Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

FlyingCloud: A Mobile Agent Service Network

Yao-Nan Lien, Yenlin Yin, Tony Chan, Fuh

an Liu, Chi-Yung Chen, Chun-Shyan Hwang

Yuli Hwang, Chun-Ing Lee, Shin—Yj Leu, Chin-Hung Chen, and Yang-Fam Liu

Department of Computer Science
National Chengchi University

Taipei, Taiwan, R.O.C. X
lien@cherry.cs.nccu.edu.tw, (02) 9393091-2275, Fax:(02)2341494

Abstract

To make information ubiquitously available to the people
in the world requires not. only the Information
Superhighway, - but also a non-traditional computing
paradigm, such as the intelligent messaging,. to
overcome the intermittent connection problem inherent in
a mobile environment. This paper describes the
development of a mobile agent service network prototype
currently undergoing in the National Chengchi University,
the FlyingCloud. The main objective of this prototype is
to simulate a real operational mobile agent service
network, to analyze the network behavior and to exercise
our solutions. The system will be developed according to
the previously proposed open architecture and hybrid
mobility management infrastructure [15,16,17].

Keywords: mobile computing, mobile agent.

1. Introduction
1.1 Agent and Agent Mobility

Because of the advance of computer and communication
technologies as well as the promotion of National
information Infrastructure (NII), the progress of mobile
computing is accelerating into a revolutionary speed
making the dream of ubiquitous information service a
reality [2,3,15,22,23,24]. The goal of a ubiquitous
information service network is to provide information to
the users anytime anywhere. To accomplish this goal,
the service network must be supported by some
ubiquitously available communication networks and be
able to conveniently access to various information
resources. Currently, wireless communications networks
such as AMPS or GSM cellular networks will be able to
support the ubiquitous communication requirement
[1,18,20,26,27]. As for the convenient information
services, distributed computing technology seems to be
an ideal computing paradigm. In a distributed system, all
servers in-a network are integrated into a single logical

* This work is supported by NSC Grant (86-2213-E-004-001).

129

server such that clients, which can be programs or users,
can access the network resources transparently by
interacting with a single server. Unfortunately, applying
distributed computing technology in such a scale and
heterogeneity will have to take a much longer time to
realize in the real world.

Thus, clients will have to access network resources in
a prescriptive fashion by interacting with individual
servers probe by probe to accomplish a complicated
task. . However, in most mobile computing environments,
the nature of communications is intermittent and the
battery energy is limited. Thus, it is very difficult to
accomplish a complicated task that requires its client to
interact with multiple servers - intensively. A non-

-traditional computing paradigm, the intelligent messaging, -

that allows clients to interact with multiple servers in a
dynamic fashion has been brought up to cope with this
problem [4,5,6,8,9,10,12,13,19,21,25].

Simply speaking, an intelligent message is an
electronic message that carries a computer program,
whether procedural or declarative, that can be executed
by the receiving servers on behalf of the originating
client. The program in the message can also instruct a
receiving server to forward automatically the message
itself to another server, on which the program is
executed continuously in a pipeline fashion. Such a
message is also known as an intelligent agent in other
fields [8,11]. For simplicity, it is called an agent in the
rest of this paper. Good examples can be found in
[15,16].

Since an agent may be traveling in a service network,
the originating client may not be able to trace or control
its operation directly. A service network must provide
some mechanisms allowing its clients to trace and
control these agents. This problem is referred to as the
agent mobility management.

1.2 Mobility Management

To make a service network commercially viable, it is
essential to have a high quality and cost effective
operation, administration, and maintenance system
(OA&M) in place to guarantee a certain QoS (Quality of

Proceedings of international Conference on Distributed
Systems, Software Engineering and Database Systems

Service). Followings are some critical OA&M problems
with respect to the mobility management raised in [16]:

1. How to [ocate an agent in a service network?
How to locate a client user?

How to know the status of an agent?

EEP I

How ta control the execution of an agent that is
traveling in a service netwark?

5. How to trace the execution of an agent (e.g. for
debugging or auditing purposes)?
They are by no means exhaustive. Furthermore, there
are other issues such as transaction and security
supports needed to be addressed as well [16]. The initial
version of our prototype will facilitate the study of the
agent and client mobility management.

2. Mobile Agent Service Networks

2.1 Open Service Network Architecture

Traditional telecommunication hetworks such as PSTN
and 800 Toll-Free service used to take considerable
resources and long deployment duration to establish.
One major resource drain in such networks is the OA&M
{and provisioning in some cases). It will be impractical to
demand the. comparable resources to support the OA&M
functionalities in many perspective information setvices.
The computing community will have to rely on
themselves, ratheér = than the telecommunication
community, to develop and deploy the demanded
functionalities. All infrastructures and solutions must not
require any change to the existing. telecommunication
network. To achieve this, we employ the open service
network architecture proposed in [16), which separates
service networks from transport networks. It also allows
services of any scale and any quality to be infroduced
into the network easily. Service providers can choose
whichever operation model and the QoS level based on
the resources available to them. That architecture is
summarized as follows:

Basic entities are servers each providing a specific
information service. They are connected by various
logical or physical communication networks such as the
Internet, the PSTN, or the ARDIS radio network. The
networks that provide connectivity services bétween
servers and clients are referred to as the transport
networks. Any number of server can be integrated
together to form a service network providing higher level
setvices to their client users. A server can participate
into more than one service network. A ferminal is a
physical device that aliows a client to interact with a
transport neiwork [and service networks). A terminal
could be a telephone, a Personal Digital Assistant (PDA),
a deskiop PC, or a workstation, etc. (A terminal is
associated with-a transport network, while a client user is
associated with a service network. There is no fixed

130

refationship between a client user and a terminal.) This
architecture provides the transport network transparency
as well as the required flexibility to the service networks.
Readers are referred to [16] for details.

2.2 Hybrid OA&M Supporting Mode

Centralized OA&M support is easier to achieve higher
QoS. However, it suffers higher operation cost and long
deployment time duration. On the other hand, distributed
support’ is usually more flexible in introducing new
services and has much fower operation cost, but it
suffers lower QoS. The open service network architecture
accepts both approaches. However, many perspective
information services will not be able to afford the
expensive centralized OA&M support, while they need
certain level of QoS beyond what a distributed approach
can offer. In [17], Lien proposed a hybrd OA&M .
supporting structure that can take advantages of both
approaches. In that hybrid approach, all OA&M
functionalities . are classified into two categories:
distributable and non-distributable. Distributable
functionalities can be supported by any server in the
network or even client users’ own resources. Non-
distributable functionalites must be supported by
designated servers. Those critical and more appropriate
to be managed centrally, such as security and billing
functions, are classified as non-distributable and must be
managed centrally. It is yet to be researched to define
and to classify all OA&M functions. Many perspective
services will be benefited from this hybrid OA&M
supporting model.

Judging from the fact that the Internet users are
growing in an exponential rate, most of the mobile
computing users in the future will have stationary access
to the Internet from their offices or homes. These
facilites are called Home Base Nodes (HBNs). To
further reduce operation cost, Lien proposed to use these
personal facilities to help managing service networks
[17). A client user of the service network can choose to
use the facilities provided by the service providers or
his/her own HBN to manage the client and agent
mobilities. ‘ :

2.3 Infrastructure for Mobility Management

in order to reduce management cost, the infrastructure
proposed in [16,17] makes use of users’ facilities to
share the OA&M workioad. The most important facilities
are briefly described in this subsection.

2.3.1 Network Management Center (NMC)
The NMC is a central facility supporting all non-

- distributable management functions as well as

distributable functions if it is needed. Typical OA&M
functions are cfient and server registration,
authentication, name server, coordination, billing, or user
specific services. Although, it looks like a single node, it

may actually be a number of nodes distributed over a
network.

2.3.2 Home Base Node (HBN)

Even though a mobile user may change its locations
from time to time, we assume most mobile users have
their own home locations and each of them has a most
frequently used Internet access point such as a personal
account on an Internet-connected system or a PC, called
Home Base Node. This infrastructure proposes to make
use of HBN to share the OA&M workload. When a client
user subscribes to a service network, he/she can choose
to use or not to-use his/her own HBN. A ot of overhead
in managing a service network can be saved by using
HBNs. A HBN can also offer auxiliary computing
resources to help mobile terminals to cope with their
residential resource limitation. Readers are referred to
[17] for details.

2.3.3 Status Holder '

The status holder for an agent is a place to store the
status of an agent-so that the client user or other
authorized entities can access this information easily. It
can be any node such as user's HBN or the original
access node, or even the NMC itself. A system may
require each agent to report its status to its status holder
on the designated events such as - arrive-a-node,
suspended, frozen, etc. A user can choose whatever the
events hefshe is interested when he/she submits an
agent. An alternative status holder may be needed when
the availability of the original status holder is a concern.
A user can even request an agent not to report its status
to save communication cost. These all depend on
implementation details.

2.3.4 Relationship Between Logical and
Physical Entities

The facility available on the network can be classified
into logical and physical entities. Physical entities, such
as NMC and HBNSs, are fixed with respect to the network
address, Logical entities, such as status holder and
computing support, can be dynamically assigned to some
physical entities. An example is depicted in Figure 1.
Figure 1. The designation of logical entities to physical
entities, (a) both status holder and computing support are
designated to the HBN, (b) status holder is designated to
NMC and computing support is designated to the Access
Node.

3. Client and Agent Management

A service network must be able to manage its client
-users. Managerial functions include client registration,
authentication, tracking, billings, request submission,
result delivery, etc. Another important issue is the trace

131

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Jetwors: Jetwork ~— -
lanagemen - anagemen Status
Center / -~ Status \Center Holder
o Holder | = = TTT=-=
Home . Home
Based kIl _ Based
Node . Node
= Computing
. Support
Access Computing
Node Support
Mobile Mobile
Computer Computer
(a) (b)
of agents.

After an agent is submitted into a service network, the
user or the network manager may need to know its
current location in order to inquire its status, or to control
its execution, etc. A simple way is to send another agent,
called search agent, to search the original agent along
the original path, or'to send a message to every server
where the agent might have visited. The first approach
takes longer time, while the second one might consume
too much wireless connection resources. There is a need.
to study better solutions that can take the advantage of
both approaches with minimum compromise. In [14],
various solutions are proposed. One approach is to have
an agent to report its status to a status holder such that
its approximate solution is immediately available from its
status holder. For those that do not have or want a
status holder, several blind search algorithms are
proposed. If the execution time of each task in each
server can be estimated, some statistic calculation can
be taken to predict the location of the agent to reduce
search effort. Interested readers are referred to [14] for
details. :

The main difference between agent search strategies
and traditional data search strategies is that the target
agent itself may be moving during the search. A
successful search strategy must prevent a target agent
from slipping through the search windows.

4. Current Implementation

Intelligent messaging paradigm is such.a newly emerging
area that we do not have sufficient knowledge about its
behavior under all possible operation conditions,
especially in a real operation system. Thus, there is a
need to create a simulated environment to facilitate
further study in various critical issues mentioned above.
A project is currently undergoing in NCCU to develop an
agent mobility management network prototype, the
FlyingCloud. The platform will consist of a set of servers
capable of inteligent messaging support, a script
language, and an agent management system.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

4.1 Transport Mechanism

To compliant with our open architecture and to simplify
the implementation, email system (MIME protocol) over
the Internet is adopted in the initial design. Servers,
clients, and agents, all communicate with each other
through email. Every agent is wrapped within an email
message. However, the system will be designed with
necessary flexibility that the underlying transport network
can be easily replaced if a better mechanism is available.

4.2 Design Philosophy

In addition to the architecture principles we proposed in
[16], the system will be -designed with the following
guidelines:

1. In order to maintain the required QoS, system
reliability is the main objective with the highest
priority. (As a consequence, most components in
our system will be as simple as possible.)

2. The system will be designed with flexibility so that
each of its components can be easily replaced.

3. The system will be designed evolutionally that only
the simplest platform will be implemented initially
and will be evolved gradually into a more complete
system.

4.3 Agent

An agent is designed to be self-contained that the entire
context is encapsulated in the script itself. When it visits
a server, the server will execute the script until the script
is terminated or it demands a move. When the agent is
moving to another server, the current server will wrap the
entire context into the script itself and forward it to the
next server. The relationship between the server and the
agent is then terminated. The server may record the
external status of the script execution such as arrival and
departure time, the termination status, the next server it
visits, etc. However, it does not keep any internal context
of that agent.

This self-contained property is quite different from the
Remote Procedure Call (RPC) approach, where the
server that issues an RPC to another server will keep the
context of that agent until the agent finishs its execution
at the remote server and returns to the originating server.
If an agent visits a sequence of servers, the servers it
visited will all remain active until the agent terminates.
Much resource will be tied up by the agent. Further, the
concept of mobile agent will be violated, which will have
a significant implication to the mobile agent paradigm.
For example, the recovery semantic will be quite
different. (Nevertheless, it is yet to be studied which way
will be better.)

This self-contained property has also another
significant implication to the language design, which will
be discussed in the Section 4.5.

132

arrive_a |

4.3.1 Agent Status

The status of an agent can be in one of the following six
different states:

« running - an agent is being executed by a server.

« spinning - an agent is active in a server, but is waiting
for some local resource.

« hopping - an agent is being forwarded to another
server.

« terminated - an agent is terminated.

« suspended - an agent is suspended in the middle of
or before an execution by an authority external to that
agent.

- frozen - an agent in a server is not being executed,
but is waiting to be forwarded to another server.

The difference between "spinning" and "suspended” is
that a spinning agent can resume its execution by itself
without any external permission, while' a suspended
agent cant. (Even if a spinning agent is waiting for
something, it can always resume itself if it decides not to
wait.) The details can be found in [16].

4.4 Agent Control

The management system must be able to control the
execution of each agent. The control functions available
in FlyingCloud are terminate, suspend, resume, and
freeze. The state transition diagram under the external
control events and two internal events, hopto and
arrive_a_node, is shown in Figure 2.

freeze

terminate terminate with freezg

hopping

resume

Figufe 2. The control of agents.

4.5 Agent Script Language

Designing a sound and complete script language can
never be a trivial task, especially for such a newly
emerging paradigm. Currently, there are two competing
standards, tcltk and Java. Neither of them is mature =

enough for the mobile computing. For the testing
purpose, we designed a trivial language for our platform.

In order to fulfill the self-contalned requirement, the
language does not allow split-context execution. For
example, the following program construct is not allowed:

for 1 from 1 to 10 do {
hopto next server
compute
}

in this example, the server that executes the "for" -

statement must maintain the script context including a
counter to count how many times it executes the "do
block”. Within each do block, the script will visit another
server to execute a computing job. Therefore, the
context of the script. may actively exist in two servers
simultaneously. According to the self-contained
requirement, this is not allowéd.

The language we designed in FlyingCloud offers only
string type and a derived type list with some simple form
of list operation. The control flow is much like an
assembly language that has only sequential and jump
capabilities. It does have if construct but has no foop.
Every statement including if must be executed in the
same server completely. To avoid unintentional mistake,
it does not offer Joop construct yet. It will be considered
in the future. -

The following is an example script which sequentlally
searches a target agent (ID AD123) within a list of
servers and terminates it.

1 name: danny
2 passwd: XXXXX
3 LIST={apple,kiwi, lemon,banana,orange}
4 JUMP(6)
5 hopto STATION
6 STATUS=‘exit AD123"
7 IF(!STATUS) {
8 NEW. LIST—cutta11(2 LIST);
9 STATION=first (NEW_LIST) ;
10 JUMP (5) ;
11 }

12 terminate AD123

The section between Line 1 and 2 is the basic
authentication information. The password will be
encrypted in the real service network. The real script is in
-the section between Line 3 and 12. String variables are
allowed. The variables whose life time span across
server boundaries must be exported and will be carried
in the global variable section, which is not shown in this
example script.

4.6 Server

When an agent (an email message) reaches a server, a
daemon will be activated by the email daemon to
process the incoming agent. This subsection will discuss
the implementation of server.

133

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The first design consideration is the management of
sharable information such as user profiles, execution log,
agent status, etc. Considering the reliability objective,
distributed database technology is rejected and
decentralized database will be used. Each server
maintains its own local information such as execution log.
Client <nformation will be centrally maintained and
distributed to all other sites. Considering its low update
frequency, replicating client user information to all
servers won't be too much a burden. Nevertheless, in our
initial design, the authentication process will be carried
out by the Home Base Node of each client user. To
simplify the registration process, each client user except
the network manager can only register to a server (and
will have only one authentication server for each client
user), all requests that need to be authenticated will be
forwarded to its HBN first. In the future design,
authentication will be distributed to all other servers in
the same service network to improve the accessibility
preventing a client from being rejected by the network
due to a failure occurring in its HBN.

The - second consideration .is the environment
migration for an agent to move from one server to
another. The environmental objects belonging to the
agent and the intermediate results must be carried with
the agent, while server dependent environmental objects
will be released. Since we do not assume any direct
communication mechanism other than email between two
servers, the migration must be carried out in the form of
script.. In other words, the same script language is used
not only for the implementation of client's requests, but
also for environment migration. :

The network manager who maintains the agent
network through a management systerm must be
authorized to access all other servers (via the ‘same
agent transport mechanism). It can be seen as a super-
user who has registration on all servers.

Normally, the path taken by an agent is dynamically
defined by the script contained in the agent. The agents
will trave!l automatically in the network while the script is
being executed. However, an agent can also travel
through a predefined path with much less overhead. A
typical example is an agent that performs routine network
management functions such as server status collection.
(Note that although a network manager, with a risk of
traffic congestion, can broadcast messages to all servers
to collect their status simultaneously, it can also send an
agent to collect the status of all servers sequentlally
without risking a traffic congestion.)

The communication- structure between system
manager, management server, clients, and regular
servers is depicted in Figure 3.

Proceedings of international Conference on Distributed -
Systems, Software Engineering and Database Systems

Requests Manage.
cknowledges Setver .
Manager ¢ Management | Mail | Reg.
Mail Agent Daem. | Server
Daemon | Acknowledge
Agents
Requestsy Acknowledges Regular Agents
Mail
Daemon Other
Regular
Client Servers

Figure 3. The communication structure of management system.

4.6.1 Agent Log

In order to trace the execution history, the execution of
an agent will be logged in each server it visited as well
as in the agent itself. Basic logged information in servers
are: (1) user ID (optional if it is part of agent IDs), (2)
agent ID, (3) arrival time, (4) departure time; (5) resource
usage, (6) next node, and (7) termination condition.

4.7 Management System

The management system acts as a super user using the
same email protocol to communicate with all servers.
Basically, the management system is a facility provided
to the service network managers to manage the network.
Major managerial functionalities are agent control and
network monitoring. Detailed functionalities are described
in [186].

In this platform, users are assumed using Internet to
access the service network. Therefore, a user can be
reached by email address regardless his/her location if
he/she is connected to the Internet through a location
independent communication network such as cellular
phone. In the future, the system will allow a user. to
access to the service network from various |P addresses.
Under this circumstance, a client mobility management
mechanism must be in place to assist the service
network to track the Internet location of its client users.
The operational infrastructure proposed in [16] will be
implemented.

4.8 Resource Management
4.8.1 Agent Resource Control

Similar to a process in-an operating system, each agent
is allocated with some resources, such as size in byte
and execution cycle time. There must be some control
mechanism to prevent an agent from over runing the
allocated resources. There are plenty of resource control
policies that can be borrowed from operating system
area. This system will focus on the problems that are
unique in our environment.

134

One way to avoid information overflow in retrieving
large amount of information from a server is to transfer
the retrieved information back to the client immediately
before traveling to the next server.

4.8.2 Garbage Collection

The memory leak problem may seriously hurt the
reliability of a long running process. Similarly, the
resource leak may freeze the entire system by
exhausting all its resources. The potential sources of
resource leak include:

1. run-away agents,
2., lost agents,

3. agents whose owners disengage with the network
for various reasons, and

4. log and status databases.

A garbage collector will be implemented to reclaim the
leaked resources. Because the service network allows
long-running job, such as watch-dog agents that stay in
the network without explicit termination condition, it is not
easy to precisely distinguish a run-away agent and a
long-running agent. One way to solve this problem is to
have all long-running agents whose life time are longer
than the network default to exphcntly specify their
expected life duration.

4.9 Atomicity

The execution of an agent may terminate before it runs
to completion. Exceptional cases include server failure,
agent failure, network failure, forced abort, etc. The
integrity of the service network may be destroyed by
these abnormal events and, thus, some atomicity’ and
recovery mechanisms must be provided to protected the
entire service network. It is yet to be researched to find
appropriate atomicity definitions and associated recovery
mechanisms. Apparently, the atomicity definition in the
database area is not sufficient. In addition to the
atomicity with respect to a database transaction, the
atomicity with respect to a server visit and to the entire
lifetime must also be defined. Recovery mechanisms
must be provided to dear with agent, server, and network
failures.

4.10 User Interface Design

Considering the portability and maintainability, the user
interface is designed on top of the WWW pilatform so that
managers can manage the network through Internet with
a decent GUI interface. Java language will be used for
graphic and dynamic information presentation. Some GU!
interface frames are shown in Figure 4.

5. Summary

A ubiquitous information service environment needs to
offer the client mobility allowing its client user to move
across different logical networks. To overcome the

intermittent connection problem inherent in mobile
environments, it also needs to offer the agent mobility
allowing its users to access network services by sending
an intelligent message to cruise the network. To
guarantee the QoS for a service network, an OA&M
system is needed to manage both mobilities.

The OA&M system are often to be the most
expensive ‘and most complex system module in
supporting a service network. Due to a lack of real
experience in operating a ubiquitous information service
network, there are many problems related to this new
computing environment yet to be studied.

This paper describes the FlyingCloud, the prototyping
experiment undergoing in the National Chengchi
University. This prototype is designed based on the
previously proposed open architecture that s
independent of physical communication networks and
has greatest flexibility for introducing new services. It
also employs the hybrid management mode proposed in
[17] to incorporate personal Internet facility for reducing
OA&M cost. This experiment will allow us to observe
this new computing paradigm more closely.

References

1. J. F. Bartlett, “W4 - The Wireless World Wide
Web,” Proc. of the IEEE Workshop on Mobile
Computing Systems and Applications, December
1994,

2. T. Berners-Lee, et al, “The World-Wide Web,”
Communications of the ACM, vol. 37, no. 8, August
1994, pp. 76-82.

3. T. Berners-Lee, R. Caillivau, J.-F. Groff, and B.
Pollermann, “World-Wide Web: The Information
Universe,” Electronic Networking:
Applications and Policy, vol. 1, no. 2, Meckler,
Westport, CT., Spring 1992.

4. Wen-Shyen Chen and Yao-Nan Lien, “Intelligent

Messaging for Mobile Computing over the World-
Wide-Web”, Proc. of the 2nd International Mobile
Computing Workshop, Mar. 1996, pp. 42-51.

5. Wen-Shyen Chen, Yao-Nan Lien and Wen-Yee
Hsien, “An Intrastructure for Mobile Computing with
Intelligent Messaging: Implementation Issues”,
Proc. of 1996 Workshop on Distributed System
Technology and Applications, May. 1996, pp. 270-
277.

6. David Chess, Bejamin Grosof, and et. al., “ltinerant
Agents for Mobile Computing”, IEEE
Communications, Oct. 1995, pp. 34-49.

7. G. H. Forman and J. Zahorjan, “The Challenges of
Mobile Computing,” /EEE Computer, April 1994,
'pp. 38-47.

135

Research,

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

8. Michael Genesereth ~and Steven Ketchpel,
“Software Agents”, CACM, July 1994, pp. 48-53.

9. T. Imielinski and B. R. Badrinath, “Mobile Wireless
Computing: Challenges in Data Management,”
Communication of ACM, August 1994.

10. M. F. Kaashoek, T. Pinckney, and J. A. Tauber.
“Dynamic Documents: Mobile Wireless Access to
the WWW,” Proc. of the IEEE Workshop on Mobile
Computing Systems and Applications, December
1994.

11. K. D. Kotay and D. Kotz, “Transportable Agents,”
Proc. of the Third International Conference on
Information and Knowledge Management,
December 1994.

12. James Lee, “Intelligent Messaging Paradigm and
Telescript,” CCL Technical Journal, No. 35, Dec 1,
1994, pp. 37-41.

13. Ichiro Lida, Takashi NishigaYa, Koso Murakami,
“DUET: An Agent-Based Personal Communications
Network”, IEEE Communications, Nov. 1995, pp.

- 44-49,

14. Yao-Nan Lien and Roger Leng, “On the Search of
Mobile Agents”, in The Seventh IEEE International
Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC’96), Oct. 1996, pp. 703-
707.)

15. Yao-Nan Lien, “Perspective of Service Networks on
National Information Infrastructure,” CCL Technical
Journal, No. 35, Dec 1, 1994, pp. 28-36.

16. Yao-Nan Lien, “Client and ~ Agent Mobility
Management,” Proc. of the Second Workshop on
Mobile Computing, Hsing-Chu, Taiwan, March
1996, pp. 141-152.

17. Yao-Nan Lien, “An Open Intelligent Messaging
Network Infrastructure for Ubiquitous Information
Service,” Proc. of the First Workshop on Mobile
Computing, Hsing-Chu, Taiwan, April 1995, pp. 2-9.

18. Yi-Bin Lin, “Determining the User Locations for
Personal Communications Services Networks”,
IEEE Transactions on Vehicular Technology , vol.
43, no. 3, Aug. 1994, pp. 466-473.

19. P. Maes, “Agents that reduce work and information
overload”, CACM, July 1994, pp. 30-41.

20. Jay Padgett, Christoph Gunther, Takeshi Hattori,
“Overview of Wireless Personal Communications ”,
IEEE Communications, Jan. 1995, pp. 28-41.

21. Charles Perkins, Kevin Luo, “Using DHCP with
computers that move”, ACM Wireless Networks,
vol. 1, 1995, pp. 341-353.

22. R. J. Vetter, C. Spell, and C. Ward, “Mosaic and
the World-Wide Web,” IEEE Computer, October
1994, pp. 49-57.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

23. G. M. Voelker and B. N. Bershad, “Mobisaic: An
Information System for a Mobile Wireless
Computing Environment,” Technical Repont,
Department of Computer Science and Engineering,
University of Washington, September 1994.

24. M. Weiser, “The computer for the 21st century”,
Scientific America, 1992, pp. 94-104.

25. James E. White, “Telescript Technology: The
Foundation for the Electronic Marketplace”, General
Magic, Inc.

26. Mohammed Zaid, “Personal Mobility in PCS”, IEEE
Personal Communications, vol. 1, no. 4, 4th Qtr.
1994, pp. 12-16.

27. TIA/EIA 1S-41, “Cellular Radio Telecommunications
Intersystem Operations”, Telecommunications
Industry Association, Dec. 1981.

Bl %—:

R

2. * HEREAREE

. EIRE SR g,

3. MR SRR
IR swmAsREEEl]

. T *Super User|

mEAREERS
N iy

1
2. Wik 'k
3. fEBE *Super Userfs
4. FK
5

R

F|gure 4. A user |nterface example for Management System.

136

