mj
j

n

nk
si

f

fs
kji

new
lmn

VV
and

VVkij

N

i

M

j

T

k

M

jj
j

T

k
ijk

l

li

M

mj
j

l

li

M

mj
j

T

k
ijk

T

k
kij

new
lmn

VV
and

VV

N

i

M

j

T

k
jki

N

ii
i

ijk

N

li
i

m

mj

N

li
i

m

mj

n

nk
ijk

n

nk
jki

new
lmn

new

RVRV

RRVRRVVC

VVVVVC

VVVVVCE

≠

≠
= = =

≠
=

≠
=

≠
=

≠
=

≠
= = =

≠
=

≠
= = =

≠

≠
= = =

≠
= ==

≠
= =

≠
= ==

≠

≠
= = =

≠
=

≠
= =

≠
= = ==

∑∑∑∑∑∑

∑∑∑∑∑∑∑∑

∑∑∑∑∑∑∑ ∑∑∑∑

∑∑∑∑∑∑ ∑∑∑∑

+

++

+++

++=

 (7)

Hence, according to Eq.(6) and Eq.(7), the changes of the energy can be calculated as follws:

)2)((
2

)2)((
2

)2)((
2

1 1

3

1 1

2

1

1

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijklmn

new
lmn

l

li

M

mj
j

T

k
ijklmn

new
lmn

N

li
i

m

mj

n

nk
ijklmn

new
lmn

new
lmn

RRVVVC

VVVC

VVVC

EEE

∑∑∑∑

∑∑∑

∑∑∑

≠
=

≠
= = =

=
≠
= =

≠
= = =

−+

−+

−=

−=∆

 (8)

According to Eq.(8), the total energy difference is involved in the change of (Vlmn
new-Vlmn).

Whenever the state changes from 0→1, 1→0, 0→0, or 1→1, the change of (Vlmn
new-Vlmn) has

different effects on the energy difference. For convenience, the above energy difference ∆Elmn

is rewritten as Eq.(9)

])[(

)]2(
2

)2(
2

)2(
2

)[(

321

1 1

3

1 1

2

1

1

itemitemitemlmn
new

lmn

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijk

l

li

M

mj
j

T

k
ijk

N

li
i

m

mj

n

nk
ijklmn

new
lmnlmn

EEEVV

RRVC

VC

VCVVE

∆+∆+∆−=

+

+

−=∆

∑∑∑∑

∑∑∑

∑∑∑

≠
=

≠
= = =

=
≠
= =

≠
= = =

 (9)

According to Eq.(9), the change of energy concerns itself with state change of

(Vlmn
new-Vlmn), where ∆Eitem1, ∆Eitem2, and ∆Eitem3 correspond to the associated items of C1, C2,

and C3, respectively. Closely examining Eq.(9) again obviously reveals that when

Vlmn
new=Vlmn, i.e. when state changes from 0→0 or 1→1, the system is in a stable condition

and the energy difference is zero (∆Elmn=0). A state change from 0→1 (Vlmn
new-Vlmn =1)

indicates that machine m is processing job l at time n. Hence, according to the state constraint

definition, we can infer that ∆Eitem1 is zero.

()Vijk
k n

n

j m

m

i
i l

N

===
≠

∑∑∑ =
1

0

 (10)

As mentioned earlier, if a job is assigned on a dedicated machine, then all of its segments

must be executed on the same machine. Thus, ∆Eitem2 is equal to zero.

)0(
1 1

=∑∑∑
=

≠
= =

l

li

M

mj
j

T

k
ijkV (11)

Furthermore, ∆Eitem3 is also zero,

)0(
1 1

=∑∑∑∑
≠
=

≠
= = =

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijk RRV (12)

since Rls=1 indicates that resource f is used by job l, subsequently forcing Ris=0.

Consequently, the energy difference, ∆Elmn =(1-0)(0+0+0), is equal to zero when the state

Vlmn
new becomes one.

Finally, when the state changes from 1→0, (Vlmn
new-Vlmn =-1), ∆Eitem1 has a maximum

value of C1,

∑∑∑
≠
= = =

N

li
i

m

mj

n

nk
ijkV

1
 = 0 or 1, (13)

since a machine can process one job at most or does nothing at a certain time. ∆Eitem2 also has

a maximum value of C2*Pl,

0
1 1

=∑∑∑
=

≠
= =

l

li

M

mj
j

T

k
ijkV or Pl , (14)

where Pl and C2 are both positive and Pl is the total execution time of job l. In addition, a

situation in which Vlmn
new =0 implies that resource f is not used by job l, which will force Rls

=0, and then ∆Eitem3 becomes zero,

)0(
1 1

=∑∑∑∑
≠
=

≠
= = =

lsis

N

li
i

M

mj
j

n

nk

f

fs
ijk RRV . (15)

Consequently, the energy difference, ∆Elmn ≤(0-1)(C1+ C2*Pl +0), is less than zero when the

state Vlmn
new becomes zero. Correspondingly, the proposed energy function is a Lyapunov

function.

5. Simulation Examples and Experimental Results

Three sets of resource and timing constraints were applied for the simulations. The

constants of the energy function, C1, C2, and C3, were all set to 1 in this work. Each

population of chromosomes of the genetic algorithm was initialized randomly. The population

size was 100 and other parameters such as the probability of the crossover and the mutation

were 0.4 and 0.06, respectively. The resource requested matrix and the timing constraints

matrices for three cases are shown in Table 1 and Table 2. There are 2 machines available for

Case 1 and 2 while there are 3 machines available for Case 3.

Table 1. Resource Requested Matrix

Table 2. Timing Constraints Matrix

Figure 1 displays the energy curve of the best member in the population for 3 cases

during iterations. The simulated scheduling results are graphically represented by using the

Gantt charts and are shown in Figure 2.

0

5

10

15

20

0 50 100 150

of iterations

E
ne

rg
y

Fig. 1. The energy curve of the best member in the population.(a)Case 1 (b)Case 2 (c)Case 3.

(a) (b) (c)

Fig. 2. The simulated scheduling results. (a)Case 1 (b)Case 2 (c)Case 3.

6. Conclusions

In this paper, we present a GA-based approach with a feasible energy function to

generate good-quality schedules. Unlike other schemes suffering from rapidly converging to

the local optima, the genetic algorithms provide a better chance to obtain the global optima.

Besides, a pure GA-based approach tends to generate illegal schedules due to the crossover

and the mutation operators, it is often the case that the gene expression or the genetic

operators need to be specially designed to fit the problem domain or some other schemes may

be combined to solve the scheduling problems.

In our work, we design an easy-understood genotype to generate legal schedules

without modifying the genetic algorithm or genetic operators. Also, the energy function

proposed work efficiently. The time required to obtain an optimal schedules using an

exhaustive search increases exponentially with the augmentation of the number of jobs to be

processed, the number of operations for each job and the number of flexible machines that

can perform the processes. Therefore, the complexity of the search space is O(2N*2M*2T).

However, in the three simulated cases, the proposed scheme converges rapidly. In the future,

we attempt to investigate the applicability of our approach to larger-size practical examples.

Reference

[1] Yueh-Min Huang and Ruey-Maw Chen, “Scheduling Multiprocessor Job with Resource and
Timing Constraints Using Neural Networks”, IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics, Vol.29, No.4, pp. 490-502, 1999.

[2] Ruey-Maw Chen and Yueh-Min Huang, “Competitive Neural Network to Solve Scheduling
Problems”, Neurocomputing, pp. 177-196, 2001.

[3] Ruey-Maw Chen and Yueh-Min Huang, “Multiprocessor Task Assignment with Fuzzy
Hopfield Neural Network Clustering Technique”, Neural Computing and Applications, pp.
12-21, 2001.

[4] Ricardo C. Correa, Afonso Ferreira and Pascal Rebreyend, “Scheduling Multiprocessor
Tasks with Genetic Algorithms”, IEEE Transactions on Parallel and Distributed Systems,
Vol.10, No.8, pp. 825-837, 1999.

[5] S. Hajri, N. Liouane, S. Hammadi and P. Borne, “A Controlled Genetic Algorithm by Fuzzy
Logic and Belief Functions for Job-Shop Scheduling”, IEEE Transactions on Systems, Man
and Cybernetics-Part B: Cybernetics, Vol.30, No.5, pp. 812-818, 2000.

[6] Jian-Bo Yang, “GA-Based Discrete Dynamic Programming Approach for Scheduling in
FMS Environments”, IEEE Transactions on Systems, Man and Cybernetics-Part B:
Cybernetics, Vol.31, No.5, pp. 824-835, 2001.

[7] Zbigniew Michalewicz, “Genetic Algorithms + Data structures = Evolution Programs”,
Third Edition, Springer, pp. 13-44, 1999.

