Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Basic-Cycle Calculation Technique for Efficient Dynamic Data Redistribution’

Yeh-Ching Chung?, Ching-Sheng Sheu, and Sheng-Wen Bai

Department of Information Engineering
Feng Chia University, Taichung, Taiwan 407, ROC
Tel : 886-4-4517250 x2706
Fax : 886-4-4515517
Email : ychung, cssheu, swbai@pine.iecs.fcu.edu.tw

Abstract

In this paper, we present a basic-cycle calculation
technique to efficiently perform the general BLOCK-
CYCLIC(s) to BLOCK-CYCLIC(t) redistribution. In the
basic-cycle calculation, closed form representations for
computing source/destination processors of array
elements in a basic cycle, which is defined as lem(s,t)/
ged(s,t), are derived. To evaluate the performance of the
basic-cycle calculation, we have implemented the basic-
cycle calculation on an IBM SP2 parallel machine along
with the multi-phase method [7]. The experimental results
show that the basic-cycle calculation outperforms the
two-stage multi-phase method for the case where s is not
divisible by t and vice versa for all test samples. For the
case where s is divisible by t or vice versa, the basic-cycle
calculation outperforms the two-stage multi-phase
method when the array size is over a threshold.
However, in this case, the one-stage multi-phase method
outperforms the basic-cycle calculation for all test
samples. '

1 Introduction

- Many data parallel programming languages such as
High Performance Fortran (HPF) [6], Fortran D [3],
Vienna Fortran [12], and High Performance C (HPC) [13]
provide compiler directives for programmers to specify
data array distribution. Data distribution, in general, has
three types, BLOCK, CYCLIC, and BLOCK-CYCLIC(c).
The BLOCK-cYCLIC(c) is the most general regular data
distribution among them. Dongarra et al [2] has shown
that these kind of distributions are essential for many
dense matrix algorithms design in distributed memory
machines.

In some algorithms, such as multi-dimensional fast
Fourier transform [14] and the Alternative Direction

Implicit (ADI) method for solving two-dimensional
diffusion equations, a distribution that is well-suited for
one phase may not be good for a subsequent phase in
terms of performance. Data redistribution is required for
those algorithms during rup-time. Since data
redistribution” is performed at run-time, there is.a
performance tradeoff between the efficiency of a new
data decomposition for a subsequent phase of an
algorithm and the cost of redistributing data among
processors. - Thus efficient methods for performing data
redistribution are of great importance for the development
of distributed memory compilers for those languages.

Many methods for performing data redistribution
have been presented in the literature. Kalns and Ni [8, 9]
proposed a processor mapping technique to minimize the
amount of data exchange for BLOCK distribution to
BLOCK-CYCLIC(c) distribution and vice versa. In [5],
Gupta et al derived closed form expressions to efficiently
determine the send/receive processor/data sets. They also
provided a virtual processor approach [4] for addressing
the problem of reference index-set identification for array
statements with BLock-cycLzc(c) distribution. Chatterjee
et al. [1] enumerated the local memory access sequence
of communication sets based on a finite-state machine.
Thakur et al [11] presented algorithms for run-time array
redistribution in HPF programs. In [10], Ramaswamy and
Banerjee used a mathe-matical representation, PITFALLS,
for regular data redistribution. The basic idea - of
PITFALLS is to find all intersections between source and
destination distributions. Based on the inter-sections, the
send/receive processor/data sets can be determined and
general redistribution algorithms can be devised.

Kaushik er al. [7] proposed a multi-phase
redistribution approach for a BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(f) redistribution. The main idea of the
multi-phase method is to perform a redistribution as a

! The work of this paper was partially supported by NSC of R.O.C. under contract NSC-86-2213-E-035-023.

2
Correspondence addressee.

137

Proceedings of International Conference on Distributea
Systems, Software Engineering and Database Systems

sequence of redistributions such that the communication
cost of data movement among processors in the sequence
is less than that of the direct redistribution.

This paper presents a basic-cycle calculation
technique to efficiently perform the general BLOCK-
cycLIcC redistribution. In the basic-cycle - calculation,
closed form representations for computing source/
destination processors of array elements in a basic cycle
are derived. From the source/destination processor/data
sets of a basic cycle, we can easily construct the complete
send/receive processor/data sets for a redistribution.

The paper is organized as follows. In Section 2, we
will introduce notations and terminology used in this
paper. In Section 3, algorithm of the basic-cycle
calculation will be described in details. The cost models
and performance comparisons of the basic-cycle
calculation and the multi-phase method will be presented
in Section 4. The conclusions and future work will be
given in Section 5.

2 Preliminaries

In this section, we present the notations and
terminology used in this paper. In the following, we
assume that a redistribution is from a BLOCK-CYCLIC(s)
distribution to a BLOCK-CYCLIC(?) distribution on an
one-dimensional array with N elements A(1:N) over M
processors. The BLOCK-CYCLIC(s), BLOCK-CYCLIC(Y), s,
and ¢ are called the source distribution, the destination

distribution, the source distribution factor, and the

destination distribution factor of the redistribution ,
respectively.

Definition 1: The source distribution pattern array,
denoted by SDPA(1:Y) of the redistribution is defined as
follows:

1. There are Mxs array elements in the SDPA4, i.e., ¥
= Mxs.

2. The values of SDPA(l:s), SDPA (st+1: 2s),
SDPA((M-1)xs+1:Mxs) are equal to 0, 1,
respectively.

The destination distribution pattern array, denoted
by DDPA(1:Y) of the redistribution is defined as follows:

1. There are Mxt array elements in the DDP4, i.e.,.Y
= MXxt.

2. The values of DDPA(l:f), DDPA (t+1:20),
DDPA((M-1)xt+1:Mxf) are equal to 0, 1,
respectively.

Definition 2: The source distribution pattern position
(SDPP) of an array element A(k) is defined as ((k - 1)
mod (Mxs)) + 1, where k = 1, ..., N. The destination
distribution pattern position (DDPP) of an array element
A(K) is defined as ((k - 1) mod (Mx{f)) + 1, where k=1, ...,
N.

Definition 3: The source local array of a source

eeey

oy M1,

eeny

vy M-1,

138

processor P;j, denoted by SLAj(1:N/M), is defined as the
set of array elements that it owns. The destination local
array of a destination processor Pj, denoted by
DLAj(l:N/M), is defined as the set of array elements that
it owns.

Definition 4: A send processor/data set of a source
processor P; is defined as {(SLAfk), Pj) | Pj is the
destination processor of SLAj(k)}; and a receive
processor/data set of a destination processor £j is defined
as {(DLA4j(k), Pj)| Pjis the source processor of DLAj(k)}

Definition 5: A basic cycle (BC) of the redistribution
is defined as the quotient of the least common multiple of
s and ¢ to the greatest common divisor of s and ¢, i.e., BC
= lem(s,)/ged(s, t). We define SLAj(1:BC) (DLAj(1:BC))
as the first basic cycle of a source (destination) local array
of processor P; (Pj), SLA{(BC+1:2*BC) (DLAj(BCHI:
2*B(C)) as the second basic cycle of a source (destination)
local array of processor P; (P}), and so on.

Definition 6: A basic cycle can be divided into BC/s
(CC/t) blocks. We define those blocks as the source
(destination) sections of a basic cycle.

We now give examples to clarify the above
definitions. In Figure 1(a), a BLOCK-CYCLIC(4) to
BLOCK-CYCLIC(3) redistribution on a one-dimensional
array with N=48 elements, 4(1:48), over M=2 processors
is shown. The local array indices are: represented as
italic pumbers while the global array indices are
represented as normal numbers. The basic cycle of the
redistribution is 12. It can be divided .into 3 source
sections (size = 4) for each source processor and 4
destination sections (size = 3) for each destination
processor. The source distribution pattern position of
SLA,(12) is equal to 8. The destination distribution
pattern position of DLA4,(12) is equal to 3. Figure 1(b) .
illustrates the source and the destination distribution
pattern arrays of the redistribution.

3 The basic-cycle calculation for data redistribution

To perform a data redistribution, first, need to
determine the send processor/data sets of source
processors and the receive processor/data sets of
destination processors. Then, a physical data movement
among processors can be carried on according to those
sets. A naive way to get those sets is to scan every array
element once and to compute those sets. Since a
redistribution is performed at run-time, if an array size is
very large, the time to determine those sets by scanning
every array element once may greatly offset the
performance of a program by - performing the
redistribution. '

Instead of scanning all array elements once, the basic
idea of the basic-cycle calculation is that every processor
computes the send/receive processor/data sets on the first

basic cycle that it owns. According to the send/receive
processor/data sets of the first basic cycle of every
processor, the complete send/receive processor/data sets
of a redistribution can be constructed.

In Figure 2, a BLOCK-CYCLIC(3) to BLOCK-
CYCLIC(2) redistribution on a one-dimensional array with
48 elements over M = 4 processors is shown. The basic
cycle of the redistribution is equal to 6, there are two
basic cycles in each source/destination local array. For
each source (destination) local array, the kth array
elements of the first and the second basic cycles have the
same destination -(source) processor, i.e., both of them
will be sent to (received from) the same destination
(source) processor during the redistribution, where & = 1
to 6. This observation shows that each basic cycle of a
local array has the same communication pattern.
Therefore, the complete send/receive processor/data sets
of a redistribution can be constructed based on the
calculation of the send/receive processor/data sets in the
first basic cycle of a local array.

Source : BLOCK-CYCLIC(4)

1 23 45 67 8 9101112013 14151617 18192021 2223 24
25 26 27 2833 34 35 36,

d] 42 43 44

12341123 4
29 30 3] 2!37 38394

123 4
045 46 47 48

Destination : BLOCK~ CYCLIC(3)

1 23 4567 8 9101112(131415161718192021 2223 24
31 32 33
123

| local |
DL4,
DDPP
DLA,
DDPP

37 38 39
123
34 35 36140 41 42|

43 44 45

123

46 47 48

4 5 614 5 6|4 5 6

Source : BLOCK- CYCLIC(4) distribution pattern array

pattern position 1 J2)3 lalslelr]s
SDPA o Jofolo]1] 1

Destination : BLOCK - CYCLIC(3) distribution pattern array

pattern position i 2 3 4] 3
DDPA 0 [] [1 1 1
)
Figure 1 : (a) A BLOCK-CYCLIC(4) to BLOCK-CYCLIC(3)
redistribution with M=2 and N=48. (b) The source and the
destination distribution pattern arrays of the redistribution.

Another example of a BLOCK-CYCLIC(6) to BLOCK-
cycLIc(4) redistribution on a one-dimensional array
A(1:N) with N = 96 elements over M = 4 processors is
shown in Figure 3(a). The basic cycle of the redistribution
is equal to 6 as well. However, the observation that we
obtained from Figure 2 cannot be applied to the case
shown in Figure 3(a) directly. For example, the
destination processors of the second array elements in the
first and the second basic cycles of the source local array
of processor P, are P, and P,, respectively. The reason for

139

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

this result is that the value of ged(6, 4) is not equal to 1.
By grouping every gcd(6, 4) global array indices of array
4 to a meta-index, array A(1:N) can be transformed to a
meta-array B(1:N/gcd(6, 4)), where B(k) {A((k-
Dxged(6, 4)+1), ... , Ak xged(6, 4))} and k =1 to
N/ged(6, 4). Then, the observation that we obtained
from Figure 2 can be held if we use array B for the
redistribution. Example of using meta-array for the data
redistribution of Figure 3(a) is shown in Figure 3(b),
which is the same as that Shown in Figure 2. In the
following discussion, we assume that a BLOCK-CYCLIC(s)
to BLOCK-CYCLIC(#) redistribution on a one-dimensional
array with N elements, 4(1:N), over M processors is given.
We also assume that ged(s, £) is equal to 1. If ged(s, £) is
not equal to 1, we use s/gcd(s,) and #/gcd(s, f) as the
source and destination distribution factors of the
redistribution, respectively.

[‘Source :BLOCK-CYCLIC(3)

8 9
26 27
29 _30
32 33
35 _36

10
37
40
43
46

11
38
41
44
47

12
33
a2
43
48

cYcLic(2)

focal
Pg
P
P2
P

1
42
44
46
48

s v
26133
28135
30137
32139

10
34
36
38
40

11
41
43
45
417

Figure 2 : A BLOCK-CYCLIC(3) to BLOCK- CYCLIC(Z)
redistribution with A/=4 and N=48.

Source : RLOCK-CYCLIC(6)

12 3 ¢ 5 6 7 8 9 1011 12115 14 IS 16 17 13 19 20 1 B B N
10 1112
3,74 75,76 71,78
55,5 57,58 59.60|79, 80 81,R2 83,84
61,62 63,64 65,6685, 86 87,88 89,90
67,68 69,70 71, 72(91, 92 93,94 95, %

local index

149,50 51.52 53,54

Destination : BLOCK-CYCLIC{)

localindex| s 2 5 4 5 6 7 & 9 gon nluuum:ruln 20 2 2 BN
waiiec | 1213 4|ls 6|7 8|9 10]un n
P 4) 3149,50 51,52 65.66 67, 68|81 22 83,84
P % : 53,54 55,5669, 70 71, 72|85, 86 7,88
Py 199 . 4 57,58 59,60]73,74 75, 76189, % 91,92
Figure 3 (a) BLOCK—CYCLIC(6) to BLOCK- CYCLIC(4)

redistribution with M= 4 and N=96.. (b) Example of grouping
local arrays to meta-local arrays for the redistribution in (a).

A Send phase

Since array elements in a source section have
consecutive global array indices, if we know the
destination distribution pattern position of the first array
element of a source section, we can easily determine the
destination processors of array elements in the source
section according to the destination distribution pattern
array. For example, in Figure 2, there are two source

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

sections in SLA,(1:BC) of a source processor P,. The
destination distribution pattern position of SLA,(1) = A(7)
is equal to 7. Since array elements in a source section
have consecutive global array indices, we can derive that
the destination distribution pattern positions of SL4,(2) =

A(8) and SLA,(3) = A(9) are equal to 8 and 1, respectively.

According to Definition 1, we can determine that the
corresponding destination processors of SLA,(1), SLA,(2),
and SLA,(3) are equal to DDPA(7) = P;, DDPA(8) = P,,
and DDPA(9) = Py, respectively. For a source processor
P;, there are ¢ source sections in SLA;(1:BC). From the
above analysis, for each source processor P;, we only
need to scan ¢ array elements in SLA;(1:BC) and we can
determine the destination processors of array elements in
SLA;(1:BC).

lcad |1 2 3 45 6
source processor
Py Po Py Py P, Py Py
P, |P PP, P Py Py
P, Py Py Py Py P Py
Py Py Py PP, P3Py

Figure 4 : The send processor/data sets of the first basic cycle
for a BLOCK-CYCLIC(3) to BLOCK-CYCLIC(2) redistribution.

ad |1 2345678910112
b RRPRRPRRERPAPL
P, APRPRRRRPARRFRE
Pz vP’.le!PnPlPlPIPSPJPnPIPIPZ
A APAPPRRPARPPAPP

Figure 5 : The complete send processor/data sets for a BLOCK-
CYCLIC(3) to BLOCK-CYCLIC(2) redistribution.

Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(Y)
redistribution over M processors, for each source
processor P;, the destination distribution pattern position
(DDPP) of the first array element in each source section &
of SLA;j(1:BC) can be determined by the following
equation:

DDPP(K) = (k X M+rank(P})X s) mod (M X f))
where k£ = 1 to BC/s, rank(P;) is the rank of a source
processor Pj, and rank(Pj) = 0 to M-1. According to
Equation 1, Definition 1, and Definition 2, we can easily
construct the send processor/data sets of the first basic
cycles of source processors. The send processor/data sets
of the first basic cycles of source processors in Figure 2

_ are shown in Figure 4. Since each basic cycle in a local
array has the same communication pattern, for each

140

source processor P;, we can pack array elements that have
the same array index in basic cycles to the same out
buffer according to the send processor/data set of the first
basic cycle of the source processor. The complete send
processor/data sets of the redistribution shown in Figure 2
are shown in Figure 5.

‘'To send out buffers to their corresponding
destination processors, we need to determine the sending
order of out buffers. In the basic-cycle calculation, the
order of sending out buffers of a source processor to their
corresponding destination processors is determined by the
appearance order of destination processors in the send
processor/data set of the first basic cycle of a source
processor. By using this scheduling order, we can avoid
node contention mostly.

B Receive phase

In the receive phase, for each destination processor, -
the source distribution pattermn position (SDPP) of the first
array element in each destination section & of DLA;(1:BC)
can be determined by the following equation:

SDPP(k) = ((k X M+ rank(Pj)X t) mod (M X s) @)
where k = 1 to BC/t, rank(P;) is the rank of a destination
processor Pj, and rank(P;) = 0 to M-1. According to
Equation 2, we use the same method in the send phase to
construct the receive processor/data sets of the first basic
cycle of destination processors. This is shown in Figure 6.
The basic-cycle calculation algorithm is given as follows.

Algorithm basic_cycle_calculation(s, t, M)
/* Send phase */
1. i=MPI_Comm_rank(); x = lem(s, £); y = ged(s, #);

2. BC=xly,s=sly;t=tly;

3. max_local_index = the length of the source local array of
processor Pj;

4. for (k=0; k<=M-1; k++)

5. for (/=k X t+1; <=k X t+t; H+) DDPA(l)=k,

/* Construct the send processor/data set of the first basic cycle */

6. DDPA_length=M X t;

7. while (k<= BC)

8. { DDPP=((kX M+i X s)ymod(M X t);

9. for (I=1;] <=s; I++)

10. { template(ky=DDPA(DDPP); kt+;

11. if (DDPP = DDPA_length) DDPP = 1 else

DDPP++; }}
/* Packing data sets */

12, k=1; index = 1; lengthj= 1, where j=0, ..., M-1;

13, while (index <= max_local_index)

14. { j=template(k); =1,

15. while (! <=y) && (index <= max_local _index))

16. { out_bufferj(lengthj) = SLAi(index);

17. length]++; index++; I++; }

18. if(k=BC)k=1else k++; }

19. Send data sets to their corresponding destination processors.

/* Receive phase */
20. Receive data sets in_buffer; from source processors Pj.

21, max_local_index = the length of the destination local array of

processor Pj;
22, for (k=0; k<=M-1; k++)
23, for (l=k X stl;I<=k X sts; ++) SDPA() =k;

/* Construct the receive processor/data set of the first basic cycle */
24, SDPA_length=M X s;

25. while (k<=BC)

26.- { SDPP=((kXM+i X t)ymod(M X s),

27. for (I=1; I <=s; H+)

28. { template(k) = SDPA(SDPP); k++;

29, if (SDPP = SDPA_length) SDPP = 1 else
SDPP++; })

/* Unpacking data sets */

30. k=1;index=1, lengthj = 1, where j=0, .
31 whlle (index <= max_ Iocal |_index)

32 { Jj=template(k);l=1,

33. while ((/ <=y) && (index <= max_local_index))
34. { DLA{(index) = in bu]j’erj(lengthj)

35. lengthjt+; indext+; H;

36. if(k=BC)k=1else k++; }

end_of basic_cycle_calculation

local
destination 123456
Py Py Py Py Py P, P,
P, Py P, P, P, P, P,
P, P, P Py Py P, Py
. Py P, P, P, P, Py Py

Figure 6 : The receive processor/data sets of the first basic cycle
for the redistribution in Figure 2..

4 Performance evaluation and experimental results

To evaluate the performance of the basic-cycle
calculation (BCC), we compare the proposed approach
with the multi-phase (MP) method. We first develop
cost models for both approaches. Then, we execute both
algorithms on an IBM SP2 parallel machine and use the
cost models to analyze the experimental results.

4.1 Cost Models

Given a one-dimensional array with N elements,
A(1:N) and M processors, the time for an algorithm to
perform a BLocK-cYcLIc(s) to BLOCK-cYcLIc(f) redistri
bution on 4 over M, in general, can be modeled as
follows:

T= Tcomp + Teomm 3)

where Teomp is the time for an algorithm to compute the
source/destination processors of local array elements,
pack array elements that have the same destination
processors of source processors to the same out buffer,
and unpack array elements that received from source
processors to their corresponding positions; and Tpgmm is

141

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

the time for an algorithm to send and receive data among
processors.

For the basic-cycle calculation, according to
Equation 3, the time to perform a BLOCK-CYCLIC(s) to
BLOCK-CYCLIC(#) redistribution on an array 4(1:N) over
M processors can be modeled as follows:

T(BCCYTeomp(BCCOY+ 6 xTg +(NIM) x T, Q)

where Teomp(BCC) is the computation time for the basic-
cycle calculation to perform a redistribution; & is the
maximum number of processors that a source processor
needs to send data to; Ty is the startup time of the
interconnection network of a parallel machine; and 7y is
the data transmission time of the interconnection network
of a parallel machine. The value of § can be determined
by the following equation:

max (s,o] BC x ged (5,
X
max (s,9)

5=min(M,,r (5)

min (5,0

For the multi-phase method, a BLOCK -cYCLIC(s) to
BLOCK-CYCLIC() redistribution may be decomposed into
several phases, ie., BLOCK-CYCLIC(s=s,) to BLOCK-
CYCLIC(s;), BLOCK-CYCLIC(s;) t0 BLOCK-CYCLIC(s,),

.» BLOCK-CYCLIC(sy.) to BLOCK-CYCLI C(s;=f), where
5i1= €8] OF §;= ¢,51,, for some integers ¢, > 0, ¢, >0, n >
0,and i =1, ..., n. Therefore, according to Equation 3,
the time for the multi-phase method to perform a BLOCK-
CYCLIC(s) to BLOCK-CYCLIC(Y) redistribution on an
array A(1:N) over M processors through n phases can be
modeled as follows:

T(MP) = Z Teomp(MP); +Z (ki xTs + VMXTD),— (6)
A

where Tcomp(MP)l is the computation time of the multi-
phase method to perform a BLOCK-
CYCLIC(si,) to BLOCK-CYCLIC(s;) redistribution and k; =
min(M, max(s;., si) | min(si,, s7)), for i =1, ..., m; Tgis
the startup time of the interconnection network of a
parallel machine; and 77 is the data transmission time of
the interconnection network of a parallel machine.

4.2 Performance Analysis

In this subsection, we analyze the performance of the
basic-cycle calculation and the multi-phase method. For
the multi-phase method, in our analysis, we only consider
the one-stage(1P) and two-stage(2P) multi-phase
methods.

Given a BLOCK-CYCLIC(s) to BLOCK-CYCLIC(f)
redistribution, the relationship of s and ¢ can be classified
into three cases : Case 1 : s is not divisible by ¢, ¢ is not

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

divisible by s, and the value of gcd(s,) is equal to 1..
Case 2 : s is not divisible by ¢, ¢ is not divisible by s, and
the value of ged(s, ?) is not equal to 1. Case 3 : s is
divisible by ¢ or ¢ is divisible by s, i.e., s = kt or t = rs, for
some integers & and r.
For Case 1, according to Equation 4, the time for the
basic-cycle calculation to performthis redistribution is
T(BCC) = Teomp(BCC) + 6 x Tg+ (NIM) x Tg. For the
multi-phase method, it takes at least two phases to
perform this distribution. According to [7], a BLOCK-
cycnIc(s) to BLOCK-CYCLIC(lem(s,f)) redistribution
followed by a BLOCK-cYCLIC(lem(s,f)) to a BLOCK-
cycLic(r) redistri-bution will produce the best
performance for the two-stage multi-phase method in this
redistribution. The time for the two-stage multi-phase
method to perform -this redistribution is T(MP)
2

=z Teomp(MP); + (min(Myt) + min(Ms)) x Ts + 2 x (N/M) x Tg.
il

We have the following lemma.

Lemma 1: Given a BLOCK-CYCLIC(s) to BLOCK-
cYcLIc(f) redistribution on an array A(1:N) over M
processors in case 1, the communication time for the two-
stage multi-phase method to perform this redistribution is
always greater than that of the basic-cycle calculation.

Proof : The communication time for the basic-cycle
calculation and the two-stage multi-phase method to
perform this redistribution are Teomm(BCC) =6 x Ty +
(NIM) x Tg and Teomm(MP) = (min(M,t) + min(M,s)) x T

+ 2 x (NM x Tq respectively. Since
max (s, BC
8 = min (M, X y < min(M,H)+min (M,s),
| min(s,d max (s,9)
we have Teomm(BCOY<T comm(MP). |

For Case 2, the time for the basic-cycle calculation
and for the two-stage multi-phase method to perform this
redistribution is T(BCC) = Teomp(BCCY*+ 6 xTs HNIM)xTy

2

and T(MP) = Z Toomp(MP); +(min(M, t/ged(s,t)) + min(M,
i=l

s/ged(s,0)) x Tg + 2 x (NIM) x T4 respectively. We have the

following lemma. .

Lemma 2: Given a BLOCK-CYCLIC(s) to BLOCK-
cycLIic(f) redistribution on an array A(1:N) over M
processors in case 2, the communication time for the two-
stage multi-phase mrethod to perform this redistribution is
always greater than that of the basic-cycle calculation.

Proof : The proof of this Lemma is similar to Lemma 1.

From Lemma 1 and Lemma 2, we predict that the
basic-cycle calculation produces better performance than
the two-stage multi-phase method in case 1 and case 2, if

142

both algorithms have the same computation time.

For Case 3, according to Equation 4, the time for the
basic-cycle calculation to perform this redistribution is
the same as case 1. For the multi-phase method, ‘it can
use one-stage or two-stage approaches to perform the
redistribution. The time for the one-stage multi-phase
method to perform this redistribution is T(MP) =
Teomp(MP) + min(M, max(s,H)/min(s,H)) x T+ (NIM) x Tg.
We have the following lemma.

Lemma 3: Given a BLOCK-CYCLIC(S) to BLOCK-
cycLic(s) redistribution on an array A(1:N) over M
processors in case 3, the communication time for the one-
stage multi-phase method to perform this redistribution is
the same as that of the basic-cycle calculation.

Proof : The communication time for the basic-cycle
calculation and the one-stage multi-phase method to
perform this redistribution are Teppm(BCC) =6 x Tg+
(NIM) x Tg and Teomm(MP) = min(M, max(s,t)/min(s,t)) x

Ty + (NIM) x T4, respectively. Since
¥) BC d (s,
0 = min (44, ‘Vméx (s)-I X xgcd 51) =min(M,max(s,
min (s,4) max (s,4)
0)/min(s,t)), we have Teomm(BCC) = Teomm(MP).]

From Lemma 3, for Case 3, we predict that the basic-
cycle calculation should produce the same performance as
that of the one-stage multi-phase method if both
algorithms have the same computation time. The time
for the two-stage multi-phase method to perform this

n 2
redistribution s TUMP) = Teomp(MP)i+ Y (ki xTs

A =1
+(NIM)xTg). The array size, the number of processors,
and the value of k; will determine which algorithm has
better performance.

4.3 Experimental results

To verify the performance analysis that presented in
Section 4.2, we have implemented both algorithm on an
IBM SP2 parallel machine. Both algorithms were
written in the single program multiple data (SPMD)
programming paradigm. To get the experimental results, a
redistribution with a particular array size were executed
10 times by both algorithms on a 20-node configuration.
The mean time of these 10 tests which were executed by
an algorithm was used as the .time of performing a
redistribution with a particular array size of that algorithm.
The single-precision array was used for the test.

A Experimental results for case 1

The time for both algorithms to perform two
redistribution samples, BLOCK-CYCLIC(8) to BLOCK-
cycric(5) and BLOCK-CYCLIC(100) to BLOCK-

cyenic(3) with different array size N on a 20-node SP2
parallel machine was shown in Table 1. To perform these
two samples, the two-stage multi-phase method uses
BLOCK-CYCLIC(40) and BLOCK-CYCLIC(300) as the
intermediate distribution for each redistribution. The time
for the basic-cycle calculation to perform these two
redistribution are T(BCC) = Tyomp(BCC) + 10Tg+ 4 X
(N20)X T4 and T(BCC) = Toomp(BCC) + 20T + 4 X
(N20) X T respectively. And the time for the two-stage
multi-phase method to perform these two redistribution

2
are T(MP) =) Teomp(MP); + 13T+ 4 X (N/10)X T4

i=]

2

and T(MP) =" Teomp(MP)i+ 2375 + 4 X(N/10)X Ty
=l

respectively. Note that each array element is 4-byte

long.

From Table 1, for sample I, we can see that the
computation time of the basic-cycle calculation is less
than that of the two-stage multi-phase method when the
array size is less than a threshold: When the array size is
over a threshold, the computation time of the basic-cycle
calculation is greater than that of the two-stage multi-
phase method. However, (1375 + 4 X(N/10)X Tp) -
(107 + 4 X (N20) X T) is still greater than Tyomp(BCC)

2
- ZTwmp(MP)i when the array size is over the
i=l .
threshold. Therefore, the basic-cycle calculation
outperforms the multi-phase method in this redistribution

for all test samples. For sample 2, we can see that the

computation time of the basic-cycle calculation is greater
than that of the two-stage multi-phase method for test
samples. However, (23Ts+ 4 X(N/10)X Tg) — Q0T+
4 X(NR0)X Tp) is still greater than Teomp(BCC) —

2
Z Teomp(MP); for test samples. Therefore, the basic-
i=l »

cycle calculation outperforms the two-stage multi-phase
method in this redistribution for all test samples.

B Experimental results for case 2

. The time for both algorithms to perform two
redistribution samples, BLOCK-cYCLIC(25) to BLOCK-
cycLIic(20) and BLOCK-cYCLIC(300) to BLOCK-
CYCLIC(200) was shown in Table 2. To perform these
two samples, the two-stage multi-phase method uses
BLOCK-CYCLIC(100) and RLOCK-CYCLIC(600) as the
inter-mediate distribution for each redistribution. Table 2

~ gives us the same observations as described in Table 1.

C Experimental results for case 3

143

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The time for both algorithms to perform a BLock-
cycnIc(60) to BLOCK-cYcLIc(3) redistribution was
shown in Table 3. The time for the basic-cycle calculation
to perform this redistribution is Z{BCC) = Teomp(BCC) +
2075 + 4 X(N20)X T4 For the multi-phase method,
the time for the one-stage multi-phase method to perform
this redistribution is T(MP) = Teomp(MP) + 20T+ 4 X
(NI20)X Tq. For the two-stage multi-phase method, it
performs a BLOCK-CYCLIC(60) to BLOCK-CYCLIC(1S)
redistri-bution followed by a BLOCK-cyCLIC(15) to
BLOCK-CYCLIC(3) redistribution. The time for the two-
stage multi-phase method to perform this redistribution is

2
T(MP) = Toomp(MP); + 9T5 + 4 X (N/10)X Tg. From

i<l
Table 3, we can see that the computation time and the
communication time of the basic-cycle calculation are
both greater than those of the one-stage multi-phase
method for test samples. Therefore, the one-stage multi-
phase method outperforms the basic-cycle calculation in
this redistribution. However, the basic-cycle calculation
out-performs the two-stage multi-phase method when the
array size is over a threshold. The time for both
algorithms to perform a BLOCK-CYCLIC(1000) to -
BLOCK-CYCLIC(50) redistribution was also shown in this
table, and have similar conclusions as those described for
the BLOCK-CYCLIC(60) to BLOCK-CYCLIC(3)
redistribution.

5 Conclusions and future work

In this paper, we have presented a basic-cycle
calculation technique to efficiently perform the general
BLOCK-CYCLIC redistribution. To evaluate the
performance of the basic-cycle calculation, we have
implemented the basic-cycle calculation along with the
multi-phase method. The experimental results show that
the BCC outperforms the two-stage multi-phase method
for all test samples in casel and case 2. For case 3, BCC
outperforms the two-stage multi-phase method when the
array size is over a threshold. However, in this case, the
one-stage multi-phase method outperforms the basic-
cycle calculation for all test samples.

Considering of the redistribution in case 3, the
communication cost of the basic-cycle calculation is the
same as that of the one-stage multi-phase method. But
the computation cost of the basic-cycle calculation is
greater than that of the one-stage multi-phase method.
In the future, we will study methods to reduce the
computation time of the basic-cycle calculation for this
case in the hope that the basic-cycle calculation can
produce better performance than the one-stage multi-
phase method.

Proceedings of International Conference on Distributed
Systems, Software Engineering and Database Systems

References

(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

9]

[10]

[11]

Efficient

S. Chatterjee, J. R. Gilbert, F. J. E. Long, R.
Schreiber, and S.-H. Teng, “Generating Local
Address and Communication Sets for Data Parallel
Programs,” Journal of Parallel and Distributed
Computing , Vol. 26, pp. 72-84, 1995.

J. J. Dongarra, R. van de Geijn, and D. W.
Walker,“ A look at scalable dense linear algebra
libraries,” Technical Report ORNL/TM-12126 from
Oak Ridge National Laboratory, Apr. 1992.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U.
Kremer, C.-W. Tseng, and M. Wu, “Fortran-D
Language Specification,” Technical Report TR-91-
170, Dept. of Computer Science, Rice University,
Dec. 1991.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P.
Sadayappan, “On Compiling Array Expressions for
Execution on’/ /Distributed-Memory
Machines,” Technical Ré, ort OSE-CISRC-4/94-
TR19, Department of Cémputer and Information
Science, The Ohio State University, Apr. 1994.

S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P.
Sadayappan, “On the Generation of Efficient Data
Communication for Distributed-Memory Machine,”
Proc. of Intl. Computing Symposium, pp. 504-513,
1992.

High Performance Fortran Forum, “High Performance
Fortran Language Specification(version 1.1),” Rice
University, November 1994,

S. D. Kaushik, C. H. Huang, J. Ramanujam, and P.
Sadayappan, “Multi-Phase array. redistribution: A
Communication-Efficient Approach to Array
Redistribution,” Technical Report OSU-CISRC-
9/94-52, Department of Computer and Information
Science, The Ohio State University, 1994.

E. T. Kalns and L. M. Ni, “DaReL: A portable data
redistribution library for distributed-memory
machines,” \in Proceedings of the 1994 Scalable
Parallel Libraries Conference II, Oct. 1994.

Edgar T. Kalns, and Lionel M. Ni, “Processor
Mapping Technique ‘Toward Efficient Data
Redistribution, ” IEEE Transactions on Parallel
and Distributed Systems, vol. 6, no. 12 , December
1995.

S. Ramaswamy and P. Banerjee, “Automatic
generation of efficient array redistribution routines
for distributed memory multicomputers, ” Tech.
Rep. CRHC-94-09, Center for Reliable and High
Performance Computing, Computer Systems and
Research Laboratory, Univ. of Illinois, 1994.
Rajeev. Thakur, Alok. Choudhary, and J.
Ramanujam, “Efficient Algorithms for Array

144

[12]

[13]

[14]

Redistribution, ” IEEE Transactions on Parallel
and Distributed Systems, vol. 7, no. 6 , JUNE 1996.
H. Zima and P. Brezany and B. Chapman and P.
Mehrotra and A. Schwald,” Vienna Fortran - A
Language Specification Version 1.1,” ICASE
Interim Report 21, ICASE NASA Langley
Research Center, Hampton, Virginia 23665, March,
1992.

V. Van Dongen, C. Bonello, and C. Freehill,” High
Performance C - Language Specification Version
0.8.9,” Technical Report CRIM-EPPP-94/04-12,
1994.

C. Van Loan, Computational Frameworks for the
Fast Fourier Transform,” SIAM, 1992.

Table 1 : The execution time of both algorithms for case 1

redistribution.

Case 1 B-C(8)TO B-C(5) B-C(100) TO B-C{(3)

Size(x10°) | 4 | 48 | 120 | 480 | 2400 6 361 120 | 480 | 2400

Comp.| 0.161 | 1.521 | 3.683115.263{72.259) | 0514 | 1443 | 3.835 | 1839 68345

Total | 1.194|3.158| 5315 25.741152.38| | 1.585 | 4387 | 8.159 | 27.931 | 127.84

Comp.| 0203 } 1435|3346 | 9811682581 | 0429 | 1252 | 225 | 16332 50308

9226

Total | 146 | 3.903 | 6.778133.6081 194.21 12,109 15.723] 33.595 | 15194

Time wnit : ms

Table 2 : The execution time of both algorithms for case 2

redistribution.

Case2

B-C(25) TO B-C(20) B-C(300) TO B-C(200)

Sze(x10) | 6 48 | 120 | 480 | 2400 12 60 120 | 480 | 2400

Comp.} 0.193 | 1.106] 2.55 |14321|53.201(| 059 | 1473 | 241 |14665| 498
BCC

Total | 0976 | 2.968 | 5.891 [24.515|102.85 | 1.095 | 3.261 | 4.773 | 23.843 |86.582

Comp.| 0207 | 0.939| 2377|13.843[50.874| | 0341 | 1.316 | 2.065 | 14.502{48.369

Total | 1.112] 3.687 6376 33.52 | 183.19| | 1.503 | 3.064 | 7.736 | 33.718 18274

Time unit : ms

Table 3 : The execution time of both algorithms for case 3

redistribution.

Case3

B-C{60) "TO B-C(3) B-C(1000)' TO B-C(50)

Size(xI0%) | 24 | 120 | 384 | 90 [2400[| 20 | 100 | 320 | 960 | 2400

Conp.| 0.814]3.203 | 8229 [20486(5229 | 0.802 | 2641 | 8.154 | 20.125|52.363

Total | 276 | 7.514 [22514{52384{ 138.44] | 3.912 | 7.115 | 23.884| 4154 |108.29

Comp.| 0.625 | 2.661 | 8.153 | 23.55|60.716| | 0.757 | 2507 | 7.133 | 19.359]49.112

Total | 2417 6.525 |23.665|79.755}173.54| | 2.174 | 6.002 | 17.783|51.883 | 141.05

Corp. [0353 | 1.148 | 4.085 }10.264/28.366} 0395 | 0962 | 2.893 | 8442 |21.685

Total | 1758 | 528 | 18.87[40.006 1055 | | 3.365

5586 | 17525]38.725} %008

Time unit : ms

