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ABSTRACT

In this paper, we study the problem of scheduling a set of
tasks to minimize mean flow time. The tasks have equal
processing time and are scheduled on two uniform proces-
sors. The faster processor is b times faster than the slower
one. The schedule needs to satisfy the resource constraints,
that is, there are r units of resources, all are of the same
kind. At any instant, the total number of resources held by
the tasks executed on both uniform processors is less than
or equal to r. Tasks are not preemptive. We propose an

O(n2) algorithm to find an asymptotically optimal schedule
for this problem. Our algorithm can be extended to develop
a good approximation algorithm for a multiprocessor sys-
tem with arbitrary number of processors.

1.INTRODUCTION

This paper addresses the following scheduling problem.
We are given a set of independent tasks T = {T1 ,T2 ,... Tn}.

The tasks are to be executed non-preemptively on a system
that contains: (1) two uniform processors, the processor P1
is b times faster than the slower processor P2 , and (2) r

units of resources, all are of the same kind. The processing
time of every task on the faster processor P1 is 1. There-

fore, it takes b units of time to complete the task on the
slower processor. In addition to requiring a processor, each
task Ti requires R( Ti ) units of resources to execute. Here-

after, by a task set, we mean specifically a set of tasks with
the characteristics described above unless otherwise states.

The goal is to schedule the tasks so that their mean flow
time is minimized. Specifically, a schedule σ is an assign-
ment of the tasks in T to the processors P1 and P2. Tasks

assigned to the same processor must be executed in dis-
jointed intervals of time. This assignment satisfies the fol-
lowing constraints:

(1) Each task is executed by one processor.

(2) Each processor executes at most one task at a time.

(3) The starting time S( Ti ) of Ti is the instant at which

Ti begins its execution in σ . Its completion time

C( Ti ) is S( Ti ) + 1 if Ti is executed on P1 and is

S( Ti ) + b if Ti is executed on P2.

(4) At any instant, the total number of resources held by

the tasks executed on P1 and P2 is less than or equal

to r.

The condition in (4) is referred to as the resource con-
straint. Given a schedule σ and the set of completion times
C( Tj ) of the n tasks in T, the mean flow time of the

schedule is
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An optimal schedule of the tasks in T on processors P1 and

P2 is one that meets the resources constraints and has the

minimum mean flow time.

The problem of finding such optimal schedules was sug-
gested by Blazewicz, et al [1] as an open problem. In this

paper, we proposed an O( n2 ) algorithm that finds asymp-
totically optimal schedules; a schedule is said to be as-
ymptotically optimal if its mean flow time is minimum as
the number of tasks n approaches infinity. In the special
case where the speed ratio b is an integer, our algorithm
can be simplified to find optimal schedules.

The problems of scheduling with resource constraints have
been studied extensively. Excellent surveys on complexity
analysis of these problems can be found in [2-5]. The
problem of scheduling non-preemptive tasks with arbitrary
processing times and resource requirements to minimize
mean flow time is shown in [1] to be NP-hard even for the

case of two identical processors. An O( n3 ) algorithm is
given in [1] for finding schedules with minimum mean
flow time of independent, non-preemptive tasks, each of
which has arbitrary processing time and requires 1 unit of
resource of the same type.

The remaining part of this paper is organized as follows:
Section 2 describes the characteristics of asymptotically

optimal schedules. Section 3 gives an O( n2 ) algorithm
that finds asymptotically optimal schedules when the speed
ratio b is arbitrary. Section 4 is the conclusion and future
works.

2.THE PROPERTIES OF

ASYMPTOTICALLY OPTIMAL SCHEDULES

Let L denotes a subset of l tasks in T whose resource re-
quirements are so large that they cannot be scheduled with
other tasks at the same time. In any optimal schedule, tasks
in L are scheduled in the faster processor P1, leaving the



slower processor P2 in idle. We can find an asymptotically

optimal schedule of T by first finding an asymptotically
optimal schedule of the tasks in T - L and then scheduling
the tasks in L on P1 either before or after all tasks in T - L

depending on the value of l. Without loss of generality, we
will confine our discussion hereafter to the case where the
subset L is empty.

We use σo and σa to denote an optimal schedule and an

asymptotically optimal schedule, respectively. When it is
necessary to distinguish the starting time and completion
time of a task Tj in a particular Schedule σ , we denote the

starting time and completion time of task Tj by S(Tj,σ ) and

C(Tj,σ ), respectively. For any speed ratio, we can partition

the time interval into sufficiently small time slices such
that every task starts and ends its execution at the bounda-
ries of some time slices in any schedule. We measure the
lengths of all time intervals in terms of numbers of time
slices. In terms of the time slices, the starting times and
completion times of all tasks are integers. We say that a
task Ti is executed later ( or earlier ) than Tj in a schedule

σ if S(Ti,σ ) ≥ S(Tj,σ ) ( or S(Ti,σ ) < S (Tj,σ ) ), that is, the

starting time of Ti is no earlier than the starting time of Tj.

Finally, we denote the number of tasks assigned to the
processor Pi according to the schedule σ by N(i,σ ) for i =

1 and 2, and the completion time of the last task on proc-
essors P1 or P2 in the schedule σ by f(σ ).

To characterize asymptotically optimal schedules, we need
the following definitions:

Definitions: Given a schedule σn, let T1,T2,...,Tk be the

tasks executed on processor P1 and Tk+1,Tk+2,..., Tn be

the tasks executed on processors P2.

(1) The schedule σn is said to be normalized if the re-

source requirements of the tasks are such that R( Ti )

≥ R( Tj ), here 1 ≤ i ≤ k and k + 1 ≤ j ≤ n.

(2) Suppose that the tasks are indexed so that R(T1) ≥
R(T2) ≥ ... ≥ R(Tk) ≥ R(Tk+1) ≥ ... ≥ R(Tn-1) ≥ R(Tn).

A normalized schedule is said to be compact if in it
(a) the starting times of the tasks are such that S(T1 )

≥ S(T2 ) ≥ ... ≥ S(Tk ) and S(Tk+1 ) ≤ S(Tk+2 ) ≤ ... ≤
S(Tn ) and (b) the slower processor P2 is busy during

the interval (0, b(n-k)) (i.e., S( Tk+1 ) = 0 and C(Tn )

= b(n-k)), and (c) the faster processor P1 is busy

during the interval (S(Tk ), S(Tk ) + k) (i.e., C(T1 ) =

S(Tk ) + k).

Figure 1 illustrates a compact schedule. Tasks T1 to

T12 are scheduled on P1. Tasks T13 to T19 are

scheduled on P2. The tasks scheduled on the slow

processor P2 start at time 0 and never idle after the

processor starts its execution. The fast processor P1
has some initial idle time, and never stops executing

tasks until all tasks assigned to P1 are finished.

���
���
���
���
���
���

��� � ��� �� � �� �� �� 	� 
� �� �����

��
 ��� ��� ��� �����	 ���

�
��������������

����������������

�

�

����������
�������������

Figure 1. An example illustrates a compact schedule
and a cross point.

(3) We refer to a time instant t in a schedule σ at which
there are a task Ti starting on P1 and a task Tj start-

ing on P2 as a cross point. That is, S(Ti,σ ) = S(Tj,σ )
= t for some Ti on P1 and Tj on P2. For example, in

Figure 1 task T9 and T15 start at the same time t.

Therefore, t is a cross point.

Our algorithm uses the following strategy to finding as-
ymptotically optimal schedule. We at first find a compact
schedule σc. After a compact schedule σc is found, we re-

arrange the execution order of some tasks to produce an
asymptotically optimal schedule. To prove that our strategy
can find an asymptotically optimal schedule, we need the
following lemmas.

Lemma 1: Given an optimal schedule σo with the number

of tasks assigned to processor P1 being k, we can find from
σo a compact schedule σc in which the number of tasks as-

signed to P1 is also equal to k, and the length of the idle
period from 0 to S(Tk) on P1 is at most equal to the total

length I of time intervals during which P1 is idle in σo.

In other words, N(1,σc) = N(1,σo) = k, and S(Tk,σc) ≤ I.

Proof: Given an optimal schedule σo, we sort all tasks as-

signed to the slow processor P2 in non-increasing order

according to their resource requirements; the tasks with
larger resources requirements are executed earlier. More-
over, the n-k tasks are assigned to the interval from 0 to
b(n-k) on P2. During the sorting, the idle periods on the

slow processor P2 will be moved to the end of the schedule.

The tasks assigned to the fast processor P1 will be moved

to keep the resource constraints satisfied. Tasks on the fast
processor P1 may be preempted. In other word, when a

task on P2 is moved, the task slices on P1 which are

scheduled in the same time interval in σo are moved also.

Therefore, the resource constraints remain satisfied after
the sorting is finished. Tasks on P1 are split into many task

slices and are assigned to uncontiguous time intervals.

Figure 2 illustrates how the sorting works. In this figure,
the slow processor P2 has three tasks and R(T2) ≥ R(T5) ≥
R(T7). We sort task T2, T5 and T7 according to their re-

source requirements. During the sorting, task T2 is moved

to the interval starting at time 0. To satisfy the resource
constraints, task T4 and part of task T6 need to be moved to

the same time slot on P1. Tasks T6 is divided into two

pieces during the sorting.
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In order to put the task slices on P1 back together (i.e., in

contiguous time intervals), we sort all task slices on P1
according to their resource requirements; the tasks with
smaller resource requirements are executed earlier. Since
all tasks on processor P2 are already sorted, sorting task

slices on P1 will not violate the resource constraints. The

example in Figure 3 illustrates how to put the task slices on
P1 together without violating the resource constraints. In

this example, R(T1) ≥ R(T3) ≥ R(T4) ≥ R(T6) ≥ R(T8).

Let's look at two tasks--T8 and T6 that violate the sorting

order. Task T8 and task T6 need to be swapped. Since R(T2)

≥ R(T7), therefore, r ≥ R(T6) + R(T2) ≥ R(T6) + R(T7). It

means that T6 and T7 can be scheduled in the same time.

Therefore, moving T6 to the time interval originally as-

signed to T8 will not violate the resource constraints.

Moreover, since R(T6) ≥ R(T8), we can move T8 to the

time interval assigned to T6 without violating the re-

source constraints. The sorting process of the tasks on the
fast processor P1 can be done by applying the same swap-

ping method repeatedly to tasks that violate the sorting or-
der.
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After the sorting is finished, we assume that the first tasks
assigned on P1 and on P2 are Ta and Tb, respectively. If

R(Ta) < R(Tb), we can swap Ta and Tb. The task swapping

process will be illustrated in Figure 4. The compact sched-
ule is constructed by iterations. Each iteration has two

steps. In the first step, we do the sorting process. In the
second step, we swap the task if necessary. The iterations
are repeated until no tasks need to be swapped. Figure 4 il-
lustrates the change of the schedule after doing one itera-
tion. In this example, the first task assigned to processor
P1 (or P2) is T8 (or T2). Since R(T8) ≤ R(T2), we need to

swap these two tasks to make the schedule compact.
Since T6 is the task scheduled at the same time with T2, we

need to check if the resource constraint is violated after we
swap task T8 and T2. Since R(T8) + R(T6) ≤ R(T2) + R(T6)

≤ r , we can schedule T8 and T6 at the same time. By using

the iterations of sorting and swapping, we eventually will
find a compact schedule.

It is always possible to make the starting time S(Tk , σc) of

the first task Tk on P1 sufficiently late so that P1 once be-

coming busy remains busy until the end of the schedule.
The new schedule thus produced is a compact schedule.
To find an upper bound of S(Tk , σc) so that the schedule is

compact, we note that after the task slices on P1 and P2 are

sorted as described above, the total length I of all intervals
between 0 and b(n-k) during which P1 is idle is less than or

equal to the total length of time intervals during which P1
is idle in σo. Moreover S(Tk , σc) ≤ I.
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Theorem 1: Given an optimal schedule σo with mean flow

time Fo, we can find an asymptotically optimal schedule

σa with mean flow time Fa such that

Fa ≤ Fo +
c

n
for some constant c, that is,

∞→n
lim Fa = Fo.

Proof: According to Lemma 1, we know that σo can be

transformed into a compact schedule σc without changing

the number of tasks assigned to P1. Now, we describe a

method for constructing an asymptotically optimal sched-
ule σa from a compact schedule. The method works as fol-

lows: We delay the starting times of all tasks on P1 in σc
so that b is the earliest cross point in the resultant schedule



schedule σc'. We note that either both processors complete

executing their last tasks at the same time, or P2 becomes

idle first. Without loss of generality, we assume the latter.
Let Tj be the first task on P1 that is executed after proces-

sor P2 completes its last task Tn and t1 denotes the starting

time of Tj. In other words, t1 = S(Tj) ≥ C(Tn) . Now, we

remove all tasks on both processors in the time interval
[0,b] temporarily and move all tasks in the time interval [b,
t1] forward to the time interval [0, t1 - b]. After this

movement, no task is assigned in the time interval [t1 - b,

t1]. We then assign all temporarily removed tasks (they are

scheduled in the time interval [0,b] originally) to this in-
terval. However, rather than in their original order as in σc,

we reverse the order in which they are assigned. In other
words, if Tx is assigned earlier than Ty in the compact

schedule σc, Ty is assigned earlier than Tx in the new

schedule. The segment of σc' after t1 remains unchanged.

This new assignment of tasks on processors is illustrated in
Figure 5.
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When all tasks are scheduled in this manner, we have a
new schedule, denoted by σa. The mean flow time of σa
can be computed as follows:

Let Wo be the total flow time of σo (e.q., Wo = Fo×n).

Let Wo1 and Wo2 be the total flow time of the tasks exe-

cuted on processor P1 and P2, respectively. The total flow

time Wa of the new schedule σa can also be partitioned

into two parts, Wa1 and Wa2, where Wa1 and Wa2 are the

total flow time of the tasks assigned to P1 and P2 in σa,

respectively. We have the following equations:

Wo = Wo1 + Wo2

Wa = Wa1 + Wa2

Let us consider the total flow time of the tasks on processor
P1 first. P1 may be idle for some times in the optimal

schedule σo. But in schedule σa, the idle times on P1 are

late than in σo. Hence Wa1 is less than or equal to the total

flow time of all tasks on P1 in σa. That is, Wa1 ≤ Wo1.

Next, we consider the total flow time of the tasks on P2.

In σa, P2 idles at most once. Let c1 denote the number of

tasks on P2 scheduled after the idle interval, then c1 is a

constant. Furthermore, the length of the idle interval, de-
noted by c2, is less than 1. We have the following equa-

tions.
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Let c = c1× c2, then

Wa2 - Wo2 ≤ c

and

Fa - Fo ≤
c

n
Therefore, Fa = Fo when the number of tasks approaches

∞.

3.THE ALGORITHM OF

FINDING THE ASYMPTOTICALLY OPTIMAL SCHEDULE

According to theorem 1, the asymptotically optimal sched-
ule can be found by the following steps:

(1) Assume that the number of tasks assigned to P1 is k

and find a compact schedule σc with k tasks assigned

to P1.

(2) Rearrange the assignment of the tasks in σc as de-

scribed in theorem 1 to produce an asymptotically
optimal schedule σa.

To do the step (2), we need to find t1 and t2 first. We then

shift some tasks to the proper time intervals. It is easy to
show that the run time for step (2) is linear. To find the
time complexity of step (1), we note that the number of
tasks assigned to P1 in σo is k, the possible values of k are

0,1,...,n. We try each possible value of k exactly once in
order to find out what the exact value of k is.

Lemma 2: Given a fixed k and n tasks T1,T2,...,Tn with

R(T1) ≥ R(T2) ≥ ... ≥ R(Tn). We can find the compact

schedule σc with k tasks assigned to P1 in linear time.

Proof: We assign T1,...,Tk to P1 and assign Tk+1, ...,Tn to

P2. P1 executes Tk, then executes Tk-1, etc.. P2 executes

Tk+1, then Tk+2, etc.. In a compact schedule, P2 never

idles, but P1 will idle a short period of times at the begin-

ning. We determinate the initial idle time of P1 as follows:

At first, we execute all tasks on P1 as early as possible

without changing the execution order of tasks. Second, We
fix the starting time of T1 and move all idle time intervals



of P1 as early as possible. The schedule produced by this

method is a compact schedule. Because each task is exam-
ined at most twice, the total time in finding this schedule is
linear.

According to lemma 2, it is easy to show that the following
theorem is true.

Theorem 2: The asymptotically optimal schedule can be

found in O(n2)

Proof: By applying the algorithm designed in Lemma 2,
we can find an asymptotically optimal schedule corre-
sponding to a fixed k in linear time. We set the value of k to
be all possible integer between 1 and n. Therefore, we at
most need to try n times and the asymptotically optimal
schedule will be found. We need to spend linear time in
finding an asymptotically optimal schedule corresponding
to a fixed k. Therefore, the total time in finding an asymp-

totically optimal schedule is O(n2).

4.CONCLUSIONS AND FUTURE WORKS

In this paper, we study the problem of scheduling
non-preemptive, independent tasks on two uniform proc-
essors to minimize mean flow time. The schedule must
satisfy the resource constraints. We propose an algorithm to
find an asymptotically optimal schedule. In the special case
where the speed ratio between the fast and the slow proc-
essor is integer, our algorithm can be simplified to find the
optimal schedules. In this paper, we focus on the case of
two uniform processor systems. The algorithm proposed in
this paper can be extended to handle the multiprocessor
systems with arbitrary number of processors. In a multi-
processor system with arbitrary number of processors, our
algorithm cannot guarantee that an asymptotically optimal
schedule can be found, but a schedule with good approxi-
mation factor can be constructed.
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