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Abstract

Biological systems have enormous adaptability. We
have developed a biologically motivated computer model,
called the artificial neuromolecular (ANM) system, that
is capable of differentiating patterns and tolerating a
certain degree of noise in a self-organizing manner. Two
biological features, biological-like structure-function
relationship and evolution-friendliness, that facilitate
self-organizing learning have been built into the system.
With these two important features, the system can be
molded to perform coherent functions in a specific task.
Three pattern sets were used to test the system, ranging
Jrom comparatively dissimilar (randomly generated
patterns) to comparatively similar (printed Chinese
characters). Each consists of one thousand patterns.
Experimental results show that the system is able to
achieve a high degree of pattern differentiation and
degrade gracefully in the face of increasing noise.

1. Introduction

Adaptability is a common feature in biological
systems. The idea of the ANM system is to provide the
computer with a representation of the internal world of
biological systems. Two biological features, biological-
like structure-function relationship and evolution-
friendliness, that facilitate self-organizing learning have
been built into the system. By structure-function
relationship, we mean that the functions and structures of
systems are closely related. By evolution-friendliness,
we mean the fitness of system structures exhibits an
adaptive landscape that allows for evolutionary
computation.

The major elements of the system are neurons whose
input-output behavior is controlled by significant internal
dynamics [13-14, 17-22]. The dynamics are modeled by
cellular automata, structured to represent the neuronal
cytoskeleton (a subneuronal network found in every
neuron). Neurons of this type are referred to as
cytoskeletal neurons. They are linked into a multilayer
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network that abstracts some features of visual circuitry.
Multiple copies of these networks are embedded in a
memory manipulation system. Neurons with memory
manipulation capability are referred to as reference
neurons [14-15]. The synaptic connections between a
reference neuron and cytoskeletal neurons are facilitated
if they fire at the same time. Later firing of the reference
neuron will cause all the cytoskeletal neurons controlled
by it to fire. The ANM system combines these two types
of neurons into a single, closely integrated architecture.
The system is educated to perform desired pattern
differentiation tasks by evolutionary algorithms (similar
to genetic algorithms). These algorithms act at the
intraneuronal level to generate a repertoire of

.cytoskeletal neurons with different pattern processing

capabilities. They also act at the interneuronal level
(through the memory manipulation system) to
orchestrate different cytoskeletal neurons into groups
suitable for performing desired pattern processing tasks.

If a system emphasizes too much on the capability of
pattern differentiation, it would be overly sensitive to
every bit of patterns, and as a consequence lose the
capability of tolerating any noise. However, if
overgeneralization occurs, a system will lose its
capability of differentiating patterns. The goal of the
system is to strike a balance in these two extremes in a
self-organizing manner.

2. The architecture

Cytoskeletal neurons and reference mneurons
comprise the central processing component of the ANM
system. The functions of these two types of neurons are
complementary and synergistic [1,7,14]. Collections of
cytoskeletal neurons transduce signals from receptor
neurons into spatiotemporal signals for controlling
effector neurons. Reference neurons are used to select
appropriate subsets of cytoskeletal neurons, which then
control the manner in which input patterns are
transduced to output patterns. The overall architecture is
illustrated in Fig, 1.
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Fig. 1. Overall architecture.  Cytoskeletal neurons
integrate signals in space and time from receptor neurons
into spatiotemporal signals for controlling effector
neurons. Only cytoskeletal neurons selected by reference
neurons will engage in input/output transduction.

The ANM system as currently implemented
comprises eight competing subnets, each consisting of 32
cytoskeletal neurons. Cytoskeletal neurons are
manipulated by two levels of reference neurons. Low-
level reference neurons select comparable cytoskeletal
neurons in each subnet (i.e., neurons that have similar
cytoskeletal structures). High-level reference neurons

select different combinations of the low-level reference -

neurons. Fig, 2 provides a simplified picture (only two
of the competing subnets were shown, each consisting of
only four cytoskeletal neurons). At any instant of time,
only cytoskeleton neurons activated by reference neurons
will engage in input-output pattern transduction. For
example, in Fig. 2, the activation of the high-level
reference neuron Ra will activate the cytoskeleton
neurons E1 and E4 in each subnet (through the
activation of the low-level reference neurons rl and 14).
The activated cytoskeleton neurons will integrate signals
from receptor neurons into signals for controlling
effector neurons. Evolutionary algorithms act on these
corresponding neurons to create the repertoire of
neuronal types (i.e., neurons with different pattern
processing, capabilities) and act at the level of reference
neurons to orchestrate these types into coherent
groupings (i.e., grouping pattern processing neurons to
constitute an effective pattern processing system).

The I/O interface of the system comprises 64
receptor neurons and 32 effector neurons. The
connections between . cytoskeletal neurons of each
competing subnet and its I/O interface are the same.
This ensures that corresponding cytoskeletal neurons in
each subnet with similar intraneuronal structures will
receive the same input from receptor neurons, and that
the outputs of the system are the same when the firing
patterns of each subnet are the same. Effector neurons
are divided into four groups, representing four different
behaviors of the system. Each effector neuron is
controlled by eight comparable cytoskeletal neurons (i.e.,
one from each competing subnet) that have similar
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cytoskeletal structures. An effector neuron fires when
one of its controlling cytoskeletal neurons fires.

high-level reference Ra Rb
neurons

low-level reference
neurons

cytoskeletal @%

neurons
El

subnet 2

Fig. 2. Connections between reference and cytoskeletal
neuron layers. The intraneuronal structures of E1, E2,
E3, and E4 in subnet 1 are similar to E1, E2, E3, and E4
in subnet 2, respectively. When Ra fires, it will fire rl
and r4, which in turn causes E1 and E4 in each subnet to
fire. Similarly, the firing of Rb will cause 13 and r4 to
fire, which in turn fires E3 and E4 in each subnet. (Ei
stands for cytoskeletal neuroni.) -

3. Pattern processing neurons

Cytoskeletal neurons are the pattern processing
neurons in the ANM system. Our implementation of
cytoskeletal neurons tries to capture the feature that ?e
cytoskeleton plays the role of signal integration (Fig. 3).
That is, they are capable of integrating signals in space
and time to yield output signals. The dynamics of
cytoskeletal neurons are simulated with 2-D cellular
automata [23].

When an external signal impinges on the membrane
of a cytoskeletal neuron, it will trigger a unidirectional
signal flow along a chain of neighboring components of
the same type. For example, in Fig. 3, the activation of
the readin enzyme at location (2,2) will trigger a
cytoskeletal signal flow along the C2 components of the
second column, starting from location (2,2) and running
to location (8,2). An activated component will affect the
state of its neighboring components of different types
when there is a MAP (microtubule associated protein)
linking them together. The interactions between two
different types of neighboring components are
asymmetric. For example, the activation of the C3
component at location (4,8) is not sufficient to activate
the C1 component at location (4,7), but stimulates it to a
more exciting state. On the contrary, the activation of
the C1 component at location (4,7) will activate the C3
component at location (4,8) via the MAP connecting
them. The activation of the latter will in turn trigger a
signal flow on the eighth column.

Another important feature is that different types of
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components transmit signals at different speeds and
affect each other differently.  For example, C1
components transmit signals at the slowest speed, but
with the highest activating value. The C3 components
transmit signals at the fastest speed, but with the lowest
activating value. The activation value of C2‘cor'nponents
and their transmitting speed are intermediate between
that of C1 and C3 components.

location (ij) _L%
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i/ 2] ic® c3‘c1 /
3/ cz‘ /c3fct/ je1® f

4/clic2; cl'c3'01 (ISERY
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6/clic2/c1/e3/ /c2/cl c3f
7/61 CZ o}/ c3 02
8 /clc2 /cl<c3/

I MAP ¢ readout ¢ readin
enzyme - enzyme
Fig. 3. Cytoskeletal neurons. Each grid location has at
most one of three types of components: C1, C2, or C3.
Some sites may not have any component at all. Readin
enzymes could reside at the same site as any one of the
above components. Readout enzymes are only allowed to
reside at the site of a C1 component. Each site has eight
neighboring sites. The neighbors of an edge site are
determined in a wrap-around fashion. Two neighboring
components of different types may be linked by a MAP
(microtubule associated protein).

When the - spatiotemporal combination — of
cytoskeletal signals arriving at the site of a readout
enzyme is suitable, the readout will be activated and then
the neuron will fire. For example, there are three
possible signal flows that might activate the readout
enzyme at location (8,3). The first is a signal flow on the
second column, activated either by the readin enzyme at
location (2,2) or by the readin enzyme at location (3,2).
The second is a signal flow on the third column,
activated by the readin enzyme at location (4,3). The
third is a signal flow on the fourth column, activated
either by the readin enzyme at location (2,4) or by the
enzyme at location (4,4). Any two of the above three
signal flows might activate the readout enzyme at
location (8,3), which in turn will cause the neuron to fire.
Nevertheless, the neuron might fire at different times in
response to different signal flows along these fibers. One
reason is that different types of components transmit
signals at different speeds. Another is that signals

initiated by different readin enzymes will arrive at a
specific readout enzyme at different times.

4. Learning scheme

Five levels of evolutionary variation are possible in
the system: at the level of readin enzymes, at the level of
readout enzymes, at the level of MAPs, at the level of
cytoskeletal components, and at the level of reference
neurons. The sequence of evolutionary learning
operations of the system is shown in Fig 4.
Evolutlonary learning at cytoskeletal neuron and at
reference neuron levels is shown in Figs. 5 and 6,
respectively. All five levels can evolve simultaneously.
But in the present implementation, we allow variation-
selection operators to act on only one level at a time.
That is, one level (or aspect) is open to evolution for a
definite number of generations. During this time all the
other levels are held constant. (Only parameters at a
level are allowed to change whereas parameters at other
levels remain the same.) This multiphasic approach
appears to facilitate the evolution process [5-6].

repeat

evolve reference neurons for 16 cycles

evolve the pattern of readin enzymes for 16 cycles

evolve reference neurons for 16 cycles

evolve cytoskeletal components for 16 cycles

evolve reference neurons for 16 cycles

evolve the pattern of MAPs for 16 cycles

evolve reference neurons for 16 cycles

evolve the pattern of readout enzymes for 16 cycles
until (learning objective completed) or

(maximum learning time reached)

Fig. 4. Pseudocode description of learning scheme.
5. Experimental results

Previous experimental results have shown that the
combination of reference neurons and  cytoskeletal
neurons yields significant computational and learning
synergies [2,5-7]. They have also shown that evolution
friendliness increases as the number of types of
components in the cytoskeletal neurons is increased
[8,11]. Learning speed and pattern categorization rate is
controllable through the structure of training set [1,3,9].
The input-output behaviors of the system are modified in
a gradual changed manner that facilitates evolutionary
learning [4,10-11]. Recently, the system has been
applied to network packet routing problem [12].

Three types of experiments focusing on the study of
adaptability were performed with the system. The first
investigated the long-term self-organizing learning
capability of the system. The second tested the noise
tolerance capability of the system. The third inquired the
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Fig. 8. Effect of similarity of training patterns on
learning times. The number of output categories
significantly increased in the early stage of learning and
slowed down in the later stage. Each mark in a line
represents learning proceeds at a specific number of
cycle.

Fig. 9 shows that the importance of each bit is
different for each training set. For example, in the
random pattern set, almost the output of every pattern
changes when the second bit in each input pattern is
flipped. On the contrary, the outputs of most patterns
remain the same when the twelfth bit in each input
pattern is flipped. Fig. 9 also shows that different
training sets possess different significant bit positions.
For example, the importance of location 1 is significantly
different in the three training sets. This suggests the
system is capable of determining the importance of each
bit position, based on the pattern structure of each
training set.

5.2 Noise tolerance

Adaptability includes the capability of tolerating
noise [16]. The system trained for 8243 learning cycles
was tested at 10%, 20%, 30%, 40%, and 50% levels of
noise (where these represent the probability that each bit
of a training pattern will be changed). At each noise
level, ten different test sets were randomly generated
from each of the three training sets.

Fig. 10 shows that the ANM system exhibits a high

“degree of noise tolerance, and that the performance
degrades gracefully with increasing noise. The
degradation is fastest for the specific Chinese character
set and slowest for the random pattern set.
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Fig. 9. Effect of all possible single bit changes on
similarity of outputs for each input pattern. Each bar
represents the number of outputs unchanged when the bit
change is introduced. This number changes markedly,
indicating that similarity of outputs for each input
pattern changes significantly in response to single bit
changes.
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(a) Regular Chinese character set

—— ZZTTHEARARLTTZZ AA WL AARA A AT A NS
P+t I PRXESTFELELE VY AR ARRA L EEZZFT
CERE DD INPFF IX D L P ERAELFFAF LAY
tARLPRUL M ITEEEEEE pO FFHA LSS TS RE
TETAGHEL AP 2 PR FPERAF IR AT RAACLHHOT
it{b O BB 3 S R MR JUTE A A R 44 24 LT X R YIET
HA A9 Ag Mt CR £ 4 #A#M# TFECEIRER AR IT FR
KR XL FRALA VI AR RRLEBE A0 T BB A3 GO KL AR
FEMNTIIX AL RENSFEEBE AR KRR SR LL 75 8811tk
EEFRRAVKMMXRAXRASFF L XRIZAA LR ERAA
BB FE EE 2T S5 T 77 ipdb bt o4 #4824 Wil A TR
R RS AA SR MU A0 HE wn B €8 98 1 BE fFF+F
FHFH SN0 RE EX DY SH BHE BE 007 0paguis) 003 A TE
oo B ER BE I a4 Tl ) O EE A5 RE %R QR RE
BRPYERBEE AR YL M Tl BT ik S5 LA RH €L LT
PEAN U IR QE AR ERBRFRWLEEBSFER BRE £ X 4t
TIT IR CREXEXAARAHH EE NT BABH Ay PT ol AL
BEBEONBE FF XL BERT RAARSLRRER EEBR LY
NE IR TE BR MG AN KK OF % BE AR R RR e FEEE
A S 8 2D RTE EHE BN JLIE R 22 R 3t BF K 5] WA SR
Mo R F A EE EF W & TE B ME RS Mok FoF Moy S %
M 54 B €5 BE X IENE [E SE E M i EE 2558
W PA S RETS FE M CRAF IR NONANFERFETFIF
TEET T S IZLE M WA #5F £ R PR EEHE 0% 22 R

(b) Specific Chinese character set

ST NE N M R WM R M IS UNE A s s NG IR
HR4D Tk IS U2 W SRAS WTE 0 AR AP EE TR WA 169 IR R R
Do UESE 128 TAIE LRSS L9A% RAAT ISAS MRYE mtif tm i LARS IR I IR G LR IRERE
A BRI WR SRR O RS NG N E SN AL S
MR TEEE P IR R 0Z Bk Dok BAGE MOUE AN U DI SR W M Wi
TS WREE LA AR O 0 Y ENE AT K ATNG GPED ards ma e B A MK
SOS% I8 JASK 1M LSS I KR N N S PR s MR EE
REZREET RS T GHERE Wl 105 I BEE WX IR Fi% M B
BEKE MAGT RTED W 3E WEHE A NS R A ML N MR REAE 1R0R AL B E TR
MEWEE HBERE DR EE S8 N5 W 8513 0 X WEHR T
WA ANE) Rk R RS BT WR U AR R0 3R QU WRUR INF IGEE Wk IE
FEPEARDESEFRERR S NTAEJATETE RN AT AR
Wi A MR W LT AN VT TR 10kt R R SRR 3 IF 4T W3R iR
RF L BRAEY BE 5% 2E N B8 RE W W1 8 18 K5 K5
MEHBHAERERE AR EE RS NERREEXERERRAR MR
A% BS Wi B D R A B TR 5 0 v R S W
B SR D A DAk IRTE HOIR BT RN I03R TRIE BN QLI M fE
T MR I 0G0 RS ORERORIE O R R €% B R MM Y
BENENEBE XXV RE RS XL G KL AT IR FERR
AR5 RS M FET = T MR T UiED RS W4T | K AR
RRGUMEISEEMENEAALERE NS MG RE ayfEag
SR R A G AR T B RIR RS IR oUSR TR 1205 LA LA IR AR Ik
DA% LTSS LRSS DR MY WL R o s VIR R HR s Wl B H M
TS SEE DR 20T WLET MORE 0BG WUER 05 0 0 5 A SEGE IR OORE

Fig. 7. Chinese character sets. The patterns in the even
columns (right) represent 16x15 digitized bit patterns
taken from a Chinese character database. These patterns
are simplified into 8x8 bit patterns in the odd columns
(left), each representing a pattern of receptor neuron
activities. Note that the 8x8 bit patterns are adjusted to
have the same size as the 16x15 bit pattern for better
visualization. The patterns in the specific Chinese
character set are much more similar to each other than
those of the regular Chinese character set.

5.1 Self-organizing learning

By self-organizing learning, we mean the capability
to learn without an external teacher in an indefinite
amount of time. Evolutionary learning algorithm
(similar to genetic algorithm), a Darwinian variation-

selection searching mechanism, can be considered as one
of the self-organizing learning algorithms. As
mentioned earlier, the system has 32 effector neurons,
divided into four groups. For each input pattern, the
spatiotemporal sequence of firing effector neurons
belonging to different groupings is defined as its output,
called an output category.. Different such sequences
represent different output categories. With four groups
of effector neurons in the system, a sequence of seven
effector neuron pulses gives 47(=16284) possible output
categories. The objective is to assign the 1000 patterns
in each training set into a maximum number of output
categories. The system, in some senses, can thus be
considered as a function that maps each input pattern to
one of the 16284 output categories.. For each training set,
the performance improves when the number of output
categories mapped by the system increases.

The results have shown that learning is faster when
the random pattern set is used than when the regular
Chinese character set is used, and that the latter yields
yet faster learning than does the specific Chinese set (Fig.
8). The figure also shows the number of output .
categories significantly increased in the early stage of
learning and slowed down in the later stage. Learning is
more difficult in the later stage since it has to learn to
distinguish those patterns that have not differentiated in
the - early stage. Our examination of those
undifferentiated patterns indicated that they are much
more similar to each other.

An important result is that the system shows the
continuation of learning during the overall training
process (Fig. 8). This is also true for the case of learning
in the later stage (note that learning is difficult in the
later stage). All of these evidence suggest the system has
long-term evolutionary learning capability that allows it
to perform pattern differentiation task in a self-
organizing manner. ‘

Closer examination of the experimental results
indicates that certain bit positions are much more
significant than others since they are utilized by the
system to differentiate patterns. As a consequence,
altering the values of these bit positions will dramatically
affect the number of patterns recognized by the system.
By contrast, some are less important that the system will
maintain a high degree of recognition rate when these
bits are altered (from the other view point, they are
important since they play the role of tolerating noise).

The following experiment is to investigate which are
significant and which are less significant bit positions. It
is implemented by systematically making single
alternations at each bit position in each pattern of a
training set. A first test set was generated by altering the
first bit of each training pattern, a second test by altering
the second bit, and so forth. In total, this yields 64 test
sets. Each comprises 1000 test patterns.
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relearning capability after the change of training patterns.

Three training sets were used to test the system,
ranging from comparatively similar to comparatively
dissimilar. The first set, referred to as the random
pattern set, comprised 1000 patterns in which each bit is
randomly assigned to be either 0 or 1. Patterns in the
second set, referred to as the regular Chinese character
set, were randomly taken from a database of frequently
used Chinese characters (Fig. 7a). In general, patterns in
the regular Chinese character set are much more similar
to each other than those in the random pattern set. The
patterns in the third set were taken from a database of
seldom used Chinese characters, to be called the specific
Chinese character set (Fig. 7b). The patterns in the
specific Chinese character set are much more similar to
each other than those of the regular Chinese character set.

a.
SOOIl OO
El E2 E3 E4 ||El E2 E3 E4
subnet 1 subnet 2
b. copy
\F——r 1 l
0oOedoo
El E2 E3 E4 ||El E2 E3 E4
subnet 1 subnet 2
¢ ; variant »
e00o0|e0o0
El E2 E3 E4 ||El E2 E3 E4
subnet 1 subnet 2

Fig. 5. Evolutionary learning at cytoskeletal neuron level.

(a) Each subnet is activated in turn for evaluating its
performance. Assume the cytoskeletal neurons in subnet
2 achieve better performance. (b) The pattern of readout
enzymes, readin enzymes, MAPs, and other components
of subnet 2 is copied to subnet 1, depending on which
level of evolution is operative. (c) The pattern of readout
enzymes, readin enzymes, MAPs, and other components
of subnet 1 is slightly different from that of subnet 2, due
to copy error. The figure illustrates a case in which the
intraneuronal structures of E4 in subnet 1 undergo
variation during the copy process.
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a.

high-level reference Ra Rb
neurons '

low-level reference
neurons

cytoskeletal
neurons

subnet 1
b.
high-level reference Ra Rb

neurons
» (2 4

low-level reference
neurons

cytoskeletal \
neurons ®
El E2 E3 E4 El E2 E3 E4
subnet 1 subnet 2
C.
high-level reference Ra Rb
neurons

low-level reference
neurons )

cytoskeletal
neurons

El E2 E3 E4

subnet 1

subnet 2

Fig. 6. Evolutionary learning at reference neuron level.
(a) Cytoskeletal neurons controlled by each high-level
reference neuron are activated (through the low-level
reference neurons) in sequence for evaluating their
performance. Assume ‘the cytoskeletal = neurons
controlled by Rb achieve better performance. (b) The
pattern of lower-level reference neural activities
controlled by Rb is copied to Ra. (c) Ra controls a slight
variation of the neural grouping controlled by Rb,

‘assuming some errors occur during the copy process.
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When noise is increased to the high noise level of
50%, the number of output categories distinguished by
the system decreases from 979 to 912 in the case of the
random pattern set (i.e., decreases 6.8%), from 964 to
867 in the regular Chinese character set (10.1%), and
from 948 to 827 in the specific Chinese character set
(12.8%). The results point to the fact that noise
tolerance is less when the training patterns are more
similar to each other and greater when they are less
similar, :

- - - - --random pattern set
— — — regular Chinese character set
specific Chinese character set

1000 -

T W et g o " " e
—
- —
-

800 -

600 -

400 1

no. of output categories

200 4

0 T Ll T T 1

0 10 20 30 40 50
noise (%)

Fig. 10. Dependence of noise tolerance on training set
structure. The tolerance decreases most slowly for the
random pattern set and most rapidly for the specific
Chinese character set.

5.3 Relearning capability (adaptive learning)

The ability to cope with environmental changes is an
important feature of biological systems [16]. . The
experiment to be described below was to investigate
relearning capability of a well-trained system (ie., a
system that has been trained with a specific pattern set
for a sufficient long time). We first trained the system
with patterns in the random pattern set for 8243 cycles
(note that the system is able to transduce the 1000
patterns into 979 output categories at this stage). Then,
the training patterns were altered, and the system was
trained with the modified training set for another 1000
cycles. Note that the modified training sets were
generated from the random pattern set.by varying a
certain number of bits in each pattern, ranging from 1 to
7 bits per pattern. If the system shows continuation of
learning, after pattern change (i.e., instead of learning

from the scratch), this means that it exhibits effective
relearning capability subsequent to the modification (i.e.,
is not trapped by what is previously learned). i
As expected, the number of output categories
distinguished by the system decreased at the time when
the training set was altered. The degradation was much
significant when seven bits of each training pattern in
average were altered (decreased from 979 to 910 output
categories) than when one bit of each training pattern in
average was altered (decreased from 979 to 943 output
categories). Fig. 11 shows that the pattern recognition
rate decreased at the time when the training set was
altered, and then the system was able to show
continuation of learning after pattern change.

B
(=]
. 9243 8
S 9043 @
© 843 B
S B.
v  :
7
8243

T T T T 1] T — |

910 920 930 940 950 960 570 980

no. of output categories

Fig. 11. Effect of varying training patterns on learning
times. Each curve represents the learning rate and
pattern processing capability when a certain number of
bits in each training pattern was altered.

5. Conclusions

We have shown that the system can perform pattern
differentiation and tolerate noise in a self-organizing,
manner, and that learning is more difficult when similar
training patterns are used than when dissimilar patterns
are used. The noise tolerance experiment demonstrates
that the system has a high degree of noise tolerance
capability and degrades gracefully in the face of
increasing noise. Finally, we demonstrate the system is
capable to relearn after the modification of training sets.
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