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Abstract

Along with the direction that generalizes interval graphs
and permutation graphs to (subclasses of) trapezoid
graphs, researchers are now trying to generalize the
class of trapezoid graphs. A circle trapezoid is the
region in a circle that lies between two non-crossing
chords, and the circle trapezoid graphs are the inter-
section graphs of circle trapezoids in a circle; note
that circle trapezoid graphs properly contains trape-
zoid graphs, circle graphs and circular-arc graphs as
subclasses. Circle trapezoid graphs shall not be con-
fused with circular trapezoid graphs. Here a circular
trapezoid is the region within two parallel circles that
lies between two non-crossing segments . It follows
that the circular trapezoid graphs are the intersection
graphs of circular trapezoids between two parallel cir-
cles.

In this paper, the author presents results on two su-
perclasses of trapezoid graphs including circle trape-
zoid graphs and circular trapezoid graphs. We show

that circle trapezoid graphs and circular trapezoid graphs

are two distinct classes of graphs; further, we show
that the maximum weighted independent set on circu-
lar trapezoid graphs can be found in O(n? loglogn)
time, and the minimum weighted independent domi-
nating set of circular trapezoid graphs can be found in
O(n?logn) time.

*The work is partially supported by NSC grant 88-2213-E-
126-005.

1 Introduction

The intersection graph of a collection of trapezoids
with corner points lying on two parallel lines is called
the trapezoid graph [4, 6]. Note that trapezoid graphs
are perfect and properly contain both interval graphs
and permutation graphs. Trapezoid graphs are not
necessary chordal since Cy is a trapezoid graph; how-
ever, they are weakly chordal [5]. Recall that a graph
G is weakly chordal if neither G nor G contains a
chordless cycle of length > 5. Dagan, Golumbic,
and Pinter [6] show that the channel routing prob-
lem is equivalent to the coloring problems on trape-
zoid graphs and present an O(ny) algorithm to solve
it where x is the chromatic number of the trapezoid
graph.

The fastest known algorithm for recognition of
trapezoid graph is given by Ma and Spinrad in [17],
where they show that interval dimension 2 problem
and trapezoid graphs recognition both can be solved
in O(n?) time. That is, we can take the complement
of the input graph, G, and use the transitive orienta-
tion technique (in O(n?) time) [18] to obtain a poset
P and then tests whether P has interval dimension 2
in another O(n?) time. Since the given graph might
not be a cocomparability graph, to avoid verifying the
transitivity of G, which takes O(u(n)) time, their al-
gorithm needs to check the representation model in,
again, O(n?) time. Habib and Mohring [10] also give
an O(n®) time algorithm to recognize a trapezoid graph
based on the 2 —d interval order. Independently, using
the vertex splitting technique, Cheah [2] also devel-
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oped an O(n?) time algorithm for recognizing trape-
zoid graphs by graph theoretical approach.

Trapezoid graphs are perfect since they are co-
comparability graphs. Thus the optimization prob-

lems including maximum independent set, clique, clique

cover, and chromatic number of trapezoid graphs can
all be solved in polynomial time by the ellipsoid method
for perfect graphs [9]. Based on the geometric repre-
sentation of trapezoid graphs by boxes in the plane,
Felsner et al. [7] design O(nlogn) time algorithms
for chromatic number, weighted independent set, clique

cover and maximum weighted clique for trapezoid graphs;

the time can be improved to O(n log log n) if the rep-
resentations are sorted. It shall be noted that these
results are also independently found by Chang [1].
Chen and Wang [3] show an algorithm for finding
depth-first spanning trees on trapezoid graphs in O(n)
time. For the dominating sets problem and its variants
in rapezoid graphs, see [13, 12, 19],

Along with the direction that generalizes interval
graphs and permutation graphs to (subclasses of) trape-
zoid graphs, researchers are now trying to generalize
the class of trapezoid graphs. For example, Flotow
[8] introduces the class of m-trapezoid graphs that
are the intersection graphs of m-trapezoids, where an
m-trapezoid is given by m + 1 intervals on m + 1
parallel lines. Recall that the k-th power of a graph

= (V, E), denoted G¥, is the graph with the same
vertex while two vertices are adjacent iff there exists
a path of length at most k connecting them. Flotow
shows that if G is an m-trapezoid graph then Gk+1
is also an m-trapezoid graph. Lin [14] show that de-
termining whether a given graph is a k-th power graph
for any fixed k& > 1 is NP-complete.

Felsner et al. [7] generalizes their algonthms to

m-trapezoid graphs (where they called it k-trapezoid
graphs,) and give O(n logf~! n) time algorithms for
chromatic number, weighted 1ndependent set, clique
cover and maximum weighted clique for k-trapezoid
graphs. They also propose a new class of graphs called
circle trapezoid graphs, also known as circular strips
graphs, that properly contains trapezoid graphs, cir-
cle graphs and circular-arc graphs as subclasses; they
propose an O(n?) time algorithm for weighted inde-
pendent set and an O(n?logn) time algorithm for
weighted clique problem for circle trapezoid graphs,
using their algorithms for trapezoid graphs as subrou-
tines. Note that a circle trapezoid is the region in a
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Figure 1: Circle trapezoid graphs, circular trapezoid
graphs, and circular d-trapezoid graphs.

circle that lies between two non-crossing chords, and
the circle trapezoid graphs are the intersection graphs
of circle trapezoids in a circle. Just like circular per-
mutation graphs [16] shall not be confused with circle
graphs, circle trapezoid graphs shall not be confused
with circular trapezoid graphs, defined by Kratsch
[11}. Here a circular trapezoid is the region in two cir-
cles (parallel to each other, in the 3D space) that lies
between two non-crossing segments (on the cylinder
surface, connecting two endpoints in each circle.)

It follows that the circular trapezoid graphs are
the intersection graphs of circular trapezoids between
two parallel circles. They also extends circular trape-
zoid graphs into d > 2 parallel circles; the general-
ized classes of graphs is so called circular d-trapezoid
graphs. Kratsch show that polynomial time algorithms
for computing the component number vectors and the
maximum component order vectors for measuring the
‘vulnerability’ of these graphs.

In summary, circular d-trapezoid graphs general-
izes d-trapezoid graphs, but circular d-trapezoid graphs
do not generalize circle trapezoid graphs. Note that
d-trapezoid graphs are still cocomparability graphs,
but circular d-trapezoid graphs and circle trapezoid
graphs are not subclasses of cocomparability graphs.
Further, it is still not known whether we can efficiently
recognize circle trapezoid graphs, (d > 2)-trapezoid
graphs, or circular'(d > 2)-trapezoid graphs. It seems
that research has been directed towards using the the
specific topological or geometric structure of theses
generalized trapezoid graphs to solve more intractable
optimization problems in larger classes of graphs. Fur-
ther, finding recognition algorithms on these variants
of generalized trapezoid graphs will still be a chal-
lenge to the researchers. Some of the problems may
have been partly answered [7, 11]; however, there may
still be room for improvement, e.g., the weighted in-
dependent set and weighted clique problem for circle
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trapezoid graphs.

Most importantly, many optimization problems that
can be efficiently solved in trapezoid graphs [3, 7, 12,
19] are still quite open to the researchers. Especially,
little is known about how to efficiently solve any opti-
mization problem for circular (d > 2)-trapezoid graphs,
and not much is known about problems on circle trape-
zoid graphs.

In this paper, the author presents results on two su-
perclasses of trapezoid graphs including circle trape-
zoid graphs and circular trapezoid graphs. The paper
is organized as follows. In Section 2, we show that
circle trapezoid graphs and circular trapezoid graphs
are two distinct classes of graphs; actually, we dis-
cover that circular trapezoid graphs do not generalize
circle trapezoid graphs. The second part of this pa-
per concerns the algorithmic aspects of circular trape-
zoid graphs. In Section 3, we show that the maximum
weighted independent set on circular trapezoid graphs
can be found in O(n%loglogn) time. We show in
Section 4 that the minimum weighted independent dom-
inating set of circular trapezoid graphs can be found
in O(n?logn) time. '

2 Circle Trapezoid Graphs and Cir-
cular Trapezoid Graphs

To show that circle trapezoid graphs and circular trape-
zoid graphs are two distinct superclasses of trapezoid
graphs, we first show that there are circle graphs that
are not circular trapezoid graphs. In particular, we
will show

Theorem 2.1 The graph G shown in Figure 2 is a cir-
cle trapezoid graph (actually a circle graph), but it is
not a circular trapezoid graph.

Proof. From the model of G shown in Figure 2, it is
easily seen that G is a circle graph (thus a circle trape-
zoid graph). Now we show that G is not a circular
trapezoid graph.

Suppose that G is a circular trapezoid graph. Note
that the outer six vertices induced a chordless sim-
ple cycle of length six (Cg) in G. It is not hard to
verify that these corresponding six circular trapezoids
in the circular trapezoid model must connect to each
other in a fashion as the right hand side figure in Fig-
ure 2; i.e., these circular trapezoids will from a circu-

Figure 2: A circle trapezoid graph and its circle trapé—
zoid model that is not a circular trapezoid graph.

lar chain of length six in the circular channel. Now

- consider the seventh vertex of G (the middle vertex)

shown in Figure 2. The corresponding circular trape-
zoid must intersect two opposite circular trapezoids of
the circular chain but not intersecting any of the mid-
dle four circular trapezoids. However, this can not be
done because these outer six circular trapezoids form
a continuous circular chain with two opposite circular
trapezoids not intersecting each other; thus, any con-
tinuous curve intersecting two opposite circular trape-
zoids must also (at least) intersecting two other middle
circular trapezoids. Actually, it is not hard to gener-
alize the result to a family of graphs that are circle
(trapezoid) graphs but not circular trapezoid graphs.
O

We use the notation u ~g v to represent u and v
are two adjacent vertices in G, i.e., {u,v} € E(G).
When the underlying G is clear, we will drop the sub-
scribe, and just write u ~ v. Further, given two subset
of vertices A, B, we generalize the notation in A ~ B
to mean that a ~ b for all verticesa € A and b € B.
To show that there are circular trapezoid graphs that
are not circle trapezoid graphs, and thus showing that
circle trapezoid graphs is distinct from circular trape-
zoid graphs, we need the following property of circle
trapezoid graphs (which also applies to circular trape-
zoid graphs as well):

Lemma 2.2 (X-shape) Let vi,...,vg be six distinct
vertices of a circle (circular) trapezoid graph G such

that their induced subgraph form a K3 3 with {v1, ve, v3} ~

{vs,vs,v6}. Let S (T') be the middle trapezoid of the
three trapezoids corresponding to vertices {v1,v2, v3}
({v4, vs,ve}) in the (circle, circular) trapezoid model
of G. Then the upper (lower) interval of S is disjoint
with the upper (lower) interval of T.
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Figure 3: A K33 induced subgraph in circle (circu-
lar) trapezoid graph shall force an “X”-shape of two
middle circle (circular) trapezoids t2 and ts.

Proof. Let t; represent the trapezoid corresponding
to the vertex v; for i € [1..6] in the trapezoid model
of G. Note that vertices vy, v and vg are independent
vertices in K3 3. The corresponding circle trapezoids
can either be 3 arcs; i.e., there is no chord intersect-
ing these 3 circle trapezoids at the same time. Or,
these circle trapezoids shall be parallel i.e., there is
one chord intersecting these 3 circle trapezoids at the
same time, as shown in the right hand part of Fig-
ure 3. However, if these 3 circle trapezoids are 3
arc-trapezoids, then it will be impossible for the other
three independent vertices, namely v, Vs, Vs, inter-
secting all vertices of vy, v and v3. That is, we con-
clude that the 3 circle trapezoids t;,t2,?3 (and thus
ta, ts, tg) are 3 parallel circle trapezoids.

Denote t; || t; if ¢; does not intersect with ¢;. Fur-
ther, denote #; || t; || tx if ti, tj, % are 3 parallel circle
trapezoids with ¢; being the middle circle trapezoid.
Without loss of generality, we assume that ¢ || 2 || 3
and t4 || t5 || te; note that t; = Sand t5 = T..

Assume that ¢ does intersect ¢5 in the lower (up-
per) interval as illustrated by the diagram shown in
Figure 3. Since t, t5 intersect each other on the lower
interval, the lower interval of ¢4 lies on the left to the
lower interval of #3. By the same reason, the lower
interval of tg lies on the right to the lower interval of
t1.

However, since v; ~ vg and v3 ~ vy, it implies
that ¢, and tg, also t3 and %4, intersect each other on
the upper intervals, which is impossible for ¢1 || %3
and t4 ” t6.-

By symmetry, we reach the same contradiction if
we assume t and t5 intersect in the upper intervals.
That is, both the upper and lower intervals of Ty and
T, are disjoint to each other. In other words, they in-
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Figure 4: A circular trapezoid graph and its circular
trapezoid model that is not a circle trapezoid graph.

tersect each other by the “X” shape. O

Using this “X”-Shape Lemma (or the K3 3 Lemma)
as a gadget, we are able to design a circular trapezoid
graphs which do not have circle trapezoid representa-
tion. In particular,

Theorem 2.3 The graph G shown in Figure 4 is a cir-
cular trapezoid graph, but it is not a circle trapezoid
graph.

Proof. From the model of G shown in Figure 4, it is
easily seen that G is a circular trapezoid graph. Now
we show that G is not a circle trapezoid graph.

Note that the middle six vertices of G, shown in
Figure 4, induce a K3 3. Denote the top vertices by
a, b, ¢; note that vertices a, b, ¢ have degree 5. Denote
the bottom vertices by d, e, f; note that vertices d, e, f
have degree 5. Denote the rest 3 vertices by z,¥, 2;
note that vertices y, z have degree 5 and the vertex
has degree 6.

Suppose that G is a circle trapezoid graph. By
the X-shape Lemma 2.2, a, b, ¢ are three parallel, in-
dependent, circle trapezoids. Note that the vertex y
is adjacent to both vertices a and b, but not vertex
c. It follows that the corresponding circle trapezoid
¢ can not be the middle circle trapezoid. The reason is
that, if a trapezoid intersecting both end of the 3 par-
allel trapezoid, it will definitely intersecting the mid-
dle one as well. Further, since z is adjacent to both
vertices b and ¢, but not vertex a. It follows that the
corresponding circle trapezoid a can not be the mid-
dle circle trapezoid. Thus we conclude thata || b || c.
By the same reasoning, we also have: d || e || f.

However, note that we have a vertex z intersect
both vertices a and c, but not intersect vertex b, which
leads us to the contradiction. Thus we conclude that
G cannot be a circle trapezoid graph. O
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Combining with Theorem 2.1, we have:

Corollary 2.4 Circle trapezoid graphs and circular
trapezoid graphs are two distinct superclasses of trape-
zoid graphs.

3 Independent Set of Circular
Trapezoid Graphs

The second part of this paper concerns the algorithmic
aspects of circular trapezoid graphs. In this section,
we will show that the maximum weighted indepen-
dent set on circular trapezoid graphs can be found in
O(n?loglogn) time.

Assume that we are given a set of n circular trape-
zoids T = {t1,...,ta}. The model of each circular

trapezoid t € T is represented by five tuples (a, b, ¢, d, s),

with a,b,¢c,d € {1.2n},s € {+,—}; we will use
t.a,t.b,t.c,t.d,t.s to denote these five values. For
the weighted version of the maximum independent set
problem, each circular trapezoid ¢ is associated with

a (positive) real weight w(t). Note that (t.a, .b) rep- -

resents the circular arc (interval) of the outer circle
in the circular trapezoid model, clockwise connect-
ing the point' t.a to the point ¢.b; in the same notion,
(t.c, t.d) represents the circular arc of the inner circle.
Note that given two circular arcs s, ¢, with one in the
outer circle and the other in the inner circle, there are
two different ways of connecting these two arcs into
a circular trapezoid. Either we can connect s and ¢
clockwise, or counterclockwise. Thus, we use + or —
signs to represent the connecting ways accordingly.

Given a vertex v € V, define the neighbors of v as
N(v) = {u : (u,v) € E}; the closed neighbors of v
is defined by N[v] = N(v)U{v}. Assume that we are
given a subset I C V that defines an independent set
in the underlying circle trapezoid model. It is easily
verify that:

Observation 3.1 Given a graph G = (V, E), let sub-
set I C V be the maximum independent set of G with
avertexv € I. Let H be the subgraph of G induced
by vertices V' \ N[v]. It follows that I \ {v} is the
maximum independent set of H.

Proof. By contradiction. Assume that there were a
larger weighted independent set I’ in subgraph H.

Clearly, I' U {v} will be a larger weighted indepen-
dent set in G, which is impossible. _ |

Given a circle trapezoid v of the circle trapezoid
model, the subgraph, H, induced by vertices V'\ N [v]
will be just a normal trapezoid graph. Note that we
can find the maximum weighted independent set of H
in O(nloglogn) time [7]. It follows that we can it-
erate through all possible candidate vertex of v; and
find the maximum weighted independent set of cir-
cular trapezoid graphs in O(n®loglogn) time. The
algorithm is shown in Figure 5. It follows that

Theorem 3.2 Finding the maximum weighted inde-
pendent set in a circular trapezoid graph can be done
in O(n? loglog n) time and O(n) space.

4 Independent Dominating Set of Cir-
cular Trapezoid Graphs

A dominating set of a graph G = (V, E) is a sub-
set D of V such that every vertex not in D is adja-
cent to at least one vertex in D. Each vertex v € V
can be associated with a (non negative) real weight,
denoted by w(v). The weighted domination problem
is to find a dominating set, D, such that its weight
w(D) = Y cp w(v)-is minimized. An independent
dominating set D is a dominating set that no two ver-
tices of D are adjacent in G. That is, an independent
dominating set is a dominating set as well as an inde-
pendent set in G.

For finding the minimum independent dominating
set in circular trapezoid graphs, we use the same idea
as we have developed in Section 3. That is, given a
circle trapezoid v of the circle trapezoid model, the
subgraph, H, induced by vertices V' \ N[v] will be
just a normal trapezoid graph. Note that we can find
the minimum weighted independent dominating set
of trapezoid graph in O(nlogn) time [15]. It fol-
lows that we can iterate through all possible candi-
date vertex of v, and find the minimum weighted in-
dependent dominating set of circular trapezoid graphs
in O(n?logn) time. The algorithm is shown in Fig-
ure 6.

Theorem 4.1 Finding the minimum weighted indepen-
dent dominating set in a circular trapezoid graph can
be done in O(n? log n) time and O(n) space.
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ALGORITHM WIS(T)

Input: A set of n circular trapezoids T' =
{t1,---,tn}. Each circular trapezoid ;
is represented by five tuples (a, b, ¢, d, 3),
with a,b,c,d € {1.2n},s € {+,—}
Each circular trapezoid ¢ is associated
with a (positive) real weight w(t).

Output: A subset I C T such that I is the
maximum weighted independent set in
the intersecting circular trapezoid graphs
defined by T.

Step 1: For each circle trapezoid v € T,
remove every circle trapezoids of N([v]
from the circle trapezoid model. The re-
sulting graph will be a trapezoid graph
H.

Step 2: Find the maximum weighted
independent set, IS(H), in the trape-
zoid graph H. The proposed indepen-
dent set has a weight: W (v) = w(v) +
ZuEIS(H) w(u).

Step 3: Among all circle trapezoids, find
the vertex, v, with the largest extended
weight W(v). It follows that {v} U
IS(H) is the maximum weighted inde-
pendent set.

END OF WIS -

1998 International Computer Symposium
Workshop on Algorithms

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

ALGORITHM IDS(T)

Input: A set of n circular trapezoids T' =
{t1,--.,tn}. Each circular trapezoid t;
is represented by five tuples (a, b, ¢, d, s),
with a,b,c,d € {l.2n},s € {+,-}.
Each circular trapezoid t is associated
with a (positive) real weight w(t).

Output: The minimum weighted inde-
pendent dominating set of the circular
trapezoid graph.

Step 1: For each circle trapezoid v € T,
remove every circle trapezoids of N[v]
from the circle trapezoid model. The re-
sulting graph will be a trapezoid graph
H. '
Step 2: Find the minimum weighted in-
dependent dominating set, ID(H), in the
trapezoid graph H. The proposed in-
dependent set has a weight: W(v) =
w(v) + Xuerp) w(v)-

Step 3: Among all circle trapezoids, find
the vertex, v, with the smallest W (v). It
follows that {v} U ID(H) is the mini-
mum weighted independent dominating
set.

EnD ofF IDS

Figure 5: Finding the maximum weighted indepen-
dent set in a circular trapezoid graph.
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5 Concluding Remarks

- In this paper, we show that circle trapezoid graphs and
circular trapezoid graphs are two distinct classes of
graphs; actually, we discover that circular trapezoid
graphs do not generalize circle trapezoid graphs. Fur-
ther, we show that the maximum weighted indepen-
dent set on circular trapezoid graphs can be found in
O(n?loglog n) time, and the minimum weighted in-
dependent dominating set of circular trapezoid graphs
can be found in O(n? log n) time.

As we have discussed in Section 1, many opti-
mization problems that can be efficiently solved in
trapezoid graphs [3, 7, 12, 19] are still quite open
to the researchers as whether these problems can be
solved efficiently in the generalized trapezoid graphs.
Especially, finding recognition algorithms on these vari-
ants of generalized trapezoid graphs can still be a chal-
lenge to the researchers. ,
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