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Abstract

A new effective approach to vision-based guidance for
autonomous land vehicle (ALV) navigation in outdoor
road environments with static and moving cars using
model matching and color information clustering
techniques is proposed. Collision-free road area
detection is adopted for collision avoidance. Road
boundaries are used to construct the reference model,
and road surface intensity is selected as the visual feature.
The pixels in a road image near the two lines
representing the road boundary shape are checked to
Jjudge whether the lane width is changed due to occlusion
caused by nearby static or moving cars on the road. If
both lane widths are not changed, model maiching is
performed to find the ALV location. If either or both lane
widths are changed, corresponding processes are
performed to find the width of the occluded road, and the
model is recreated if the new road width is different from
the old one in the previous navigation cycle. Model
matching is then performed to locate the ALV on the road.
A turn angle is then computed to guide the ALV to follow
the central path line on the extracted road for safe
navigation. Successful navigation tests show that the
proposed approach is effective for ALV guidance in
common roads with static and moving cars.
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1. Introduction

Many research works have been reported for obstacle
detection in outdoor roads {1-13]. Most systems, such as
the CMU Navlab [1-2], the vehicle constructed by Martin
Marietta Denver Aerospace [3-4], and the navigation
system developed at the university of Maryland [5], use
laser range sensors to detect obstacles in outdoor roads or
cross-country terrain, The FMC Corporation [6] uses a
sonic imaging sensor and an infrared sensor for obstacle
avoidance and target detection.

As to vision-based approaches to obstacle detection,
they basically can be divided into three classes. The first
class extracts obstacles directly from 2-D images [7-10].
The second class of approaches uses motion information
obtained from a sequence of images to detect obstacles
[11-12]. The most popular approaches in this class are
based on optical flow. The third class of approaches
detects obstacles using stereo-vision techniques [13].

The major obstacles in outdoor roads are static and
moving cars. Several approaches have been proposed to
detect cars. Schwarzinger et al. [7]), Thomanek,
Dickmanns, and Dickmanns [8], and Regensbruger and
Graefe [10] used some symmetry features in the rear side
of a car to detect and track cars in front. Cappello,
Camponi, and Succi [9] proposed a car detection method
based on the assumptions that cars are approximately
solid blocks with parallel or orthogonal sides and that the
sides are parallel or orthogonal to road boundaries.
Heisele and Ritter [11], and Smith and Brady [12]
detected cars based on optical flow. BART [13] presented
a visual control system for vehicle following. It tracks an
apparent feature, a single point, on the back of the leading
vehicle using stereo-vision techniques.

In this paper, we propose an effective approach to
guiding an ALV in general roads with static and moving
cars. The approach allows the variations of road widths,
which are caused by existence of static cars on the
roadside or moving cars on the road lane. New algorithms
are proposed for finding the best-fit road region without
having to do exhaustive search. We do not detect cars in
the image; instead we detect road areas by using the road
surface intensity as the visual feature. The road width is
not assumed to be constant; instead the road width
changes are allowed and computed as cars appear in the
image. Besides, we do not plan a complex navigation
route but just compute the central line on the extracted
road as the route and approach it immediately after the
ALV location on the exiracted road is found. Neither with
additional feature extraction from the car body nor with
additional planning for the navigation path, fast
navigation can be achieved.
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In this study, the shape of a road is represented by its
two road boundaries. To find the road boundaries on a
road, edge points are extracted directly from the road
image first. The edge points are then used to figure out
the road boundaries. When complex obstacles aprear on
the road, the edges of the road become irregular and
cause difficulty in road boundary estimation using the
edge foints. This motivates in this study the design of a
model matching method which uses several candidate
boundary lines in the model to match the road pixels
nearing the estimated road boundaries in the mage
according to a reasonable similarity measure.

The remainder of this paper is organized as follows. In
Section 2, the details of the proposed model-based ALV
guidance method is described. The description of the
employed image processing and feature extraction
techniques is included in Section 3. In Section 4, the
results of some experiments are described. Finally, some
conclusions are stated in Section 5.

2. Proposed ALV Guidance Method

The proposed guidance scheme is performed in a
cycle-by-cycle manner. In each navigation cycle, the
system identifies the visual feature of the road surface in
the road environment to locate the ALV, and guides the
ALV accordingly from the current position to the
navigation path which is assumed to be the central line of
the unoccluded road portion. After the two lines
representing the road boundary shape in the image are
estimated at the beginning of the cycle, the system checks
the pixels near the two lines to judge whether the left or
right lane width is changed in the current cycle. Model
matching is then performed to find the ALV location if
both lane widths are not changed. If either or both lane
widths are changed, appropriate procedures are executed
to find the new road width, and the model is recreated if
the new road width is different from the old road width
computed in the previous cycle. Then model matching is
performed to find the ALV location on the changed road.

In the following, we state first the steps of model
creation which involves several coordinate systems and
transformations, then the processes for the detection of
lane width changes as well as the estimation of the new
road width, followed by the model matching process.

2.1 Model Creation

Several coordinate systems and coordinate
transformations are used in this approach. The image
coordinate system (ICS), denoted as u-w, is attached to
the image plane of the camera mounted on the ALV. The
camera coordinate system (CCS), denoted as u-v-w, is
attached to the camera lens center. The vehicle coordinate
system (VCS), denoted as x-y-z, is attached to the middle
point of the line segment which connects the two contact

points of the two front wheels of the ALV with the ground.

The x-axis and the y-axis are on the ground and parallel
to the short and the long sides of the vehicle body,
respectively. The z-axis is vertical to the ground. The
transformation between these coordinate systems can be
seen in [15,16].

An ALV location can be represented by two
parameters (d, 0), where d is the distance of the ALV to
the central path line in the road and © is the pan angle of
the ALV relative to the road direction. The equations of
the two road boundaries in the VCS are assumed to be
known before navigation. We transform the road
boundaries into the ICS which are displayed on the TV
monitor during each navigation session.

For each ALV location (d,, 0,), we create a

1
corresponding template Ty[a,,b,,a,,b, ], where a, and
a, are the slopes and b, and b, are the intercepts, of

B-2

the equations of the left and the right rcad boundaries in
the ICS, respectively. The transformation is shown in Fig.
1. We sample the road width at 41 positions, i.c.,
—20<i<20, with the interval of 1/40 of the road width.
At each position, we sample the vehicle direction at 31
angles from -15 degrees to +15 degrees, i.e., ~15<j<15,
with the interval of one degree. Hence the model contains
41x31=1271 templates, and each template represents a
specific ALV location. Because the templates are
represented in the ICS, the model matching process
described later is also operated in the ICS.

2.2 Detection of Lane Width Changes

The ALV keeps moving forward after an image is
taken at the beginning of each navigation cycle. Afier the
image is processed and corresponding algorithms are
performed, the ALV location at the time instant of image
taking can be found. At this moment, however, the ALV
has travelled a distance. Hence the ALV never knows its
actual current position unless the cycle time is zero. To
overcome this difficulty, the system uses the ALV control
information to estimate the current ALV location
according to a method proposed by Cheng and Tsai [17].
We then define the rqurence ALYV location in cycle i to
be the estimated ALV location at the beginning time of
cycle i.

Let T, denote the reference ALV location (d,,0,) in
the current cycle, and we call T the reference template
in the current cycle. To judge whether the left or right
lane width is changed, we first check those templates,
called candidate templates, which are “close” to the
reference template in the current cycle. A candidate
temg[ate set W is shown in Fig. 2, where the left line of
each template in W lies in the area bounded by the left
line of the lefimost candidate template (LCT) and the left
line of the rightmost candidate template (RCT), and the
right line of each template in W lies in the area bounded
the right line of the LCT and the right line of the RCT.
We also call T, the center template in W.

Basically, a road in an image can be divided into three
clusters according to their intensity values: (1) cluster-0:
dark area, like shadows and trees; (2) cluster-1: gray area,
coming from the main body of the road; and (3) cluster-2:
bright area, like the sky and the white path lines on the
road. Then, the ratio of the number of the cluster-1 pixels
to the number of all pixels in the area bounded by the left
line of the LCT and the left line of the RCT is checked to
judge whether the left lane width is changed. If the ratio is
smaller than some threshold value, say TH-1, the left lane
is decided to be narrowed. If it is larger than some
threshold value, say TH-2, the left lane is decided to be
widened. If it is between TH-1 and TH-2, the left lane
width is decided to be unchanged. Similarly, We check
the ratio of the number of the cluster-1 pixels to the
number of all pixels in the area bounded by the right line
of the LCT and the right line of the RCT to judge whether
the right lane width is changed. If both lane widths are not
changed, model matching (MM) is then performed to find
the ALV location, which will be described later. If either
or both lane widths are changed, corresponding processes
are executed to calculate the new road width, as stated in
the following. '

2.3 Estimation of New Road Width

If the left lane width is checked to be changed, then
the changed amount W, of the left lane width is
estimated as illustrated in Fig. 3. Fig. 3(a) illustrates the
estimation process for the case that the left lane is
narrowed, where T, | =(d, ,9,) is the reference template,

L; is the lefi line of template T, ; ., and the dark area
bounded by B, and B, is composed of the cluster-1
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pixels (extracted road pixels). To calculate W,, we first
check the cluster-1 pixels in the area bounded by L, and
L,. If they are sufficient in number, then L, is decided
to be close enough to B, and is selected as the
“approximate left road boundary”, and W, is set to 0.
Otherwise, the cluster-1 pixels in the area bounded by L,
and L, are checked. If they are sufficient in number, then
L, is decided to be close enough to B, and is selected as
the approximate left road boundary, and W, is set to
d, —dru. Otherwise, the cluster-1 pixels in the area
bounded by L, and L; are checked in a similar way.

This process is repeated until a certain L, is chosen
such that the cluster-1 pixels in the area bounded by L,
and L_,, are sufficient in number. Then L is selected as
the approximate left road boundary, and W, is set to
d,_, —d, . Note that this way of detecting the
apﬁroximate road boundary”, as proposed above in this
study, facilitates the avoidance of direct estimation of
road boundary lines from the edge points of broken- or
irregular-shaped road boundaries resulting from existing
roadside cars or obstacles. On the other hand, if the left
lane is widened, a similar criterion is used to find W,
which is illustrated in Fig. 3(b), where L_ is the
approximate left road boundary.

Similarly, if the right lane width is changed, the
changed amount W, of the right lane widith and the
“approximate right road boundary” R, which is close
enough to the real right road boundary B, in the image,
are estimated in a similar way. After the changed amounts
W, and W, of both lane widths are found, the new road
width is calculated by

New road width W

new

= old road width W ,+W,+W,,

(h
and the approximate template, which is defined to be
composed of the approximate left and right road
boundaries L, and R, is estimated to be

Tms=(dm7es)=(dfo+W"/2—W‘I/2’65), (7)

where T,  =(d,.,8,) is the reference template. I

W,., # W, , then we recreate the model in the way as
described in Section 2.1 according to the new road width
W,,. - Finally, model matching is performed to find the
ALYV location, which is described in the following.

2.4 Model Matching for ALV Location

If both lane widths are detected to be unchanged in the
current cycle, we use the candidate template set W
described in Section 2.2 to perform model matching
because the templates in W are close to the reference
template which is the estimated road boundary shape of
the unchanged road in the current cycle. If either or both
lane widths are detected to be changed by nearby cars or
other obstacles on the road ahead in the current cycle, the
reference template could be far away from the real road
boundary shape in the image, and it is unsuitable to use
the set W described above to perform the matching. As
described in the previous section, after the changed
amounts W, and/or W, are found, we obtain the

approximate template T, which is close to the real road

boundary shape in the image. We thus choose T, as the

center template to reconstruct W such that the templates
in the reconstructed set W can be made closer to the real
road boundary shape.

After W is chosen or reconstructed, we use it to
perform model matching to find the ALV location.
Without loss of generality, we first state how we match
the templates in W with the set LCP of the lefi-check-
pixels, which are defined as the cluster-1 pixels in the
area bounded by the left line of the LCT and the left line-
of the RCT, to find the template T, whose left line is
most likely to be the left road boundary. The matching
process is based on a criterion which is described as
follows. We define

Left-bounded-ratio LBR; = (the number of the cluster-1
pixels in the area bounded by the left line of T; and
the left line of the RCT) / (the number of all pixels in
the area bounded by the left line of T; and the left
line of the RCT), and

Left-road-ratic LRR; = (the number of the cluster-1
pixels in the area bounded by the left line of T; and
the left line of the RCT) / (the number of the LCP).

Fig. 4 illustrates how we check the LBR and LRR values
to decide which line is closer to the real left road
boundary B, in different cases, where L; is the left line
of template T,.In Fig. 4(a), L, and L, are on the left
side of B,,and L, iscloserto B,. It can be seen from
the figure that T, and T, have the same LRR value
(=100%). But the LBR value of T, is greater than that of
T, because L, iscloserto B,. This means that all of the
templates in W, whose left lines are on the left side of B, ,
have the same LRR value, and the template whose left
line is closer to B, has a larger LBR value.

In Fig. 4(b), L, and L, are on the right side of B,,
and L, is closer to B,. It can be seen from the figure
that T, and T, have the same LBR value (=100%). But
the LRR value of T, is greater than that of T, because
L, is closer to B,. This means that all of the templates
in W, whose left lines are on the right side of B,, have
the same LBR value, and the template whose left line is -
closerto B, has a larger LRR value.

In Fig. 4(c), L, and L, are on the left and right sides
of B,, respectively. It can seen from the figure that the
LRR value of T, is equal to the LBR value of T,
(=100%). To decide which of L, and L, is closer to B,,
we can compare the LBR value of T, and the LRR value
of T,. If the LBR value of T, is larger than the LRR
value of T,, then it is decided that L, is closer to B,.
Otherwise, it is decided that L, is closerto B,.

From the above observation and analysis, it is
reasonable to define the following similarity measure
based on the two ratio values, LBR; and LRR;, for

model matching:
LS; =LBR; +LRR;. “)

Then the best-matched template T, =(d,,0,), whose left
line is the closest to B, , has the maximum LS value. We

call this criterion of choosing T, the maximum-sum-of-

double-ratios (MSODR) criterion.

Similarly, we can match the templates in W with the
set RCP of the right-check-pixels based on the MSODR
criterion to obtain the best-matched template T, whose

ijo

* right line is most likely to be the real right road boundary.
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After T, =(d,,6,) and T, =(d,,0,) are found, the
ALV location T=(d,0) is estimated more accurately by
averaging T, and T, ,ie,

T,+T, d,+d, 6,+86,

2 2 7 2 (5)
The proposed model matching (MM) algorithm based on
the MSODR criterion is stated below.
Algorithm MM (Model Matching).
(a) A set W of candidate templates.
(b) The set LCP of the lefi-check-pixels and the

set RCP of the right-check-pixels.
The ALYV location T.

For each candidate template T; in W, compute
the left and right similarities LS; and RS, .
From all of the computed LS values, find the
best-matched template T, with the largest LS
value.

From all of the computed RS; values, find the
best-matched template T, with the largest RS
value.

Set T=(T, +T,)/2 and take T as the desired
output.

T=(d,0)=

Input.

Output.
Step 1.

Step 2.
Step 3.

Step 4.

Finally, a complete ALV location algorithm is described
below.

Algorithm CALVL (Complete ALV Location).

Input. (a) A set V of cluster-1 pixels.

(b) A model M of templates created in the

previous cycle.

(c) The reference template T,  =(d,,0,) in

the current cycle.

(d) A set W of candidate templates in M whose

center template is T, ..

The ALV location T.

Check of lane widths:

(a) Use V and W to check whether the left lane
width is changed. If it is changed, compute the
changed amount W, of the left lane width.

(b) Use V and W to check whether the right lane
width is changed. If it is changed, compute the
changed amount W, of the right lane width.

Model recreation and candidate template set

reconstruction: If either or both lane widths are

changed, then perform:

(a) Calculate the new road width W, =theold
road width W, + W, + W .

MIf W, =W,,, then recreate the model M
accordingto W, .

(c)Estimate  the  approximate  template
T, =(d,,0,)=(d, +W,/2-W, /2,6)).

(d)Use T_, as the center template to reconstruct
the candidate template set W.

Model matching:

Use V and W to find the LCP and the RCP, and

with W, LCP, and RCP as inputs perform the

MM algorithm to find the desired ALV location

T as output.

After the desired ALV location is found, the
navigation path on the extracted new road can be
generated immediately. A turn angle for guiding the ALV
from the current ALV location to the immediately
generated navigation path is then computed. The

Output.
Step 1.

Step 2.

Step 3.

navigation path estimation and the turn angle computation
are described in the following.

3. Image Processing and Feature Extraction
Techniques

To reduce the image size, the upper portion in the
road image is discarded because it does not contain any
road area. Next, pixels are sampled from the remaining
image portion with the interval of six pixels in both the
horizontal and vertical directions. We then use an
ISODATA algorithm [14], which includes an initial-
center-choosing (ICC) technique to solve the problem
caused by great changes of intensity in navigations, to
divide the road image into three clusters.

Intuitively, we can select the resulting centers in the
previous navigation cycle as the initial centers in the
current cycle to run the clustering algorithm. However,
the selection may be unsuitable, producing unacceptable
clusters, because some difference may exist between two
consecutive images. One kind of the difference comes
from the change of intensity. If the change of intensity
between two consecutive images is great, the candidate
initial centers chosen from the resulting centers in the
previous cycle may be far away from their real centers in
the current cycle. In this situation, many iterations are
needed for the ISODATA algorithm to move the
candidate initial centers close to their real centers, which
take too much computing time. Fig. 5 shows this situation,
where the R-component r, of the resulting center of
cluster k in the previous cycle is far away from the R-
component R, of the real center of cluster k in the
current cycle because of the great change of intensity
between the two consecutive images.

To choose proper initial centers closer to their real
centers in the current cycle, we propose an ICC technique
based on the assumption that the changes of the bright,
the gray, and the dark areas between two consecutive
input images are small. As shown in Fig. 5, the R-
component 1, of the candidate initial center of cluster k
resulting from the ICC technique is very close to the R-
component R, of the real center of cluster k in the
current cycle. The ICC technique is described as follows.
Let P,,P,and P, be the numbers of pixels belonging to
cluster-0, cluster-1, and cluster-2 in the previous cycle,
respectively. What we want to compute is the initial
centers of the three clusters to run the clustering algorithm
in the current cycle based on the values of Py, P,,and P,.
We first observe the histogram of the R-plane shown in
Fig. 5 and let r,, r,, and 1, be such that the following
equalities are satisfied:

fo
z[pixel no. of g. L(s)] =P,/2,

s=0

i[pixel no. of g. 1.(t)] =P, +P/2,and
t=0

2 [pixelno. of g.L.(w)]=P, + P, +P,/2,

w0 ~ ©)
where g. 1. means gray level. Then r,, k=0, 1, 2, is taken’
to be the R-component of the candidate center of cluster k
in the current cycle, which is very close to the R-
component R, of the real center of cluster k. Using the
same criterion on the G-plane and B-plane, we can find
the G-component g, and B-component b, . We then use
[r.,g:,b,] as the initial center of cluster k to run the
clustering algorithm, where k=0, 1, 2. In this way, it is
found that three iterations are enough for the ISODATA
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algorithm to move the candidate initial centers close to
their real centers and much computing time is saved.

An example of obvious improvement obtained from
using the ICC technique in a real road scene is shown in
Fig. %. Fig. 6(a) shows the input image with high intensity
in the previous cycle and Fig. 6(b) shows the input image
with low intensity in the current cycle. Fig. 6(c) shows the
poor clustering result when the resulting centers in the
previous cycle are used as the initial centers to run the
clustering algorithm for three iterations in the current
cycle. A befter clustering result yielded by the ICC
technique is shown in Fla 6(d), in which cluster-1 is
taken to be the road area.

4. Experimental Resulis

Based on the proposed approach and algorithms, a
prototype ALV constructed for this study could navigate
safely and smoothly along part of the campus road in
National Chiao Tung Unxver31ty A lot of successful
navigation tests confirm the feasibility of the approach.
The navloatlon path is not sensitive to sudden changes of
intensity ‘because of the effective ICC technique used in
the clustering algorithm. The average cycle time is about
1.0 sec, and the average speed is 170 cm/sec or 6.2 km/hr.

Fig. 7 shows a real road image, its clustering result,
the reference template represented by the dotted tem late
and the matched template represented by the lack
template. In the figure, one static car is on the right lane,
another car is drlven toward the ALV along the left lane,
and the ALV is moving forward successfully along the
central line on the extracted road.

5. Conclusions

A model-based approach to ALV guidance in outdoor
road environments with static and moving cars by
computer vision has been proposed. Several techmques
have been integrated in this study to provide a reliable
navigation scheme. Contributions made by the proposed
approach are summarized in the following. (1) An
ISODATA clustering algorithm based on the ICC
technique has been roposed to solve the problem caused
by great changes of intensity in navigations. (2) With no
additional process for feature extraction on the car body
and no additional planning for the navigation path, fast
navigation can be achieved. (3) A model matching
process based on the MSODR criterion has been
proposed to identify a road easily without detecting
complex obstacles appearing on the road, and to locate
the ALV immediately. on the identified road without
complicated computation. (4) A scheme for ALV speed
adjustment on varying road situations have been proposed
to achieve safe, steady, and flexible navigation. (5) The
proposed complete algorithm has been 1mplemented to
extract roads accurate]y in real time such that the ALV
can avoid collision with nearby cars on the road ahead.
Successful navigation tests in general roads confirm the
effectiveness of the proposed approach Future research
_ directions may focus on recognition of special road
conditions, detection and avmdanee of more types of
obstacles, and environment sensing and learning, etc.
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Fig. 1 The road boundary transformation between the

VCS and the ICS.
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Fig.2 A candidate template set W, where the LCT
denotes the leftmost candidate template and the

RCT denotes the rightmost candidate template in
W.

o =
Hlustration of estimation process of the changed
left lane width. (a) The left lane is narrowed. (b)

Fig. 3

The left lane is widened.
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Fig. 4 Illus(tr%tion of how we check the LB(R) and LRR
values to decide which line is closer to the real left
road boundary B, in different cases. (a) Two lines
are on the left side of B, . (b) Two lines are on the
right side of B,. (c) One line is on the left side of
B, and one line is on the right side of B, .
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Fig. 5 The histograms of the R-planes of two consecutive
. images, where r, is the R-component of the
resulting center of cluster k in the previous cycle,

R, is the R-component of the real center of
cluster k in the current cycle, and r, is the R-
component of the candidate center of cluster k

resulting from applying the ICC technique in the
current cycle.

®) (d)

Fig. 6 An obvious improvement obtained from using the
ICC technique in a real road scene. (a) The input
image with high intensity in the previous cycle. (b)
The input image with 1ow intensity in the current
cycle. gc) Poor clustering result when the resulting
centers in the previous cycle are used as the initial
centers to run the clustering algorithm for three

iterations in the current cycle. (d) Better clustering
result produced by the ICC technique.
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Fig. 7 A real road image, its clustering result, the
reference templates regresented by the dotted
template, and the matched template represented
by the black template, where one static car is on
the right lane and one car is moving toward the
ALYV along the left lane.



