hEREHAFEEH SR

RAFHRAARRFLRITNR LR ETEN T

Query-First Concurrency Control Protocols for Parallel Database Systems *

XY
Shyueming Tang

& Ao
Yungho Leu

EBRMNBELBEFE R
Department of Information Management
National Taiwan University of Science and Technology
{tang,yhl}@cs.ntust.edu.tw

R

BEFSFAEARFTROAENEEHHEEN
HREL > wR-EFFEAERRTRABETHE
EWPg XS MEHFLTARFONE 2572
EMPARESRE T ENEL WX HRITEHS
o BB AMME e TENEL) WX HETEMF
ERRFIABENERBETAARAT RS OEL
HomhFTREILER » AXASBFEFHEHEZ
BHMB o FREERAT » E-BEHE T LN
BANTE » FETARSHABENGRE > FTR
PREZUHBR B ERAEFHRESARRER
AARANEREGHRT » FTEHH R —-KF o

BGLF P RATEMN S TFHERHERG S BB W
ABSTRACT

Many researches on parallel database systems have
Jocused on query processing, especially on the optimiza-
tion of complexr queries. The performance issue of con-
currently ezecuting a miz of both complez queries and
update transactions has not been well addressed. In this
paper, we investigate a class of concurrency control pro-
tocols, called query-first protocols, for parallel database
systems. These protocols allow concurrent erecution of
compler queries and simple update transactions.

The performance of four gquery-first protocols which
favor complex queries is studied. The simulation re-
sults reveal that, using locking-based protocols, the over-
all performance can be improved only when the system
load is high or the system resources are sufficient.

Keywords: Concurrency Control, Parallel Database
Systems, Performance Analysis

*This work is supported bS/ the Republic of China Na-
tional Science Council under Contract NSC 86-2213-E-011-
009

1 Introduction

A parallel database system can be defined as a database
management system implemented on a tightly coupled
multiprocessors [1]. During the past decade, parallel
database systems have been widely used in the field
due to their high performance, scalability and avail-
ability. For example, the Oracle database system is
equipped with a component called Parallel Server, while
the INFORMIX-OnLine Dynamic Server provides par-
allel query processing capability using a technique called
PDQ (Parallel Data Query).)

Although many issues on parallel database systems
have been thoroughly studied, the problem of concur-
rency control has not been addressed adequately (2].
Complex queries tend to access huge amount of data
and may easily conflict with update transactions; that
is, the high data contention due to updaté transactions
may hinder the execution of complex queries. As a re-
sult, the benefits of parallel query processing cannot be
fully obtained in an environment where complex queries
are executed together with update transactions.

There have been few performance studies on the con-
currency control in parallel database systems. M. Carey
and M. Livny used simulation to compare the perfor-
mance of four distributed concurrency control proto-
cols (2PL, wound-wait, OCC, and times tamp order-
ing) on a database machine that distributed over eight
sites [3]: Another study proposed by B. Jenq et al. fur-
ther addressed the issue of 2PL performance in parallel -
database systems with widely varying size (from 4 nodes
to 256 nodes) [4]. These studies only considered simple
transactions, and do not take complex queries into ac-
count. T. Ohmori et al. have proposed an approach to
reduce the data contention between bulk access trans-
actions [5]. Their study concentrated on the estimation
of degree of contention and reducing the contention by
global optimization.

In this paper, we report on our efforts to develop

A-54

hEREN\TAEE

C
P:Processor
M:Memory

M

Interconnection netwd

i

P

B

P

Figure 1: Conceptual Model of a Shared-Nothing
Database System "

priority-based concurrency control protocols for parallel
databases. These protocols are called query-first proto-
cols because they give complex queries higher priority
than that of update transactions. In this way, the exe-
cution of complex queries will not be blocked by update
transactions.

The remainder of this paper is organized as follows.
Section 2 gives the background of this research. In
Section 3, we propose four query-first concurrency con-
trol protocols. In Section 4, we describe our simulation
model used in our experiments. In Section 5, we study
the effects of our protocols by analyzing the experiment
results. Section 6 concludes this paper.

2 Background

In this section, we outline the architecture of parallel
database systems, and briefly review the basic concur-
rency control protocols, including the 2PL protocol and
the OCC protocol.

2.1 Target Environment

Our target environment for transaction processing is a
shared-nothing (SN) parallel database system. This
architecture consists of multiple nodes which connected
by an interconnection network [6]. Each node contains a
processor, a local cache memory, and a disk unit which is
used to store the database. These nodes work in parallel
to process queries posed by users. Figure 1 shows the
conceptual model of an SN database system [4].

There are two types of nodes in an SN database
system, one control node (CN) and multiple daia-
processing nodes (DPN), as shown in Figure 2 [3] [5].
Application programs run typically on the CN, and the
task of concurrency control is also centralized at the
CN. In the CN, there are three distinct components:
a transection manager (TM), which monitors the exe-
cution of transactions (including complex queries and
update transactions) and coordinates the execution of

A-55

EEtEREE

CN S:Scheduler

DPN|

YPN

Figure 2: Components of an SN Parallel Database
Management System

a multi-node query; a concurrency conirol manager (or
scheduler), which implements a particular concurrency
control protocol and processes data requests issued by
the TM; and a data manager (DM), which is responsi--
ble for the actual execution of database operations. A
source component is associated with the CN only; that
is, only the CN can generate transactions on behalf of
user’s request. The components of a DPN is similar to
those of CN, but lack of the concurrency control man-
ager component because all data requests are scheduled
in the CN. For simplicity, we assume that a fast inter-
connection network is used, and the actual wire time for
data transmission is negligible [3].

2.2 Basic Concurrency Control Proto-
cols

Two classes of concurrency control protocols related to
our research are 2PL and OCC. A transaction is re-
quired to set aread lock on a data object before reading
it and to set a write lock before writing on it. Our study
assumes a dynamic locking strategy; that is, locks are
set dynamically when the data objects are required.

In the OCC protocol, the execution of a transaction
consists of three phases: the read phase, the validation
phase and the write phase. There are two validation
schemes — backward validation and forward validation
[7)]. We adopt the forward validation scheme in our
study because it provides more flexibility for conflict
resolution than the backward validation scheme.

3 Query-First Concurrency
Control Protocols
In this section, we propose four query-first concurrency

control protocols which can be divided into two families
. 9PL-based protocols and OCC-based protocols.

HERE\+AERER e R

3.1 Query-First Protocols Based on

Two-Phase Locking

In the family of the 2PL-based query-first protocols,
we propose two different protocols. They are 2PL with
wounding lock-holders (abbreviated as 2PL-Wound)
protocol and 2PL with adjusting wailing order (abbre-
viated as 2PL-Wait) protocol. In these protocols, each
transaction follows the rules of 2PL protocol on lock-
requesting and lock-releasing. However, in order to en-
sure that complex queries have priority in accessing data
over update transactions, we augment the 2PL protocol
with a priority-based conflict resolution scheme. In this
scheme, priority is assigned to each transaction accord-
ing to its class.

In our lock-requesting algorithms, we assume that,
for each data object z, the scheduler maintains two
queues, the lock queue (denoted as lock_queue(z]) and
the waist queue (denoted as wait_queue[z]). The lock
queue of a data object maintains the identifier of trans-
actions that have been granted locks on this data ob-
Ject, whereas the wait queue of a data object maintains
the identifier of transactions whose lock requests are
blocked. There are two types of entries in both the lock
queue and the wait queue — the write entry and the
read entry. A write entry may only contain a trans-
action identifier (tid), while a read entry may contain
multiple tids. _

Consider a transaction that requests to access a data
object, if the lock queue of the data object is empty or
the entry in the lock queue is in 2 non-conflicting mode,
the transaction is allowed to access the data object. If
a lock request is allowed, we put the tid in an entry
(read or write), and put the entry into the lock queue.
If the entry in the lock queue is in a conflicting mode,
the lock request is blocked. To prevent a deadlock, we
use the wait-depth-limited (WDL) method to limit the
wait-depth of a transaction [8]. A wait-depth-limited
routine is invoked once a lock request is blocked. If the
wait-depth of a transaction is greater than a constant
d (which is set to 3 in our algorithms), the transaction
is aborted and restarted. Otherwise, its ¢id is put in
an entry and appended to wait queue. Because a data
object can be simultaneously read by multiple transac-
tions, a read entry in a lock queue may contain more
than one tid. Putting a tid into a lock queue is per-
formed by first removing the existing read entry from
the lock queue, then adding the tid to the entry, and
finally putting the entry back into the lock queue.

3.1.1 Two-Phase Locking with Wounding

Lock-Holders (2PL-Wound)

In the 2PL-Wound protocol, if a complex query requests
a lock on a data object held by an update transaction in
a conflicting mode, the update transaction is immedi-
ately wounded (i.e., aborted). Conversely, if an update

A-56

transaction requests a lock on a data object held by
transactions (update transactions or complex queries)
in a conflicting mode, the requester should wait for the
lock holders to release thé lock. The lock-requesting al-
gorithm of the 2PL-Wound protocol is shown in Figure
3.

// let 0id be the id of the requested data object
// let ltype be the lock type of the lock request
// let tid be the transaction id of the requester
if the lock_queune(oid) is not empty)
if lock type of the entry in lock_queue(oid) = WRITE
let tno be the transaction id of the lock-holder
if priority(tid) > priority(tno)
abort transaction tno
remove the entry from lock_queue(oid)
add tid to the entry
put the entry back into lock_queue(oid)
else
call WDL routine giving tid, oid
if wait-depth(tid) > d
abort transaction tid
else
put t2d in an entry
append the entry to wait_queue(oid)
endif
endif
else
if ltype = WRITE
call WDL routine giving tid, oid
if wait-depth(¢id) > d
abort transaction tid
else
put #id in a write entry
append the entry to wait_queue(oid)
endif
else
put #:d in a read entry
put the entry into lock_queue(oid)
endif
endif
else
put tid in 2 new entry
put the entry into lock_queue(oid)
endif

Figure 3. Lock-Requesting Algorithm of the 2PL-
Wound Protocol

3.1.2 Two-Phase Locking with Adjusting

Waiting Order (2PL-Wait)

In the 2PL-Wait protocol, instead of immediately abort-
ing an update transaction when it blocks a complex
query, the scheduler permits the update transaction to
keep its locks, but the read entry that belongs to the
complex query is adjusted to the “first” position of the
wait queue. Conversely, if an update transaction is
blocked, its entry is append to the “last” position of

hERENTAFREFEREE

the wait queue. The lock-requesting algorithm of the
9PL-Wait protocol is depicted as follows.

// let oid be the id of the requested data object

// let ltype be the lock type of the lock request

// let tid be the transaction id of the requester
* if the lock-queue(oid) is not empty

if lock type of the entry in lock_queue(oid) = WRITE

let tno be the transaction id of the lock-holder
if priority(tid) > priority(tno)
call WDL routine giving tid, oid
if wait-depth(tid) > d
abort transaction tno
remove the entry from lock_queue(oid)
add tid to the entry .
put the entry back into lock_queue(oid)
else .
put #id in an entry
store the entry as first of wait_queue(oid)
endif
else
call WDL routine giving #id, oid
if wait-depth(tid) > d
abort transaction tid
else
put #d in an entry
append the entry to wait_queue(oid)
endif
endif
else
if ltype = WRITE
call WDL routine giving tid, oid
if wait-depth(tid) > d
abort transaction tid
else
put tid in a write entry
append the entry to wait_queue(oid)
endif
else
put tid in a read entry
put the entry into lock_queue(oid)
endif
endif
else
put #id in a new entry
put the entry into lock_queue(oid)
endif

Figure 4. Lock-Requesting Algorithm of the 2PL-
Wait Protocol

3.2 Query-First Protocols Based on

Optimistic Concurrency Controlling

In the family of OCC-based query-first protocols, we
proposed two different protocols. They are OCC with
sacrificing validating transaction (abbreviated as OCC-
Sac) protocol and OCC with waiting for complez queries
(abbreviated as OCC-Wait) protocol. In these proto-
cols, database consistency is maintained by checking the

write set of a validating transaction against the read set
of concurrently executing (active) transactions. Once a
conflict is detected, the active transaction is aborted
and restarted later. In order to ensure that complex
queries may not be interrupted hy update transactions,
we augment the OCC protocol with a priority-based
conflict resolution scheme. In this scheme, the priorities
of complex queries are set higher than those of update
transactions. It should be noted that a complex query
needs not to be validated because its write set is empty.

3.2.1 Optimistic Protocol with Sacrificing

Validating Transaction (OCC-Sac)

In the OCC-Sac protocol, if a conflict is-detected in
the validation phase, the low-priority transaction should
be restarted; that is, the low-priority transaction (up-
date transaction) is sacrificed in an effort to help the
high-priority transaction (complex query) complete its’
works. On the other hand, if the conflicting transactions
have identical priority, the active transaction should be
restarted. The validating algorithm of the OCC-Sac
protocol is shown in Figure 5.

// let Ta be the validating transaction, and

// let Ts be a transaction in the active transaction set
move T4 from active transaction set
for all T in active transaction set

if the read set of T is conflicted with the write set of Ta

if priority(Ts) > priority(Ta)
restart Ta
return
else
restart T
endif
endif
endloop

‘Figure 5. Validating Algorithm of the OCC-Sac Pro-
tocol -

The OCC-Sac protocol satisfies the goal of favoring
complex queries. However, it suffers from the cyclic
restart problem by repeatedly restarting the update
transactions. We use a restart waiting policy to solve
the problem. That is, an update transaction is forced
to delayed a fixed period of time before it is restarted,
in order not to conflict with the same complex query
again.

3.2.2 Optimistic Protocol with Waiting for

Complex Queries (0CC-Wait)

In the OCC-Wait protocol, when a validating transac-
tion (i.e., an update transaction) conflicts with a com-
plex query, the validating transaction is forced to wait

A-57

TERENAEREHERES

until the corresponding complex query completes, or un-
til it is aborted by other validating transactions. It is
noted that once a validating transaction is forced to
wait, it must exit the validation phase and put into the .
active transaction set. The validating algorithm of the
OCC-Wait protocol is shown in Figure 6.

// let Ta be the validating transaction, and
// let T be a transaction in the active transaction set
move T4 from active transaction set
for all Tp in active transaction set
if the read set of Tp is conflicted with the write set of
if priority(Tp) > priority(Ta)
T4 is put back to active transaction set
return
else
restart 5
endif
endif
end loop

Figure 6. Validating Algorithm of the OCC-Wait
Protocol

4 The Simulatioh Model

In order to study and measure the performance of the
proposed protocols described in the previous section, a
simulation is performed using SIMSCRIPT IL5 .

The physical resources of a parallel database system
are processors, memory, disks and interconnection net-
work. Instead of modeling these physical resources, we
take CN and DPN as the components of physical queu-
ing model. Figure 7 shows the physical queuing model of
a parallel database system. Resource overhead is asso-
ciated with each concurrency control request, database
access; and subsequent operation. For example, a lock
request requires the CN service, while the subsequent
data access and operation require the DPN service. The
CN has an FIFO queue to keep the concurrency control
- requests. Each DPN also owns a FIFO queue to keep
the data access requests and operation requests.

5 Experiments and Results

In this section, we present and analyze the results of
various simulation experiments for query-first protocols.
Two families of protocols (2PL-based and OCC-based)
are compared separately. The performance metric used
in this paper is fransaction turnaround time, which is
the time between the origination of a transaction at a
terminal {o the completion of the transaction.

5.1

We first evaluate the effect of multiprogramming level
on the performance of the four query-first protocols.

Effect of Multiprogramming Level

A-58

‘/@rminals

-

DPN

~DPN

~DPN

Ta

Figure 3: Physical Queuing Model of a Parallel
Database System

The experiment is based on a system with 64 DPNs.
Figure 8 and 9 show the transaction turnaround time
for the two families of protocols. In Figure 8, both the
2PL-Wound protocol and the 2PL-Wait protocol have
lower turnaround time than that of the 2PL protocol
when the multiprogramming level is greater than 40
(terminals). This result implies that, in an environ-
ment of high data contention, the overall performance
can be improved using the query-first protocols. Due to
conflict resolution and parallel data processing, a com-
plex query can be completed within a short period of
time. As a result, the blocking time of update trans-
actions is also reduced. In Figure 9, both the OCC-
Sac protocol and the OCC-Wait protocol have higher
turnaround time than that of the OCC protocol. This
result seems adverse to our expectation. However, the
OCC-based query-first protocols can be used to improve
the throughput of complex queries which are hard to
complete when ordinary QCC protocol is used.

5.2 Effect of the Number of Data-

Processing Nodes

In this section, we evaluate the effect of the number of
DPN on the performance of the query-first protocols. In
this experiment, we consider systems with DPN_CNT
being 8 to 64 in steps of 8, while NUM_TERMINAL is
fixed at 50.

Figure 10 and 11 show the transaction turnaround
time for the two families of protocols. In Figure 10,
both the 2PL-Wound protocol and the 2PL-Wait pro-
tocol have lower turnaround time when the number of
DPN is greater than 48. This result highlights the fact
that abundant system resources have positive impact on
the overall performance of the query-first protocols. In
Figure 11, both the OCC-Sac protocol and the OCC-
Wait protocol have higher turnaround time than that

hERENTAERERERGE

The Meon Transoction Turnaround Time
(Number of DPN's = 64)

6000
e 2PL

& 2PL~WGOUND
5000 v 2PL-WAIT

4000

3000

iifiseconds

Mi

2000

1000

0

0 10 20 30 40 50 60 70 80
Number of terminals

Figure 8. Comparison of 2PL-based protocols

The Meon Transoction Turnaround Time
(Number of DPN's = 64)

6000
s 0OCC

& OCC-SAC
OCC-WAIT

50CC v

4000

seconds

3000

i

M

2000

100¢ //o——+——"”

0

0 10 20 60 70 80

30 40 50
Number of terminals

Figure 9. Comparison of OCC-based protocols

of the ordinary OQCC protocol.

6 Conclusion

In this paper, we propose four query-first concurrency
control protocols for parallel database systems, and in-
vestigate their performance issues. Using a simulation
model, these protocols were evaluated under varying
levels of multiprogramming (the number of terminals)
and amount of underlying physical resources (the num-
ber of DPN). The experiment results show that, the
locking-based query-first protocols exhibit substantial
performance improvements in an environment with high
multiprogramming level or sufficient physical resources.
The optimistic-based query-first protocols do not ex-
hibit overall performance improvement, yet they can
be used to improve the throughput of complex queries.
In general, the query-first protocols which favor com-
plex queries have negative impact on the performance
of update transactions. Unless the performance gains
obtained from the speedup of complex queries exceed
the performance loss of update transactions, the overall
performance can not be improved.

References

[1] Patrick Valduriez, Parellel Database Sysiems:
Open Problems and New Issues , Distributed and

A-59

Tne Meon Transaction Turnsround Time
{Number of terminals = 50)

6000

e 2PL
&£ 2PL-WOUND
v 2PL-WAIT

5000

~
o
=]
=]

Milliseconds
w
<]
o
=)

2000 F

1000

0 —
0 8 16 24 32 40 48 36 B4 72
Number of dota processing nodes

Figure 10. Comparison of 2PL-based protocolvs

The Mean Transaction Turnaround Time
(Number of Terminals = 50)

8000

Qoce
QCC-SAC
QcCc-wAIT

©
§000 . &

v
“ .
4000 \\
3000 *§§§§EQ§§q::::1:::: —
g B —

2000
.\"\9—\9\."&'__’

lliseconds

M

1oco

Q9

48 56 64 72

0 8 24 32 40
Number of data processing nodes

Figure 11. Comparison of OCC-based protocols

Parallel Databases, Vol. 1, No. 2, Apr. 1993,
pp.137-166.

[2) D.DeWitt and J. Gray, Parallel Database Systems:
The Future of High Performance Database Sysiems
, Communications of the ACM, Vol.35, No.6, June
1992, pp.85-98.

[3] M. Carey and M. Livny, Parallelism and Con-
currency Conirol Performance in Distributed
Database Machines , Proc. ACM SIGMOD, 1989,
pp.122-133.

[4] B. Jenq et al., Locking Performance in a Shared
Nothing Parallel Database Machine , IEEE Trans.
Knowledge and Data Eng., Vol.1, No.4, Dec. 1989,
pp.530-543.

[5] T.Ohmoriet al., Scheduling Batch Transactions on
Shared Nothing Parallel Database Machines: Ef-
fects of Concurrency and parallelism , Proc. of Tth
Conf. on Data Eng., 1991, pp.210-219.

[6] A. Bhide, An Analysis of Three Transaction Pro-
cessing Architectures , Proc. VLDB Conf., 1938,
pp-339-350.

[7) T. Harder, Observations on Optimisiic Concur-
rency Control Schemes , Inform. Systems, Vol.9,
No.2, 1984, pp.111-120.

[8] P. A. Franaszek et al., Concurrency Control for
High Contention Environments , ACM Trans.
on Database Systems, Vol.17, No.2, June 1992,
pp.304-345.

