
2002 International Computer Symposium (ICS2002)

Workshop on Artificial Intelligence
December 18-21, 2002

Solving Non-sharable Machine and Resource Scheduling Problem using

Simulated Annealing Algorithm

Shih-Tang Lo and Yueh-Min Huang+

Department of Information management, Kun Shan University of Technology,
Department of Engineering Science, National Cheng Kung University+, Taiwan,
R.O.C.

Email: edwardlo@mail.ksut.edu.tw, raymond@mail.ncku.edu.tw+

Tel:06-2732726 Fax:06-2732726
Abstract

Scheduling problems exist in many applications, and most of them have
demonstrated their complexities as NP complete. A lot of schemes have been
introduced to solve scheduling problems, such as linear programming, artificial
neural network and fuzzy logic. Among them, simulated annealing is a highly
effective means of obtaining an optimal solution which is capable of preventing
the local minimum. In this paper we try to use simulated annealing algorithm to
solve a non-sharable machine and resource-based scheduling problem which
closely reflects a scheduling problem in the real world. We assume that both
machine and resource are not sharable, and each job to process requires
machine and resource. In contrast to the most scheduling problems which only
resolve the machine problem, job process time and deadline, we believe that
resource constrains are critical issues, although it will make scheduling
problem more complicated. In this work, we try to use a genetic
algorithm(GA)-based simulated annealing algorithm to solve the scheduling
problem in reducing the penalty of resource factor involved. Simulation results
demonstrate that our method not only can solve machine and resource
constraint problem, but also can work effectively.
Key words: simulated annealing, scheduling, genetic

 1

mailto:edwardlo@mail.ksut.edu.tw
mailto:raymond@mail.ncku.edu.tw

Solving Non-sharable Machine and Resource Scheduling Problem using

Simulated Annealing Algorithm

Shih-Tang Lo and Yueh-Min Huang+

Department of Information management, Kun Shan University of Technology, Department of

Engineering Science, National Cheng Kung University, Taiwan, R.O.C+

edwardlo@mail.ksut.edu.tw, raymond@mail.ncku.edu.tw+

Abstract

Scheduling problems exist in many applications, and most of them have

demonstrated their complexities as NP complete. A lot of schemes have been

introduced to solve scheduling problems, such as linear programming, artificial

neural network and fuzzy logic. Among them, simulated annealing is a highly

effective means of obtaining an optimal solution which is capable of preventing

the local minimum. In this paper we try to use simulated annealing algorithm to

solve a non-sharable machine and resource-based scheduling problem which

closely reflects a scheduling problem in the real world. We assume that both

machine and resource are not sharable, and each job to process requires

machine and resource. In contrast to the most scheduling problems which only

resolve the machine problem, job process time and deadline, we believe that

 2

mailto:edwardlo@mail.ksut.edu.tw
mailto:raymond@mail.ncku.edu.tw

resource constrains are critical issues, although it will make scheduling

problem more complicated. In this work, we try to use a genetic

algorithm(GA)-based simulated annealing algorithm to solve the scheduling

problem in reducing the penalty of resource factor involved. Simulation results

demonstrate that our method not only can solve machine and resource

constraint problem, but also can work effectively.

Key words: simulated annealing , scheduling, genetic

1. Introduction

Many applications involve the concepts of scheduling, such as

communications, routing, and production planning and task assignment in

multi-processor. Most problems in these applications are categorized into the

class of NP-complete problems. It would take a lot of time to get an optimal

solution, especially for a large-scale scheduling problem.

This fact implies that an optimal solution for a large-scale scheduling

problem is quite time-consuming. Hopfield first used an artificial neural network

(ANN) to solve optimization problems [1]. Since that, Hopfield networks have

been successfully applied to a variety of problems. Willems and Rooda

translated the job-shop scheduling problem into a format of linear

programming and, then, mapped it into an appropriate neural network

structure to obtain a solution [2]. Foo and Takefuji employed integer linear

 3

programming neural networks to solve the scheduling problem by minimizing

the total starting times of all jobs with a precedence constraint [3]. Meanwhile,

Zhang et. al. proposed a neural network method based on linear programming.

In the proposed algorithm, preemptive jobs are scheduled on the basis of their

priorities and deadlines [4]. The above investigations concentrated on the

preemptive jobs (processes) executed on multiple machines (multiprocessor)

with job transfer allowed by an ANN. Also in [5], Hanada and Ohnishi

developed a parallel algorithm based on a neural network for preemptive task

scheduling problems by allowing a task transfer among machines. As

generally known, most scheduling problems are combinatorial, thereby

ensuring the optimization process by a ANN. However, the mentioned above

neural networks are basically non-adaptive networks, of which the neural unit

connection weights and biases must be prescribed before applying of the

networks to a particular problem. These networks also have drawbacks such

as failing to converge to a valid solution, inability to locate the global minimum

and poor scaling properties due to the use of quadratic energy function [6]. In

addition, most scheduling problems are limited to the preemptive and

migratory processes on a multiprocessor and, therefore, only consider the

timing constraint. In some multiprocessor systems, task scheduling does not

 4

include only a timing constraint [7]. For instance, the display system on an

advanced avionics system may consist of two or more display processors.

Each processor is responsible for different tasks containing the timing

constraint without allowing task migration between processors. Restated,

tasks do not use the same resource simultaneously. To facilitate the pilot’s

control action, all tasks must be properly scheduled to provide the pilot with

some useful information. Otherwise, a hazardous situation is inevitable.

In our previous work, we used ANN and Normalized Mean Field Annealing

(MFA) to solve multiprocessor scheduling problem, and proved our algorithm

to be more efficient to converge [7][8].

On the other hand, GA has been considered as a powerful heuristic search

method to solve combinational optimization problems. Although they provided

good quality of schedules, their execution times are significantly higher than

those of other alternatives [9][10]. Hajri Introduced a controlled GA based on

fuzzy logic and belief function to solve job-shops scheduling problems [11].

They used an efficient representational scheme including heuristic rules to

represent the solution. Dessoaly investigated the hybrid approach combing GA

with ANN to solve the short-term generation scheduling. They showed the

hybrid technique had higher potential to enhance performance, accelerate

 5

converge, and overcome the problems associated with the traditional GA

approach [12].

Simulated Annealing (SA) was introduced by Metropolis in 1953 [13], its

basic concept came from one state transfer to another state in chemical

production processes. Then it was applied to approximate the solution of very

large combinatorial optimization problems [14].

The original Metropolis scheme is that: An initial state of a thermodynamic

system is chosen at energy E and temperature T. Holding T constant, the initial

configuration is perturbed and the change in energy △E is computed. If the

change in cost function is negative, the transition is unconditionally accepted; if

the cost function increases the transition is accepted with a probability based

upon the Boltzmann distribution. This process is then repeated sufficient times

to give good sampling statistics for the current temperature. The temperature

decremented and the entire process repeated until a frozen state is achieved

at T=0.

SA is one of the best methods to solve a widely complex problems and a lot

of solution combinations. Consequently the four key ``ingredients'' for the

implementation of simulated annealing are:

(1). The definition of configurations;

 6

(2). A generation mechanism, i.e. the definition of a neighborhood on the

configuration space;

(3). The choice of a cost function;

(4). A cooling schedule.

In this paper, we modify the energy function presented in [7][8], introduce

the resource base concept into our scheduling problem, and apply the

GA-based representation approach with SA algorithm to find a better solution.

2. Scheduling problem

Our scheduling problem domain considers N jobs (or processes), M machines

(or processors) and R resources. T is the maximum completion time of the jobs.

The machines and resources are heterogeneous and non-sharable in our case.

These N jobs are divided into M groups, each group of jobs must be processed

on dedicated machine and using a specify resource. There are some

assumptions in our scheduling problem domain. First, the execution time of

each job is predetermined. Second, each machine can perform at most one

job at any time, and each job cannot be interrupted during it perform

(non-preemptive). Finally, in each time, only one job can be performed at one

machine using one resource. Our objective is to find a schedule with no conflict

on these jobs in executing, base on non-sharable machine and resource.

 7

Here we introduce our GA base representation method. For simplicity we

use a matrix to denote the job executed on machine ijkpM i j at certain

time using the resource k p . This matrix is built like a gene of GA, which is

easy to implement, and it will be used in our continue research. If job is

processing on machine

i

j at certain time using the resource k p , then

, else . 1ijkpM = 0=ijkpM

(1) Non-sharable machine constraint

Since a machine j can only execute one job i at a certain time k , the

energy term can be defined as follow:

A= ……………(1) MjNiM
R

p
ijkp

T

k
..1,..1,

11
==∑∑

==







≤=

>=

1,0

1,1

'

'

AifE

AifE

ij

ij

If the value is greater than 1, it mean that there are more than two job using

same resource at the same time.

(2). Non-sharable resource constraint

We defined the other energy function for non-sharable resource constraint as

follow:

B= ……………(2) RpTkM
M

j
ijkp

N

i
..1,..1,

11
==∑∑

==







≤=

>=

1,0

1,1'

BifE

BifE

kp

kp

 8

When one job is assigned on a dedicated machine at time using resource k

p , the energy will greater than 1 if there is still another job has to do at the

same time. If this machine only process one job at time , the energy value

equals 1. If there is no job be processed at time the energy value is 0,

k

k

(3) Timing constraint

In our work, we only consider the non-sharable machine and resource. There

is no permission for one machine running more than one job at the same time.

Each job has to be processed between the arrival time and deadline. Due to

the content limitation, we only focus the effort on the coupling of the machine,

resource and time problem. We believed that it is easy to incorporate other

constrains into our scheduling problem. Thus the timing constraint energy is

defined below.

MjNiGHEH
T

k
ijkij ..1,..1,)(

1

' === ∑
=

……………(3)









≤=

>=

==−=−−=

0,1)(

0,1)(

..1,1,

ijkijk

ijkijk

ijkpiiijk

GifGH

GifGH

RpMifdeadlineJobkktimearrivalJobG

For each job, it has arrival time and deadline. If a job completion time is

over the deadline, we set the energy value to 1.

Finally, our energy function is defined as the follow equation:

 9

Energy= ……………(4) ∑ ∑∑∑∑∑
= =====

++
R

p

N

i
ij

M

j
kp

T

k

M

j
ij

N

i
EHcEcEc

1 1

'

1
3

'

1
2

1

'

1
1

The energy will be zero if there is a feasible solution.

Here we show an example using data in Table 1 without time constraints. If

we adopt the scheduling depicted in Figure 1, there is no legal solution existed.

That is because the resource R2 is shared by job1 and job6 at time 3 to 4, the

energy is 2. If we adopt the scheduling depicted in Figure 2, there is a feasible

result since the energy is 0. The resource R2 is not shared by job1 and job6 at

the same time.

Table1.Example with 6 jobs/3 machines/2 resources
job machine time resource

Job1 M1 2 R2
Job2 M1 3 R1
Job3 M2 4 R1
Job4 M2 3 R2
Job5 M3 2 R1
Job6 M3 3 R2

M1 Job1(R2) Job2(R1)

M2 Job3(R1) Job4(R2)

M3 Job6(R2) Job5(R1)

 1 2 3 4 5 6 7 8 9

Figure1. An example is not a feasible scheduling result for Table 1

M1 Job1(R2) Job2(R1)

M2 Job3(R1) Job4(R2)

M3 Job6(R2) Job5(R1)

1 2 3 4 5 6 7 8 9

Figure 2. A feasible scheduling result of Table 1

 10

3. Algorithm framework

The scheme of our SA algorithm is shown in Table 2, the algorithm begins with

the creation of an initial solution, some jobs are chosen randomly (base on the

number of job) to reschedule for each generation, and the energy value is

computed based on equation (4). If the energy is lower than before, then we

accept the new solution. But if the energy is higher than before, we might

accept the solution base on the probability Pa, if Pa<δ. This algorithm will be

terminated until the energy goes to zero. If energy is zero then output the

schedule result.

Table 2.Simulated annealing algorithm

Initial a solution S, compute E
Set the initial T, k, r
While E <> 0

S’=Random choose one job to reschedule
Compute energy E’ andΔE=E’-E
if ΔE<0 then accept S=S’,E=E’

else Compute the kT
E

e
∆

−
=δ

Accept the new solution when Pa<δ
 decrease the temperature T=T*r

We can only conclude that the scheduling result is a feasible solution. We can’t

prove that it is the optimal one. However, we will use some weight function or

heuristics to get a near optimal solution in our future work. Our cooling

schedule is defined as T = T * r, 0<r<1.

 11

4. Numerical experiment

There are some examples examined for different situations in our experiment.

First we show the job is not segmented, it means that the job can not be

preempted until its finish. And we set T=T*0.95 for the cooling process, the

results shown in Figure 2. Figure 3 and Figure 4 show the schedule results for

the job that can be segmented. Figure 5 shows the scheduling results using

the data in Table 4 for the job with time constraint (arrival time/deadline).

Figures 6 and 7 are the energy evolution result which the time constraints is

include or exclude. It shows that there is higher probability to get a worse

answer when the temperature gets higher. Figure 8 is our cooling scheduling.

Table 3.Example with 6 jobs/2 machines/2 resources

job machine time Resource
Job1 M01 2 R02
Job2 M01 3 R01
Job3 M01 4 R01
Job4 M02 3 R02
Job5 M02 2 R01
Job6 M02 3 R02

M1 J1(R2) J3(R1) J2(R1) J3(R1) J1(R2) J3(R1) J2(R1)

M2 J5(R1) J4(R2) J6(R2) J5(R1) J4(R2) Jo6(R2)

 1 2 3 4 5 6 7 8 9
Figure 3. A feasible scheduling result for example of Table 3

which the job can be segmented

 12

Table 4.Example with 10 jobs/4 machines/3 resources
Job machine time resource Arrival time Deadline

Job1 M01 2 R02 1 10
Job2 M01 3 R01 5 14
Job3 M01 4 R01 1 14
Job4 M02 3 R02 1 10
Job5 M02 2 R03 5 14
Job6 M02 3 R02 1 14
Job7 M03 5 R03 1 10
Job8 M03 3 R02 5 14
Job9 M04 3 R02 5 14
Job10 M04 4 R01 1 10

M1 J2(R1) J2(R1) J1(R2) J3(R1) J1(R2) J2(R1) J3(R1) J3(R1) J3(R1)
M2 J5(R3) J4(R2) J6(R2) J4(R2) J6(R2) J6(R2) J4(R2) J5(R3)

M3 J7(R3) J7(R3) J8(R2) J7(R3) J7(R3) J3(R3) J8(R2) J8(R2)

M4 J9(R2) J10(R1) J10(R1) J10(R1) J9(R2) J9(R2) J10(R1)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 4. A feasible scheduling result for example of Table 4

which the job can be segmented

M1 J1(R2) J3(R1) J1(R2) J3(R1) J3(R1) J2(R1) J2(R1) J2(R1) J3(R1)

M2 J4(R2) J4(R2) J6(R2) J6(R2) J5(R3) J6(R2) J4(R2) J5(R3)

M3 J7(R3) J7(R3) J7(R3) J8(R2) J7(R3) J7(R3) J8(R2) J8(R2)

M4 J1(R1) J1(R1) J1(R1) J9(R2) J1(R1) J9(R2) J9(R2)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Figure 5. A feasible scheduling result for example of Table 4

which the job can be segmented include arrival time and deadline

0

2

4

6

8

10

12

14

16

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273

of interations

en
er

gy

Figure 6. Energy evolution of Simulated Annealing without time constraint

 13

0

2

4

6

8

10

12

14

16

18

20

22

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232

of interations

en
er

gy

Figure 7. Energy evolution of Simulated Annealing with arrival time/deadline

0

0.5

1

1.5

2

2.5

3

3.5

4

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273

of interations

T
em

pe
ra

tu
re

Figure 8. Cooling scheduling of Simulated Annealing (T=T*0.95).

In our simulation, we find the simulating annealing method can find a feasible

solution. However the variance of number of execution iterations sometime is

high. The initial temperature, cooling process and initial solution are important

factor of result.

We conclude that:

(1.) The parameter is significant factors to SA.

(2.) The range of neighborhood answer is an impact to the number of

iterations.

(3.) We cannot guarantee to get an optimal solution.

 14

(4.) If the cooling schedules decrease too fast, it may fall into a local

minimum solution or non-converge.

(5.) The initial solution sometimes cannot converge in a reasonable

number of iterations.

5. Conclusions

In this paper, we have presented a GA-representation SA algorithm for solving

the scheduling problem.

(1.) An easy understanding scheduling representation is introduced by

using only a four-dimension matrix, which is efficient for designing

scheduling problem.

(2.) In our proposed method, the energy function is defined by our

assumption. It is more practical than previous studies when the

resource consideration is involved.

(3.) We use GA-like solution presentation form, it can be implement easily

by a genetic algorithm.

(4.) This algorithm can be adapted to different configurations.

The time complexity is O (N*M*R*T). The simulation results show ours method

always can find a desired and feasible solution with an acceptable iterations.

 15

REFERENCES

[1]J.J. Hopfield and D.W. Tank ,”Neural computation of decisions in optimization

problems,” Biol. Cybern., vol. 52,pp.141-152,1985.

[2] T. M. Willems and J. E. Rooda, “Neural networks for job-shop scheduling,” Contr.

Eng. Pract. vol. 2, no. 1, pp. 31–39, 1994.

[3] Y. P. S. Foo and Y. Takefuji, “Integer linear programming neural networks for

job-shop scheduling,” in IEEE Int. Conf. Neural Networks, 1988, vol. 2, pp.

341–348.

[4] C. -S. Zhang, P. -F. Yan, and T. Chang, “Solving job-shop scheduling problem with

priority using neural network,” in IEEE Int. Conf. Neural Networks, 1991, pp.

1361–1366.

[5] A. Hanada and K. Ohnishi, “Near optimal jobshop scheduling using neural network

parallel computing,” in Proc. IECON’93, Int. Conf. Industrial Electronics, Control,

Instrumentation, 1993, vol. 1, pp. 315–320.

[6] S. Yang and D. Wang. “Constraint satisfaction adaptive neural network and

heuristics combined approaches for generalized” in IEEE Transactions on. Neural

Networks, 2000, vol. 11, pp. 474–486.

[7] Y. M. Huang and R. M. Chen, “Scheduling Multiprocessor Job with Resource and

Timing Constraints Using Neural Networks,” in IEEE Transactions on Systems,

 16

Man, and Cybernetics—Part B: Bybernetics, Vol. 29, no. 4, august

1999,pp490-502

[8] Y. M. Huang and R. M. Chen, ”Multiconstraint task scheduling in multi-processor

system by neural network,” in Tools with Artificial Intelligence, 1998. Proceedings.

Tenth IEEE International Conference, 1998, pp288 -294

[9] W. Xiao, P. Hao, S. Zhang, and X. Xu ”Hybrid flow shop scheduling using genetic

algorithms” in IEEE proceeding of 3rd world congress on intelligent control and

automation, 2000, pp. 537–541.

[10] H. Topcuoglu, S. Hariri , and M.Y.Wu ”Performance-effective and low-complexity

task scheduling for heterogeneous computing” in IEEE transactions on parallel

and distributed systems, 2002, vol. 13, pp. 260–274.

[11] S. Hajri, N.; Liouane,; S.Hammadi,; P. Borne,” A controlled genetic algorithm by

fuzzy logic and belief functions for job-shop scheduling,” in IEEE Transactions on

Systems, Man and Cybernetics, Part B, , Volume: 30 Issue: 5 , Oct.

2000,pp812 –818

[12] A.A.EI Dessouky, R.Aggarwal, M.M.Elkateb and F.Li, “Advanced hybrid genetic

algorithm for short-term generation scheduling ”, in IEEE Proc-Gener. Transm.

Distrib, Vol. 148, NO. 6, November 2001, pp. 511-517

[13] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation

 17

of State Calculations by Fast Computing Machines, J. of Chem. Phys., Vol. 21, No.

6, pp. 1087-1092, 1953.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, pp. 671–680, May 1983.

 18

	Abstract
	Abstract

