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Abstract 

Scheduling problems exist in many applications, and most of them have 
demonstrated their complexities as NP complete. A lot of schemes have been 
introduced to solve scheduling problems, such as linear programming, artificial 
neural network and fuzzy logic. Among them, simulated annealing is a highly 
effective means of obtaining an optimal solution which is capable of preventing 
the local minimum. In this paper we try to use simulated annealing algorithm to 
solve a non-sharable machine and resource-based scheduling problem which 
closely reflects a scheduling problem in the real world. We assume that both 
machine and resource are not sharable, and each job to process requires 
machine and resource. In contrast to the most scheduling problems which only  
resolve the machine problem, job process time and deadline, we believe that 
resource constrains are critical issues, although it will make scheduling 
problem more complicated. In this work, we try to use a genetic 
algorithm(GA)-based simulated annealing algorithm to solve the scheduling 
problem in reducing the penalty of resource factor involved. Simulation results 
demonstrate that our method not only can solve machine and resource 
constraint problem, but also can work effectively. 
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resource constrains are critical issues, although it will make scheduling 

problem more complicated. In this work, we try to use a genetic 

algorithm(GA)-based simulated annealing algorithm to solve the scheduling 

problem in reducing the penalty of resource factor involved. Simulation results 

demonstrate that our method not only can solve machine and resource 

constraint problem, but also can work effectively. 

Key words: simulated annealing , scheduling, genetic 

1. Introduction 

Many applications involve the concepts of scheduling, such as 

communications, routing, and production planning and task assignment in 

multi-processor. Most problems in these applications are categorized into the 

class of NP-complete problems. It would take a lot of time to get an optimal 

solution, especially for a large-scale scheduling problem. 

This fact implies that an optimal solution for a large-scale scheduling 

problem is quite time-consuming. Hopfield first used an artificial neural network 

(ANN) to solve optimization problems [1]. Since that, Hopfield networks have 

been successfully applied to a variety of problems. Willems and Rooda 

translated the job-shop scheduling problem into a format of linear 

programming and, then, mapped it into an appropriate neural network 

structure to obtain a solution [2]. Foo and Takefuji employed integer linear 
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programming neural networks to solve the scheduling problem by minimizing 

the total starting times of all jobs with a precedence constraint [3]. Meanwhile, 

Zhang et. al. proposed a neural network method based on linear programming. 

In the proposed algorithm, preemptive jobs are scheduled on the basis of their 

priorities and deadlines [4]. The above investigations concentrated on the 

preemptive jobs (processes) executed on multiple machines (multiprocessor) 

with job transfer allowed by an ANN. Also in [5], Hanada and Ohnishi 

developed a parallel algorithm based on a neural network for preemptive task 

scheduling problems by allowing a task transfer among machines. As 

generally known, most scheduling problems are combinatorial, thereby 

ensuring the optimization process by a ANN. However, the mentioned above 

neural networks are basically non-adaptive networks, of which the neural unit 

connection weights and biases must be prescribed before applying of the 

networks to a particular problem. These networks also have drawbacks such 

as failing to converge to a valid solution, inability to locate the global minimum 

and poor scaling properties due to the use of quadratic energy function [6]. In 

addition, most scheduling problems are limited to the preemptive and 

migratory processes on a multiprocessor and, therefore, only consider the 

timing constraint. In some multiprocessor systems, task scheduling does not 
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include only a timing constraint [7]. For instance, the display system on an 

advanced avionics system may consist of two or more display processors. 

Each processor is responsible for different tasks containing the timing 

constraint without allowing task migration between processors. Restated, 

tasks do not use the same resource simultaneously. To facilitate the pilot’s 

control action, all tasks must be properly scheduled to provide the pilot with 

some useful information. Otherwise, a hazardous situation is inevitable. 

In our previous work, we used ANN and Normalized Mean Field Annealing 

(MFA) to solve multiprocessor scheduling problem, and proved our algorithm 

to be more efficient to converge [7][8].  

On the other hand, GA has been considered as a powerful heuristic search 

method to solve combinational optimization problems. Although they provided 

good quality of schedules, their execution times are significantly higher than 

those of other alternatives [9][10]. Hajri Introduced a controlled GA based on 

fuzzy logic and belief function to solve job-shops scheduling problems [11]. 

They used an efficient representational scheme including heuristic rules to 

represent the solution. Dessoaly investigated the hybrid approach combing GA 

with ANN to solve the short-term generation scheduling. They showed the 

hybrid technique had higher potential to enhance performance, accelerate 
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converge, and overcome the problems associated with the traditional GA 

approach [12]. 

Simulated Annealing (SA) was introduced by Metropolis in 1953 [13], its 

basic concept came from one state transfer to another state in chemical 

production processes. Then it was applied to approximate the solution of very 

large combinatorial optimization problems [14]. 

The original Metropolis scheme is that: An initial state of a thermodynamic 

system is chosen at energy E and temperature T. Holding T constant, the initial 

configuration is perturbed and the change in energy △E is computed. If the 

change in cost function is negative, the transition is unconditionally accepted; if 

the cost function increases the transition is accepted with a probability based 

upon the Boltzmann distribution. This process is then repeated sufficient times 

to give good sampling statistics for the current temperature. The temperature 

decremented and the entire process repeated until a frozen state is achieved 

at T=0.  

SA is one of the best methods to solve a widely complex problems and a lot 

of solution combinations. Consequently the four key ``ingredients'' for the 

implementation of simulated annealing are:  

(1). The definition of configurations;  
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(2). A generation mechanism, i.e. the definition of a neighborhood on the 

configuration space;  

(3). The choice of a cost function;  

(4). A cooling schedule.  

In this paper, we modify the energy function presented in [7][8], introduce 

the resource base concept into our scheduling problem, and apply the 

GA-based representation approach with SA algorithm to find a better solution. 

2. Scheduling problem 

Our scheduling problem domain considers N jobs (or processes), M machines 

(or processors) and R resources. T is the maximum completion time of the jobs. 

The machines and resources are heterogeneous and non-sharable in our case. 

These N jobs are divided into M groups, each group of jobs must be processed 

on dedicated machine and using a specify resource. There are some 

assumptions in our scheduling problem domain. First, the execution time of 

each job is predetermined. Second, each machine can perform at most one 

job at any time, and each job cannot be interrupted during it perform 

(non-preemptive). Finally, in each time, only one job can be performed at one 

machine using one resource. Our objective is to find a schedule with no conflict 

on these jobs in executing, base on non-sharable machine and resource. 
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Here we introduce our GA base representation method. For simplicity we 

use a matrix  to denote the job  executed on machine ijkpM i j  at certain 

time  using the resource k p . This matrix is built like a gene of GA, which is 

easy to implement, and it will be used in our continue research. If job  is 

processing on machine 

i

j  at certain time  using the resource k p , then 

, else . 1ijkpM = 0=ijkpM

(1) Non-sharable machine constraint 

Since a machine j  can only execute one job i  at a certain time k , the 

energy term can be defined as follow: 
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If the value is greater than 1, it mean that there are more than two job using 

same resource at the same time. 

(2). Non-sharable resource constraint 

We defined the other energy function for non-sharable resource constraint as 

follow: 
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When one job is assigned on a dedicated machine at time  using resource k

p , the energy will greater than 1 if there is still another job has to do at the 

same time. If this machine only process one job at time , the energy value 

equals 1. If there is no job be processed at time  the energy value is 0, 

k

k

(3) Timing constraint 

In our work, we only consider the non-sharable machine and resource. There 

is no permission for one machine running more than one job at the same time. 

Each job has to be processed between the arrival time and deadline. Due to 

the content limitation, we only focus the effort on the coupling of the machine, 

resource and time problem. We believed that it is easy to incorporate other 

constrains into our scheduling problem. Thus the timing constraint energy is 

defined below. 
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For each job, it has arrival time and deadline. If a job completion time is 

over the deadline, we set the energy value to 1. 

Finally, our energy function is defined as the follow equation: 

 9



Energy= ……………(4) ∑ ∑∑∑∑∑
= =====

++
R

p

N

i
ij

M

j
kp

T

k

M

j
ij

N

i
EHcEcEc

1 1

'

1
3

'

1
2

1

'

1
1

The energy will be zero if there is a feasible solution. 

Here we show an example using data in Table 1 without time constraints. If 

we adopt the scheduling depicted in Figure 1, there is no legal solution existed. 

That is because the resource R2 is shared by job1 and job6 at time 3 to 4, the 

energy is 2. If we adopt the scheduling depicted in Figure 2, there is a feasible 

result since the energy is 0. The resource R2 is not shared by job1 and job6 at 

the same time. 

Table1.Example with 6 jobs/3 machines/2 resources 
job  machine time resource 

Job1 M1 2 R2 
Job2 M1 3 R1 
Job3 M2 4 R1 
Job4 M2 3 R2 
Job5 M3 2 R1 
Job6 M3 3 R2 

 
M1  Job1(R2) Job2(R1)   

M2 Job3(R1)  Job4(R2)  

M3   Job6(R2)   Job5(R1) 

 1 2 3 4 5 6 7 8 9 

Figure1. An example is not a feasible scheduling result for Table 1 
 

M1 Job1(R2)   Job2(R1)   

M2 Job3(R1)  Job4(R2)  

M3   Job6(R2)   Job5(R1) 

1 2 3 4 5 6 7 8 9 

Figure 2. A feasible scheduling result of Table 1 
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3. Algorithm framework 

The scheme of our SA algorithm is shown in Table 2, the algorithm begins with 

the creation of an initial solution, some jobs are chosen randomly (base on the 

number of job) to reschedule for each generation, and the energy value is 

computed based on equation (4). If the energy is lower than before, then we 

accept the new solution. But if the energy is higher than before, we might 

accept the solution base on the probability Pa, if Pa<δ. This algorithm will be 

terminated until the energy goes to zero. If energy is zero then output the 

schedule result.  

Table 2.Simulated annealing algorithm 

Initial a solution S, compute E  
Set the initial T, k, r 
While E <> 0 

S’=Random choose one job to reschedule 
Compute energy E’ andΔE=E’-E  
if ΔE<0 then accept  S=S’,E=E’ 

else Compute the kT
E

e
∆

−
=δ  

Accept the new solution when Pa<δ 
    decrease the temperature T=T*r 

We can only conclude that the scheduling result is a feasible solution. We can’t 

prove that it is the optimal one. However, we will use some weight function or 

heuristics to get a near optimal solution in our future work. Our cooling 

schedule is defined as T = T * r, 0<r<1. 
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4. Numerical experiment 

There are some examples examined for different situations in our experiment. 

First we show the job is not segmented, it means that the job can not be 

preempted until its finish. And we set T=T*0.95 for the cooling process, the 

results shown in Figure 2. Figure 3 and Figure 4 show the schedule results for 

the job that can be segmented. Figure 5 shows the scheduling results using 

the data in Table 4 for the job with time constraint (arrival time/deadline). 

Figures 6 and 7 are the energy evolution result which the time constraints is 

include or exclude. It shows that there is higher probability to get a worse 

answer when the temperature gets higher. Figure 8 is our cooling scheduling.  

Table 3.Example with 6 jobs/2 machines/2 resources 

job  machine time Resource 
Job1 M01 2 R02 
Job2 M01 3 R01 
Job3 M01 4 R01 
Job4 M02 3 R02 
Job5 M02 2 R01 
Job6 M02 3 R02 

 
M1 J1(R2) J3(R1) J2(R1) J3(R1) J1(R2) J3(R1) J2(R1) 

M2 J5(R1)  J4(R2) J6(R2) J5(R1) J4(R2) Jo6(R2)

 1  2 3 4 5 6 7 8 9 
Figure 3. A feasible scheduling result for example of Table 3 

which the job can be segmented  
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Table 4.Example with 10 jobs/4 machines/3 resources 
Job machine time resource Arrival time Deadline 

Job1 M01 2 R02 1 10 
Job2 M01 3 R01 5 14 
Job3 M01 4 R01 1 14 
Job4 M02 3 R02 1 10 
Job5 M02 2 R03 5 14 
Job6 M02 3 R02 1 14 
Job7 M03 5 R03 1 10 
Job8 M03 3 R02 5 14 
Job9 M04 3 R02 5 14 
Job10 M04 4 R01 1 10 

 
M1 J2(R1)   J2(R1) J1(R2) J3(R1) J1(R2)  J2(R1) J3(R1) J3(R1) J3(R1)   
M2 J5(R3) J4(R2) J6(R2) J4(R2)    J6(R2) J6(R2)    J4(R2) J5(R3)

M3  J7(R3) J7(R3)   J8(R2) J7(R3)  J7(R3)  J3(R3) J8(R2)  J8(R2)

M4 J9(R2)  J10(R1)  J10(R1)   J10(R1)  J9(R2) J9(R2)   J10(R1)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Figure 4. A feasible scheduling result for example of Table 4 

which the job can be segmented 
 
M1   J1(R2)   J3(R1)  J1(R2) J3(R1) J3(R1) J2(R1) J2(R1) J2(R1) J3(R1)

M2 J4(R2) J4(R2)  J6(R2) J6(R2)   J5(R3) J6(R2) J4(R2) J5(R3)    

M3   J7(R3) J7(R3)  J7(R3) J8(R2)  J7(R3) J7(R3) J8(R2)  J8(R2)  

M4 J1(R1)  J1(R1)  J1(R1) J9(R2) J1(R1)     J9(R2)  J9(R2)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Figure 5. A feasible scheduling result for example of Table 4 

which the job can be segmented include arrival time and deadline 
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Figure 6. Energy evolution of Simulated Annealing without time constraint 
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Figure 7. Energy evolution of Simulated Annealing with arrival time/deadline 
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Figure 8. Cooling scheduling of Simulated Annealing (T=T*0.95). 

In our simulation, we find the simulating annealing method can find a feasible 

solution. However the variance of number of execution iterations sometime is 

high. The initial temperature, cooling process and initial solution are important 

factor of result. 

We conclude that: 

(1.) The parameter is significant factors to SA. 

(2.) The range of neighborhood answer is an impact to the number of 

iterations. 

(3.) We cannot guarantee to get an optimal solution. 
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(4.) If the cooling schedules decrease too fast, it may fall into a local 

minimum solution or non-converge. 

(5.) The initial solution sometimes cannot converge in a reasonable 

number of iterations.  

5. Conclusions 

In this paper, we have presented a GA-representation SA algorithm for solving 

the scheduling problem. 

(1.) An easy understanding scheduling representation is introduced by 

using only a four-dimension matrix, which is efficient for designing 

scheduling problem. 

(2.) In our proposed method, the energy function is defined by our 

assumption. It is more practical than previous studies when the 

resource consideration is involved. 

(3.) We use GA-like solution presentation form, it can be implement easily 

by a genetic algorithm.  

(4.) This algorithm can be adapted to different configurations. 

The time complexity is O (N*M*R*T). The simulation results show ours method 

always can find a desired and feasible solution with an acceptable iterations.  
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