HEREATAEZERERGHE

TERAEANES

The Logic of Undoable Programs®

MR IEAfE
Cheng-Chia Chen

BB X EFTNAZR
Department of Computer Science,
National Chengchi University, Taipei, Taiwan, R.O.C.
chencc@cs.nccu.edu.tw

HE

AXEERABBRTAWHRBTERAEZLTS
B EBEA A FAGAXHEIBHTEREL
BEEHTHEABANEE EAXTAMNGET
HEER#EARUELATARAEZLNEE L5,
HMABTERKXBEAERT _FHB2 % FALE
BHARHE BEAANEEASAATHTEMRS
R34 B EXPTIME-complete °

M X BERS TARKEX B RHK
<7 i 14 B84 » EXPTIME-complete.

Abstract

We develop the propositional dvnamic logic (PDL) of
undoable programs, which are general regular programs
augmented with — a construct “undo” that can be used to
recover from undesirable program states. The language
of the logic is essentially that of PDL augmented with an
“undo" construct. In this paper we define the semantics
of undoable PDL (UPDL) by refining the traditional
semantical framework for PDL so that the meaning of
"undo’" can be treated correctly. Besides, since there are
two conditions under which we are concerned with
validitv of assertions about undoable programs, we define
two logics for UPDL. We give sound and complete axiom
systems for both logics, and show that the satisfiability
problems for hoth logics are EXPTIME-complete.

Keywords: logic of programs, propositional dynamic
logic (PDL), undoable programs, satistiability problem,
EXPTIME-complete.

1. Introduction

Dynamic logic [5,7,8] is a family of logics used for
reasoning about the /O behavior of computer programs. The
first order version of dynamic logic was first introduced in
the fundamental work of Pratt[9] and developed further by
Harel[4]. First order dynwmic logic has high expressive
power and is highly undecidable. For this reason Fischer and
Ladner([3] introduced the propositional version of Dynamic
logic(PDL), which is a propositional multi-modal logic with

° Supported by NSC under the project: NSC85-2221-E004-001.

each modality corresponding to a regular program. Since
then many variants of PDL have been introduced for
reasoning about different kinds of computation(5,7,8].

The basic idea of PDL is to integrate programs into an
assertional language by allowing every program to be a
modal operator. So, for example, if A is a program and P i3
an assertion, then a new ussertion [AJP can be formed,
meaning that “P holds on termination of A”. In addition to
modal operators, the usual Boolean operations are allowed.
The program constructors for PDL include ;, *, U, and 7. The
constructor ;™ stands for concatenation of programs;
therefore, “A;B™ means “first execute A and then execute B”.
~U” stands for nondeterministic choice; thus “AUB™ means
“choose A or B nondeterministically, and execute it”. The
constructor “*" is a nondeterministic looping operator and
“A*" means “execute A a nondeterministically chosen
number of times. Finally the constructor “7” is the test
operation so that if P is a formula then “P?7" is a program
meaning that “test P, and proceed if true”. PDL provides a
powertul language for describing programs, their correctness
and termination.

In this paper we are interested in extending PDL with
one construct: “undo”. *undo™ has the effect of removing the
effect of previous computation and returning to the
previous state. The construct undo has been used popularly
in interactive computing environments such as word
processors, debuggers and various editing tools etc. For
reasoning about and giving specification of programs (or
scripts) used in these environments, traditional PDL is not
expressive enough since the undo construct has effect not
expressible by existing PDL trameworks.

For UPDL, there are two conditions under which we
are concerned with validity of assertions about programs,
one being valid in all initial states and the other valid on all
states including also all intermediate states. Therefore we
define two logics of UPDL, one for the former called UPDL,
and the other for the later called UPDL,. In this paper we
develop sound and complete axiom systems for both logics.
Moreover we show that the complexity of the satistiability
problems for both logics are no harder than that of standard
PDL. In other words, both are EXPTIME-complete.

The remaining sections of this paper are organized as
follows. In section 2 the language and syntax of the proposed
logic is introduced. Section 3 covers the semantics and
axiom systems of UPDL. In the following section we derive
completeness and complexity results for the logic. Finally
we discuss some alternative definitions and extensions

A-109

FEREN+AEEH SRS

of UPDL that deserve further investigation.

2. The language and syntax of undoable
PDL

The language of UPDL is based on a set of primitive
programs Xy and a set of propositional variables Ag.
Two sorts of syntactic objects, namely, programs (de-
noted) and well-formed formula (.denoted A), are
defined in UPDL. They are defined by mutual recur-
sion as follows:

1. Every atomic formula p € Ay is a formula.
2. 1f P, Q are formulas, then so are =P and (P A Q).

3. if A is a program and P is a formula, then [A]P
is a formula.

4. Every primitive program a € ¥ is a program.
5. "undo” is a program.

6. if A, B are programs then so are A", (A; B), and
(4U B).

7. if P is a formula, then P? is a program.

Members of ¥ and A are called UPDL programs and
UPDL formula, respectively; members of £ and A con-
structible without using clause (6) are called PDL pro-
grams and PDL formulas, respectively. Other connec-
tives usually found in the literature are regarded as ab-
breviations. In particular, (4)P abbreviates —[A]-P,
and false abbreviates p A =p, where p is a particular
atomic formula in Ag.

3. Semantic structures

First review the general definiton of PDL-structure:

Definition 1 A PDL-structure M is a
(W. R, V) where

triple

o W is a set of (program states),

e R: Xy — 2VxW s the I/0 velation for primi-
tive programs, which, for each primitive program
a, assigns a relation R(a) from W to W. Inten-
tionally, (s1.s4) € R(a) means “erecuting atomic
program a from state s, may possibly lead to state
s2." We say t is an a-child of s if (s,t) € R{a).

e V : Ay = 2% is the valuation function, which
assigns a set of states V(p) for each atomic for-
mula p € Ao with the intention that for any state
se W, seV(p) iff p is true in state s.

Let R(Z0) = Ugex, R(a). For any state 5.t € IV, if
(s.t) € R(Xg), wesay t is a child of s (and s is a parent
of t). If (s.t) € R(Zg)*, we say t is a descendant of
s (and s is an ancestor of t). The PDL-structure M is

said to be a PDL-tree if the relation (W, R(Zo)) is a
rooted tree.

Since PDL-structure is too weak to define the seman-
tics of undoable programs, here we adopt PDL-trees
as the underlying structure for defining the semantics
of undoable programs. First we define the PDL-trees
generated by a PDL-structure M, which are simply un-
winding trees generated from states of M.

Let so be any state of W. The tree T;, of M starting
from so is a rooted tree with nodes labeled by states
of W and edges labelled by primitive programs. Ty, is
defined as follows:

1. The root of the tree T is at level 0 and is labelled
by so. For each node N, we use /() to denote 1ta
label.

2. If N is a node at level L labelled by s, and t is an
a-child of s in M, then there is one and only one
a-child of N labeled by t. -

3. N'is a child of N only if it satisfies conditioﬁ'?.

The tree T, can be extended to a PDL-structure
(Weo: Rso: Vi) (since there is no worry of ambiguity,
we also denoted it as 7},) where '

e W, is the set of all nodes of Tj,,

o Ry, 1 Zg = (W, x Wy,) s.t. (n1, n2) € R(a) iff
n2 is an a-child of ny in Ty, . .

o Vit Ag = 2We0 st
every atomic formulapn € ¥

for every node n, and for
/so(p) iff {(n) € V(p).

T;, is said to be the PDL-tree generated from sg.
Obviously T, itself is a PDL-structure. Also note
that the relation R(Xo) in a PDL-tree is irreflexive
and backward linear, i.e., for every state s. there is
at most one state t with (s,t) € R(Zo)~!. For each
PDL-structure Al = (W, R, V), let Tjy denote the set
of all PDL-trees generated from states of M.

Given a PDL-structure M = (W, R, V), the deno-
tations of PDL programs and formulas are defined by
extending the domains of R and V to all PDL programs
and formulas as follows:

1. R(A:B) = R(A) - R{B), where ”-" is the relation
composition operation.

2. R(AU B) = R(4) U R(B).

3. R(A") = R(A)*, where ”" at the right hand side
is the reflexive and transitive closure operation on
relations.

4. R(P?)={(s,s) | P € V(s)}.
S VIPAQ)=V(P)NV(Q)
6. V(~P)= W - V(P),

. V([A]P) = {s | Vt € W if (s,t) € R(A) then ¢ €
V(P)}.

(3]

-3

A-110

FEREN\AEEEH S eE

By the definition of (A)F, clause (7) implies
V((A)P) = {s | It € W,(s.t) € R(A)At € V(P)}.

The extended R and V are called the PDL-
extensions of R and V, respectively. R(4) and V(P)
are called the PDL-interpretation of A and P, respec-
tively, in M. A PDL formula P is said to be satisfiable
(or true) at a state s of a PDL-structure M, in sym-
bols, M,s = P, if s € R(P). If R(P) # ¢ (resp.,
R(P) = W), we say P is satisfiable (resp.. valid) in M.
Let C be a class of PDL-structures, we say P is satis-
fiable in C if P is satisfiable in some structure M of C
and say P is valid in C if P is valid in all structures
of C. In particular if P is valid in all PDL-structures
(resp., satisfiable in some PDL-structures), we say P is
PDL-valid (resp., PDL-satisfiable).

To define the meaning of an undoable program A,
possibly resulted from executing a program B.at some
initial state, we have to keep track of all past states,
beginning from the initial one where B is started to
the current one where the remaining part of B is A.
PDL-structure alone certainly does not give us such
information. However, if we interpret the root of a
PDL-tree as the initial state of a program’s computa-
tion and treat the path from the root to a node as the
computation history of the program started from the
initial state to the current state corresponding to the
node, then the meaning of "undo” is simply "back to
the parent”. So we can define the meaning of all un-
doable programs and formulas on PDL-trees as follows:

Definition 2 Let M = (W, R, V) be a PDL-structure.
We extend R and V to R and V, respectively, as fol-
lows:

Clause 1-7 are the same as those given in the defin-
tion of PDL-extensions.

8. R(undo) = {(t.s) | (s.t) € R(Z0)}.

R and V together is called the UPDL-extension of
R and V. Note that although the semantics of UPDL
programs and formulas are defined only on PDL-trees
via R and V, for technical reason we allow R and V to
be defined on all PDL-structures, as specified in Defi-
nition 2, where "undo” is treated as if it were the con-
verse of the union of all primitive programs. In sum-
mary, though both the PDL-extension and the UPDL-
extension are defined on all PDL-structures, the reader
should keep in mind that only on PDL-trees does the
UPDL extension define correctly the meaning of pro-
grams containing "undo”.

The definition of the satisfaction of UPDL formulas
on states of PDL-structures via R and V are analogous
to that of PDL-formulas on PDL-structures via R and
V. A UPDL formula P is said to be U-satisfied (or true)
at a state s of a PDL-structure M, in symbols, M. s =y
P.if s € R(P). If R(P) # ¢ (resp.. R(P) = W), we
say P is U-satisfiable (resp., U-valid) in M. Let C be
a class of PDL-structures, we say P is U-satisfiable in
C if P is U-satisfiable in some structure M of C and
said P is U-valid in € if P is U-valid in all structures of

A-111

C. In particular if P is U-valid in all PDL-trees (resp.,-
U-satisfiable in some PDL-tree), we say P is globally
valid (resp., globally satisfiable).

In addition to global validity, where we are con-
cerned with validity of UPDL formulas evaluated at
any state with arbitrary computation history, of in-
terest is another validity, called initial validity, where
we evaluate validity of formulas only one initial states
(i.e., those where no state has passed). More formally.
we say a UPDL formula P is initially valid if P is U-
satisfied at the root state of every PDL-trees and say
P is initially satisfiable if it is U-satisfied at the root
state of some PDL-tree.

The first problem about both notions of validities is
whether they define the same set of valid UPDL for-
mulas. A simple observation shows that they don’t.
Obviously, every formula which is globally valid is ini-
tially valid, but the converse in general is not true.
To show this, consider the formula P = [undo]false.
Obviously P is U-satisfied at all initial states but not
in any non-initial state. Hence [undo]false is initially
valid but not globally valid.

There are some relationships among PDL-trees,
PDL-structures, and PDL-trees they generated. Due
to space limit, they are omitted here. The interested
readers are referred to Chen{[l]. The main result is
that, when restricted to PDL only, adopting PDL-
structures or PDL-trees as underlying semantic struc-
tures does not change the sets of valid and satisfiable
formulas.

Theorem 1 Let P be any PDL-formula. Then

1. P is PDL-valid iff (P is valid in all PDL-trees iff)
P is globally valid.

2. P is PDL-satisfiable iff (P is satisfiable in some
PDL-trees iff) P is initially satisfiable.

So by interpreting PDL and UPDL both on unifying
PDL-trees, UPDL can be regarded as an extension of
PDL both on syntax and on semantics.

4. Axiom systems for UPDL

The axiom systems for UPDL include the axioms used
in PDL together with additional ones for dealing with
*undo”. Consider the following axiom schemes, where
A.B are any UPDL programs and P and Q are any
UPDL formulas,

A1: all tautologies of propositional calculus
A2: [4](PAQ) # [AIP A[41Q

A3: [A; B|P « [A][B]P

A4: [AUB]P + [A]P A[B]P

AB: [A*]P — P A[A][47)P |

A6: [A*}(P — [A]P) = (P = [A%]P)

EREN\+AF R RO

AT: (a)[undo]P — P, where « is any primitive pro-
gram.

A8: (undo)[So]P — P, where To = J g, @

A9: (undo)P — [undo]P
A10: {(undo*)[undo]false
A11: [undo)false

and inference rules:
R1(MP): from P and P — Q, infer Q.
R2(G): from P infer [4]P.

- R3(G’): from P infer [A]P with the proviso that P
must be derivable without using A10.!

Axiom schemes (A1-A6) and rules (R1-R2) are the
standard axiom system for PDL. Axiom T says that
"undo” can return to the the present state from those
that may be reached by executing any primitive pro-
gram at the present state. Axiom 8 states that, by
executing "undo”. the program will goto the previous
state. from which the current one must be reachable
by executing some primitive program. Axiom 9 states
that "undo” is deterministic, axioms 10 states that no
histories of states are infinitely long. Finally axiom 11
says that the current state cannot be *undo™ any more
2and hence is true of all initial states only.

Let UPDL; be the axiom system consisting of (Al-
All) and R1 and R3, and let UPDL¢g be the axiom
system consisting of (A1-A10) and R1 and R2. Let
provability of a formula P in UPDL; and UPDL¢g be
denoted F; P and kg P, respectively. A formula P
is said to be consistent in an axiom system H if its
negation is not a theorem of H (i.e. /g —P.); a set of
formulas F is said to be consistent if A F is consistent.
It is noted that R3 is equivalent to the statement that
if k¢ P (hence P can be derived without A10) then
Fr P. Therefore. since A10 is not provablein UPDLg.
UPDLg is a system properly weaker than UPDL;.
Both provability relations are related by the following
lemmal[l]. '

Lemma 1 Let P be any UPDL formulas. Then
ki Piff Fg [undo)false = P
It is easy to prove[l] that UPDLy and UPDLg are
sound with respect to initial validity and global valid-

ity, respectively, defined in the previous section.

Theorem 2 The ariom systems UPDLg and
UPDL; are sound for global validity and initial
validity of UPDL, respectively.

We defer the completeness of both systems to the
next section.

.e.. there is a proof of P where A10 is not used.

5. Decidability and completeness of
UPDL

In this section we are concerned with the decidabil-
ity and completeness of the satisfiability problems for
UPDL. We will show that both the initial satisfiability
and the global satisfiability problems for UPDL can
be solved in exponential time. Hence, together with
the well-known lower bound result for FDL, the satis-
fiability problem for UPDL is shown to be EXPTIME-
complete. Our proof is essential a combination of those
techniques used in D. Harel and R. Sherman(6, 5, 10]
and M. Ben-Ari et.al.[2]. Tirst, as usual, we require
the notions of the subformula closure of a formulas.

Detinition 3 (Fischer-Ladner closure of formulas)
Let Py be a UPDL formula, the Fischer-Ladner closure
of Py, denoted FL(Py), is defined to be the least set S
of formulas such that:

1. Py €S, and (undo*)[undo]false € S.

If-P &S then PeS.

IfPANQES. then P.Q€E S

If[Q71Pe S thenQ.P€ S.

If[A]P € S then P € S.

If[A:B]P € S then [A][BlP € S

If[A*]P € S then P € S and [A][A*]P € S.
If[AUB]P € S then [4]P € S and [B]JP € S.
[undo]P € S iff (undo)P € S.

Let =FL(Py) be defined as {=P|P € FL(Py)} and
define Z(Py) = FL(Py) U-FL(Py).

(&S]

© » N2 e =

For each formula P, let |P| denote the number of
symbols used for representing P; for a set S, let |S|
to denote the cardinality of the set. Analgous to Fis-
cher and Ladner[3], it is easy to show that |FL(Pp)| is
bounded by the size of Py.

Proposition 1 If |Py| = n then |FL(Py)] = O(n).

For easy of presentation, we identify every formula of
the form == P with P in the rest of the section. Similar
to that defined in [5, 10]. certain sets of formulas from
Z(Py) are called atoms, which are free of immediate
inconsistencies,

Definition 4 An atom for Py is a subset S of Z(Fo)
satisfying the following: for every program A, B and
formula P, Q.

1. ifPEZ(Py), then PES iff ~P & S

2.4 PANQEZ(P)) then PAQ €S ff Pe S and
QES.

3. if [PNQ € Z(Py) then [P)Q € S iff P& S or
QEeS.

A-112

hERENHAFZEAEREGE

4. if[4: BIP € Z(Po) then [A; BIP € S iff [A][B]P €
s

5. if [AUBP € Z(Py) then [AUB]P € S i [AIP € §
and [BJP € S

6. if [A*]P € Z(P,) then [A|P € S iff P € S and
[A][4*]P e S

7. if [undo)P € Z{Pp) then (ando)P € S wnly if
[undo]P € S.

8. if S contains [undo]false, then S does not con-
tains any formula of the form (undo)P

If S contains [undo]false, we say it is an tnitial
atom, otherwise, we say it is a non-initial atom.

Denote the set of atoms for Py by AT(FPo); it is easy
to prove (cf. Fischer and Ladner[3]) that |[AT(Fo)| <
90(1Pal) If P, is a formula, let £(FP) be the set of
all UPDL programs appearing in Py and let Aq(Po)
(resp., A(Po)) be the set of atomic formulas (vesp..
UPDL formulas) appearing in Z(Fo).

In the remaining part of this section let Po be any '

specific UPDL formula. We are now interested in de-
termining the global or initial satisfiability of the for-
mula. Our goal is to construct a PDL-tree U-satisfying
P, if it is U-satisfiable. As proceeded in Harel[10. 5] a
sequence of PDL-structures My, My, M, -+ is defined
in steps as follows: Mg = (o, Ro, Vo) is defined by

o Wy = AT(Ry).

e Ry :Xo(FPo) = 2Wg where, for each a € Eo. 5.t €
Wo. (s.t) € Ro(a) iff (1) t is a noninitial atom
and (2) for every [a]P € s, P € t and (3) for every
(undo)P €t, P € s.

e Vo : Ap(Py) — 2° where, for each p € Ao(Fo)
and for each s € 1y, s € Vy(p) iff p€ 5.

We extend Ro : o — 2% to R : T(Py) — 20
and V5 : Ap(Po) — 2Wo to V] : A(Py) — 2Wo like the
usual UPDL-extension defined in Definition 2 with the
following exception:

Ry(P?) = {(s,s) | s € W, and P € S}
Recall that for the program "undo” we have
Ry(undo) = {(t.s) | (5.1) € Uaex, R(a)}

It should be noted that Afp in general is not a
PDL-tree. Hence Rj{undo) may not be determin-
istic as we might expect. For i > 0, let My =
(Wig1: Rig1. Vig1) be given by

e Wiy1 = {s | s € W; and for every (4)P € s there
exists ¢ € 117 with (s.t) € Ri(A)}.

® R;+1 =R;N I'Vi:il-l

o Vigp = VinWiyg.

LetRl,, : £(Po) — 2% and V{ : A(Py) — 2%+
be the UPDL extension of R;y; and Viyy defined like

5 and V.

Since AT(P,) is finite, there is some J < |AT(Fo)|
where the construction closes up, i.e., My = M, for all
k> J. Finally let M = (W, R. V) = M.

Lemma 2 For every s € W, for each (A)P € A(Po)
(AYP € s iff # € W s.t. (s 1) ER(A) and P €.

The above proof can be found in Chen[1]. It is es-
sentially the same as that of Harel {10, 5, 6]. Unfortu-
nately, since the constructed structure M in general is
not a PDL-tree. the standard "undo” semantics may
not be defined appropriately. Therefore, even there
may exist some state U-satisfying Pp, we still cannot
assure that Py is globally satisfiable. However, The
following lemmas tell us that Py is globally satisfiable
provided it is U-satisfiable at some state of the con-
structed M. The key point is that although M is not -
a PDL-tree. nodes of the PDL-trees generated from M
and their corresponding labeling states in M agree on
U-satisfaction of all formulas in Z(Fp).

Lemma 3 Let u be an initial atom v € VW and T, =
(Wy, Ry, Vy). Then for any s € W, and for any P €
Z(PO) A[l(‘s) ‘=U P iﬁTu,S ¥=U P

We now begin the completeness of /PDL; and
UPDLg for the sets of initial and global valid UPDL
formulas, respectively. Due to space rastriction, only
key lemmas and theorems are stated and their proofs
can be found in Chen(1].

First let § denote Ape, P if s is a set of UPDL for-
mulas. The following lemma show that only atoms
appearing in W can be consistent in UPDLg.

Lemma 4 For every s € AT(Po), if s € W, thenFg
=8,

Based on Lemma 4, we can show the following two
results.

Lemma 5 Let s € W, if s is not reachable from any
initial atom of W, then kg —8.

Lemma 6 1. Py is globally satisfiable zﬁ Py € s for
some s € W reachable from an initial atom.

9. Py is initially satisfiable iff Py € s for some initial
atom s € W.

As a result, we have the following theorems.
Theorem 3 The aziom system UPDLg is complete;
i.e., for every UPDL formula P, if P is globally valid
then it is provable in UPDLg.

Theorem 4 The ariom system UPDLy is complete;
i.e., for every UPDL formula P, if P is initially valid
then it is provable in UPDLy.

As to complexity. we have the following theorem.

A-113

FERENTAFREGESER

Theorem 5 1. The global satisfiability problem for
UPDL is EXPTIME-complete.

2. The initial satisfiability problem for UPDL is
EXPTIME-complete.

Proof : (1) By Lemma 6 P is globally satisfiable iff
p € s for some s € W reachable from an initial atom.
As pointed out in [3], the construction of W can be
carried out deterministically in exponential time. It is
also easy to check in exponential time whether P €
s for some atom s reachable from some initial atom.
Hence the problem can be solved in exponential time.
The hardness part is implied by the fact that even the
PDL part is already EXPTIME-hard [3].

(2) Since by definition P initially satisfiable iff
~ P A [undo]false is globally satisfiable, the initial
satisfiability problem is reducible to the global satisfi-
ability problem in polynomial time. Hence by (1) the
initial satisfiability problem can also be determined in
exponential time. <

6. Discussion

We have defined the semantics of "undo” as an er-
ror (i.e.. undefined) when we try to undo at an initial
state, L.e., at the root. This aspect of the meaning of
"undo” is reflected on the axiom All : [undo]false.
Another alternative for the semantics of undo” at ini-
tial states is simply to let the *undo” have no effect at
all initial states, namely, executing "undo” at an initial
state will go to the same state. If we adopt such defini-
tion, the axiom schemes A10 : (undo*){undo] false and
A1l : [undo] false are no longer true and have to be re-
placed by two new ones A10’ : (undo*)([undo]P — P)
and A1l’ : [undo]P — P. The resulting logic systems
can be proved to be sound and complete for global and
initial validities, respectively, under the new semantics.
The complexity of both systems are the same as the old
ones, i.e., both are EXPTIME-complete for the satis-
fiability problem. The method is essentially the same
as what we have done for the old semantics, with only
a few modifications corresponding to the differences
between A10-A11 and AT0-A11".

We can only undo the execution of one primitive
program by using one "undo” each time. However,
in many applications we need not only undo primitive
programs but also need to undo any block of programs
each time. To reason about such kind of programs.
we require one additional construct which we call *at-
omize”. "atomize” has the effect of encapsulating a
compound program, which may produce many com-
putation steps when executed, into a primitive one so
that the "undo” construct cannot return to the inter-
mediate states of the computation history produced
by the compound program. Consider the program
fragment:” (a;b;bU ¢;d); if not OK then undo”. Our
intended function of the "undo” in the program is to
recover to the beginning of the whole program once OK

is not true, but, according to the current semantics of
“undo”, it can only return to the state corresponding to
the execution of "a;b” or ”¢”. By adding atomize to our
logic, the intended function of undo” can be achieved
by reprogram the fragment as : “at(a;b;b U ¢;d); if
not OK then undo”, where ”at” encapsulates the com-
pound program a;b; bUc; d as if it were a primitive one
so that undo” will undo the whole program instead of
just the last instruction of the program.

References

[1] Cheng-Chia Chen, Development of formal logics
for modeling and reasoning about some aspects
of the behavior of rational agents and programs,
NSC technical report under project no:NSC85-
2221-E004-001, 1997.

(2] M. Ben-Ari, J. Y. Halpern, and A. Pnueli, De-
terministic propositional dynamic logic: finite
models, complexity, and completeness, Journal of
Computer and Systems Science 25:3, 1982, 402-
417.

[3] M.J. Fischer and R.E. Ladner, Propositional dy-
namic logic of regular program, Journal of Com-
puter and System Science, 18(2) 1979, 194-211

[4] ‘D. Harel, First-order dynamic logic, LNCS Vol.
68, Springer-Verlag, Berlin, 1979.

[5] D. Harel. Dynamic logic, in Gabbay and Guenth-
ner, eds.,Handbook of Philosophical Logic II: Ex-
tensions of Classical Logic , Reidel, 1984, 497-604.

[6] D. Harel,
of flowcharts,
1985,119-135.

and R. Sherman, Dynamic logic
Information and Control. 64,

[7] D. Kozen and J. Tiuryn, Logic of Programs, in: J.
van Leeuwen ed., Handbook of Theorectical Com-
puter Science, Vol. B (Elsevier, Amsterdam. 1990)
789-840.

[8] R. Parikh, Propositional dynamic logic of pro-
grams: a survey, in: E. Engeler, ed., Proc. Work-
shop on Logic of Programs, Lecture Note in Com-
puter Science, Vol. 125 (1981) 102-144.

[9] V.R. Pratt, Semantical considerations on Floyd-
Hoare logic, 17th IEEE Symposium on Founda-
tions of Computer Science, . 1976, 109-121.

[10] R. Sherman and D. Harel, A combined proof of
one exponential decidability and completeness for
PDL, in Ist Int. Workshop on Found. Theoret.
Comput. Sci., GTI, Paderborn, Germany, 1983,
221-233.

A-114

